Advertisement

Biotechnology and Bioinformatics Applications in Alzheimer’s Disease

  • Mahmoud A. AliEmail author
  • Athanasios Alexiou
  • Ghulam Md Ashraf
Chapter

Abstract

Alzheimer’s disease is one of the most severe types of dementia that causes problems with memory, thinking, and behavior. Biotechnology and bioinformatics are nowadays involved in the establishment of advanced methods of diagnosis and treatment, including molecular medicine, personalized medicine, gene identification and manipulation, as well as neural engineering. Next-generation sequencing is one of the strongest tools for studying genetic diseases and gene mutations. Additionally, brain-computer interface could be used in the near future to assist people with paralysis or other related disorders and physical injuries to move toward into a better way of life, restoring memory or improving the way of everyday life. This chapter aims to provide an overview of the most common and an advanced application of biotechnology and bioinformatics in Alzheimer’s including the genome-wide association studies and the role of microbiome detection in Alzheimer’s disease.

Keywords

Algorithms in biology Alzheimer’s disease Bioinformatics Brain-computer interface Genome-wide association study Next-generation sequencing Neural engineering 

References

  1. Alexiou A, Mantzavinos VD, Greig NH, Kamal MA (2017) A Bayesian model for the prediction and early diagnosis of Alzheimer’s disease. Front Aging Neurosci 9:77.  https://doi.org/10.3389/fnagi.2017.00077CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blennow K, deLeon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403CrossRefGoogle Scholar
  3. Bodily PM, Fujimoto MS, Page JT, Clement MJ, Ebbert MT, Ridge PG, Alzheimer’s Disease Neuroimaging Initiative (2016) A novel approach for multi-SNP GWAS and its application in Alzheimer’s disease. BMC Bioinf 17(Suppl 7):268.  https://doi.org/10.1186/s12859-016-1093-7CrossRefGoogle Scholar
  4. Callaway E (2012) Alzheimer’s drugs take a new tack. Nature 489:13–14.  https://doi.org/10.1038/48901CrossRefPubMedGoogle Scholar
  5. Chatzichronis S, Alexiou A, Simou P, Matzavinos V, Tsiamis V et al (2019) Neurocognitive assessment software for enrichment sensory environments. J Proteomics Bioinform 12:018–028.  https://doi.org/10.4172/0974-276X.1000492CrossRefGoogle Scholar
  6. Chen H, Chan DC (2009) Mitochondrial dynamics – fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176CrossRefGoogle Scholar
  7. Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130(3):548–562CrossRefGoogle Scholar
  8. Deming Y, Filipello F, Cignarella F, Hsu S, Mikesell R, Li Z, Del-Aguila JL, Dube U, Farias FG, Bradley J, Cantoni C, Benitez B, Budde J, Ibanez L, Fernandez MV, Blennow K, Nellgard B, Zetterberg H, Heslegrave A, Johansson PM, Svensson J, Lleo A, Alcolea D, Clarimon J, Rami L, Molinuevo JL, Suarez-Calvet M, Morenas-Rodriguez E, Kleinberger G, Ewers M, Brett TJ, Haass C, Harari O, Karch CM, Piccio L, Cruchaga C (2018) The MS4A gene cluster is a key regulator of soluble TREM2 and Alzheimer disease risk. bioRxiv 352179.  https://doi.org/10.1101/352179
  9. Gardner A et al (2009) Differences at brain SPECT between depressed females with and without adult ADHD and healthy controls: etiological considerations. Behav Brain Funct 5(1):37CrossRefGoogle Scholar
  10. Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99.  https://doi.org/10.1023/B:BRAT.0000006333.93597.9dCrossRefPubMedGoogle Scholar
  11. Ibsen S et al (2015) Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 6:8264.  https://doi.org/10.1038/ncomms9264CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lau T, Gwin J, Ferris D (2012) How many electrodes are really needed for EEG-based mobile brain imaging? J Behav Brain Sci 2(3):387–393.  https://doi.org/10.4236/jbbs.2012.23044CrossRefGoogle Scholar
  13. Levitin A (2011) Introduction to the design and analysis of algorithms, 3rd edn. Pearson Education Limited, HarlowGoogle Scholar
  14. Luo S, Lu JY, Liu L (2016) Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18(5):637–652CrossRefGoogle Scholar
  15. Lustbader JW et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science (New York, NY) 304(5669):448–452CrossRefGoogle Scholar
  16. Mantzavinos V, Alexiou A (2017) Biomarkers for Alzheimer’s disease diagnosis. Curr Alzheimer Res 14(11):1149–1154CrossRefGoogle Scholar
  17. Marioni RE, Harris SE, McRae AF et al (2018) GWAS on family history of Alzheimer’s disease. Transl Psychiatry 8:99CrossRefGoogle Scholar
  18. Martin LJ (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals 3(4):839–915CrossRefGoogle Scholar
  19. Mattsson N (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385CrossRefGoogle Scholar
  20. Mattsson N (2010) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302(4):385–393.  https://doi.org/10.1001/jama.2009.1064CrossRefGoogle Scholar
  21. Minter MR, Hinterleitner R, Meisel M, Zhang C, Leone V, Zhang X, Oyler-Castrillo P, Zhang X, Musch MW, Shen X, Jabri B, Chang EB, Tanzi RE et al (2017) Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci Rep 7(1):10411.  https://doi.org/10.1038/s41598-017-11047-wCrossRefPubMedPubMedCentralGoogle Scholar
  22. Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58(12):1985–1992CrossRefGoogle Scholar
  23. Rao AA, Reddi KK, Thota H (2008) Bioinformatic analysis of Alzheimer’s disease using functional protein sequences. J Proteomics Bioinform 1:036–042.  https://doi.org/10.4172/jpb.1000007CrossRefGoogle Scholar
  24. Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert M, Gonzalez Murcia JD, Farnham JM, Damato AR, Allen M, Wang X, Harari O, Fernandez VM, Guerreiro R, Bras J, Hardy J, Munger R, Norton M, Sassi C, Singleton A, Younkin SG, Dickson DW, Golde TE, Price ND, Ertekin-Taner N, Cruchaga C, Goate AM, Corcoran C, Tschanz J, Cannon-Albright LA, Kauwe J, Alzheimer’s Disease Neuroimaging Initiative (2017) Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med 9(1):100.  https://doi.org/10.1186/s13073-017-0486-1CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sanchez-Mut JV et al (2018) PM20D1 is a quantitative trait locus associated with Alzheimer’s disease. Nat Med 24:598–603CrossRefGoogle Scholar
  26. Visser PJ, Verhey FR (2008) Mild cognitive impairment as predictor for Alzheimer’s disease in clinical practice: effect of age and diagnostic criteria. Psychol Med 38(1):113–122CrossRefGoogle Scholar
  27. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537.  https://doi.org/10.1038/s41598-017-13601-yCrossRefPubMedPubMedCentralGoogle Scholar
  28. Wang X et al (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105(49):19318–19323CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mahmoud A. Ali
    • 1
    Email author
  • Athanasios Alexiou
    • 2
    • 3
  • Ghulam Md Ashraf
    • 4
    • 5
  1. 1.Biotechnology Program, Faculty of AgricultureCairo UniversityGizaEgypt
  2. 2.Novel Global Community Educational FoundationHebershamAustralia
  3. 3.AFNP MedWienAustria
  4. 4.King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations