Advertisement

Segmentation of Calcified Plaques in Intravascular Ultrasound Images

  • Tara Chand UlliEmail author
  • Deep Gupta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 766)

Abstract

Intravascular ultrasound (IVUS) imaging is mostly used in the diagnosis and treatment of coronary artery diseases, especially in atherosclerosis, because it becomes very difficult to identify in the calcified regions manually. The IVUS images allow to visualize the inner portion of the coronary artery with enhanced resolution and also to acquire the cross-sectional images of arteries. Therefore, this paper presents a computational framework to identify the calcified region in IVUS images. In this paper, spatial fuzzy C-means approach is used to extract the exact boundary of the calcified plaque region in the IVUS images along with the wavelet transform decomposition. This clustering approach is capable of incorporating additional spatial information obtained from the neighboring pixels and also overcoming the limitations of noise and artifacts in IVUS coronary images. Several experiments have been performed on the different IVUS data and their experimental results are analyzed in terms of both quantitative and qualitative manner. The results revealed that the spatial fuzzy C-means provides better segmentation accuracy by extracting the calcified region as compared with other approaches.

Keywords

IVUS Coronary artery Spatial fuzzy C-means Calcified plaque 

References

  1. 1.
    Ulusoy, F.R., Yolcu, M., İpek, E., Korkmaz, A.F., Gurler, M.Y., Gulbaran, M.: Coronary artery disease risk factors, coronary artery calcification and coronary bypass surgery. J. Clin. Diagn. Res. 9 (2015)Google Scholar
  2. 2.
    Banchhor, S.K., Araki, T., Londhe, N.D., Ikeda, N., Radeva, P., Elbaz, A., Saba, L., Nicolaides, A., Shafique, S., Laird, J.R.: Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: A comparative approach. Comput. Methods Programs Biomed. 134, 237–258 (2016)CrossRefGoogle Scholar
  3. 3.
    Banchhor, S.K., Londhe, N.D., Saba, L., Radeva, P., Laird, J.R., Suri, J.S.: Relationship between automated coronary calcium volumes and a set of manual coronary lumen volume, vessel volume and atheroma volume in Japanese diabetic cohort. J. Clin. Diagn. Res. 11 (2017)Google Scholar
  4. 4.
    Kubo, T., Imanishi, T., Takarada, S., Kuroi, A., Ueno, S., Yamano, T., Tanimoto, T., Matsuo, Y., Masho, T., Kitabata, H.: Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50, 933–939 (2007)CrossRefGoogle Scholar
  5. 5.
    Araki, T., Nakamura, M., Utsunomiya, M., Sugi, K.: Visualization of coronary plaque in arterial remodeling using a new 40-MHz intravascular ultrasound imaging system. Catheter Cardiovasc. Interv. 81, 471–480 (2013)CrossRefGoogle Scholar
  6. 6.
    Araki, T., Ikeda, N., Dey, N., Acharjee, S., Molinari, F., Saba, L., Godia, E.C., Nicolaides, A., Suri, J.S.: Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness. J. Ultrasound Med. 34, 469–482 (2015)CrossRefGoogle Scholar
  7. 7.
    Mintz, G.S., Popma, J.J., Pichard, A.D., Kent, K.M., Satler, L.F., Chuang, Y.C., Ditrano, C.J., Leon, M.B.: Patterns of calcification in coronary artery disease: a statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 91, 1959–1965 (1995)CrossRefGoogle Scholar
  8. 8.
    Coutts, S.B., Modi, J., Patel, S.K., Demchuk, A.M., Goyal, M., Hill, M.D.: CT/CT angiography and MRI findings predict recurrent stroke after transient ischemic attack and minor stroke: results of the prospective CATCH study. Stroke 43, 1013–1017 (2012)CrossRefGoogle Scholar
  9. 9.
    Schoenhagen, P., Nissen, S.: Understanding coronary artery disease: tomographic imaging with intravascular ultrasound. Heart 88, 91–96 (2002)CrossRefGoogle Scholar
  10. 10.
    Katouzian, A., Angelini, E., Sturm, B., Konofagou, E., Carlier, S.G., Laine, A.F.: Applications of multiscale overcomplete wavelet-based representations in Intravascular Ultrasound (IVUS) images. Ultrasound Imaging, pp. 313–336. Springer, Berlin (2012)Google Scholar
  11. 11.
    Araki, T., Banchhor, S.K., Londhe, N.D., Ikeda, N., Radeva, P., Shukla, D., Saba, L., Balestrieri, A., Nicolaides, A., Shafique, S.: Reliable and accurate calcium volume measurement in coronary artery using intravascular ultrasound videos. J. Med. Syst. 40, 51 (2016)CrossRefGoogle Scholar
  12. 12.
    Gao, Z., Guo, W., Liu, X., Huang, W., Zhang, H., Tan, N., Hau, W.K., Zhang, Y.-T., Liu, H.: Automated detection framework of the calcified plaque with acoustic shadowing in IVUS images. PloS one 9 (2014)CrossRefGoogle Scholar
  13. 13.
    Cardinal, M.H., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier, G.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans. Med. Imaging 25, 590–601 (2006)CrossRefGoogle Scholar
  14. 14.
    Santos Filho, E., Saijo, Y., Tanaka, A., Yoshizawa, M.: Detection and quantification of calcifications in intravascular ultrasound images by automatic thresholding. Ultrasound Med. Biol. 34, 160–165 (2008)CrossRefGoogle Scholar
  15. 15.
    Suganya, R., Shanthi, R.: Fuzzy c-means algorithm-a review. Int. J. Sci. Res. Publ. 2, 1–3 (2012)Google Scholar
  16. 16.
    Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., Chen, T.-J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)CrossRefGoogle Scholar
  17. 17.
    Yang, M.-S., Tsai, H.-S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29, 1713–1725 (2008)CrossRefGoogle Scholar
  18. 18.
    Yuan, Y., He, C.: Adaptive active contours without edges. Math. Comput. Model. 55, 1705–1721 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRefGoogle Scholar
  20. 20.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22, 266–280 (2000)CrossRefGoogle Scholar
  21. 21.
    Li, B., Chui, C., Ong, S.H., Chang, S.: Integrating FCM and level sets for liver tumor segmentation. In: Lim, C., Goh, J.H. (eds.) Proceedings: 13th International Conference on Biomedical Engineering, vol. 23, pp. 202–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Puertas, E., Escalera, S., Pujol, O.: Generalized multi-scale stacked sequential learning for multi-class classification. Pattern Anal. Appl. 18, 247–261 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mahajan, S.H., Harpale, V.K.: Adaptive and non-adaptive image interpolation techniques. In: International Conference on Computing Communication Control and Automation, pp. 772–775 (2015)Google Scholar
  24. 24.
    Harb, S.M.E., Isa, N.A.M., Salamah, S.: New adaptive interpolation scheme for image upscaling. Multimed. Tools Appl. 75, 7293–7325 (2016)CrossRefGoogle Scholar
  25. 25.
    Acharya, T., Tsai, P.-S.: Computational foundations of image interpolation algorithms. Ubiquity 2007, 1–17 (2017)CrossRefGoogle Scholar
  26. 26.
    Press, W.H.: Numerical Recipes in Pascal: the Art of Scientific Computing. Cambridge University Press, Cambridge (1989)Google Scholar
  27. 27.
    De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., De Boor, C.: A practical guide to splines. Springer, New York (1978)CrossRefGoogle Scholar
  28. 28.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)CrossRefGoogle Scholar
  29. 29.
    Turkowski, K.: Filters for common resampling tasks. Graphics gems, pp. 147–165. Academic Press Professional, Inc. (1990)Google Scholar
  30. 30.
    Adelson, E.H., Burt, P.J.: Image data compression with the Laplacian pyramid. University of Maryland, Computer Science (1980)Google Scholar
  31. 31.
    Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 41, 1–10 (2011)CrossRefGoogle Scholar
  32. 32.
    Gupta, D., Anand, R.S.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31, 116–126 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations