Advertisement

Diversity and Functional Importance of Phytoplasma Membrane Proteins

  • Marika Rossi
  • Ivana Samarzija
  • Martina Šeruga-Musić
  • Luciana Galetto
Chapter

Abstract

Phytoplasmas are wall-less prokaryotes, associated with hundreds of severe crop diseases worldwide. They inhabit phloem elements and are transmitted by insects of a few hemipteran families. In absence of a cell wall, phytoplasma membrane proteins are in direct contact with insect and plant hosts. The most abundant on their pathogen cells are the immunodominant membrane proteins (IDPs), which have been characterized in several phytoplasma strains, but also other membrane protein families, like variable membrane proteins (Vmps), adhesins, AAA + ATPases, and several transporters, are worth to mention for interactions with hosts and pathogen adaptation to different environments and as molecular markers useful for strain genotyping. Indeed, many of these membrane proteins are under positive selection pressure, and therefore highly variable among the different phytoplasma strains. A review and a schematic summary of the salient literature on phytoplasma membrane proteins are presented. The focuses were the variability of their gene sequences and the molecular characterization of pathogen strains and their functional roles in mediating interactions with plants and insects and in the perception and adaptation to different environments.

Keywords

Immunodominant membrane proteins Variable membrane proteins Positive selection pressure Insect transmission specificity Pathogen-plant interaction Host switching 

References

  1. Abbà S, Galetto L, Carle P, Carrère S, Delledonne M, Foissac X, Palmano S, Veratti F, Marzachì C (2014) RNA-Seq profile of “flavescence dorée” phytoplasma in grapevine. BMC Genomics 15, 1088.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Al-Ghaithi AG, Al-Subhi AM, Al-Mahmooli IH, Al-Sadi AM (2018) Genetic analysis of ‘Candidatus Phytoplasma aurantifolia’ associated with witches’ broom on acid lime trees. PeerJ 5, e4480.CrossRefGoogle Scholar
  3. Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X, (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology 73, 4001–4010.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arricau-Bouvery N, Duret S, Dubrana M-P, Batailler B, Desqué D, Béven L, Danet J-L, Monticone M, Bosco D, Malembic-Maher S, Foissac X (2018) Variable membrane protein A of “flavescence dorée” phytoplasma binds the midgut perimicrovillar membrane of Euscelidius variegatus and promotes adhesion to its epithelial cells. Applied and Environmental Microbiology 84, e02487–17.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Atanasova B, Jakovljević M, Spasov D, Jović J, Mitrović M, Toševski I, Cvrković T (2015) The molecular epidemiology of “bois noir” grapevine yellows caused by ‘Candidatus Phytoplasma solani’ in the Republic of Macedonia. European Journal of Plant Pathology 142, 759–770.CrossRefGoogle Scholar
  6. Bai X, Correa VR, Toruño TY, Ammar E-D, Kamoun S, Hogenhout SA (2009) AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant-Microbe Interactions 22, 18–30.CrossRefGoogle Scholar
  7. Barbara DJ, Davies DL, Clark MF, Morton A (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148, 157–167.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Berg M, Davies DL, Clark MF, Vetten HJ, Maier G, Marcone C, Seemüller E (1999) Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology 145, 1937–1943.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Blomquist CL, Barbara DJ, Davies DL, Clark MF, Kirkpatrick BC (2001) An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147, 571–580.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Boonrod K, Munteanu B, Jarausch B, Jarausch W, Krczal G (2012) An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’ binds to plant actin. Molecular Plant-Microbe Interactions 25, 889–895.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bosco D, D’Amelio R (2010) Transmission specificity and competition of multiple phytoplasmas in the insect vector. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CABI, Wallingford, United Kingdom, 293–308 pp.Google Scholar
  12. Cimerman A, Pacifico D, Salar P, Marzachì C, Foissac X (2009) Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the “stolbur” phytoplasma. Applied and Environmental Microbiology 75, 2951–2957.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Danet J-L, Bonnet P, Jarausch W, Carraro L, Skoric D, Labonne G, Foissac X (2007) Imp and secY, two new markers for MLST (multilocus sequence typing) in the 16SrX phytoplasma taxonomic group. Bulletin of Insectology 60, 339–340.Google Scholar
  14. Danet J-L, Balakishiyeva G, Cimerman A, Sauvion N, Marie-Jeanne V, Labonne G, Lavina A, Batlle A, Krizanac I, Skoric D, Ermacora P, Ulubas Serçe C, Caglayan K, Jarausch W, Foissac X (2011) Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology 157, 438–450.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dickinson M, Hodgetts J (2013) PCR analysis of phytoplasmas based on the secA gene. In: Phytoplasma. Methods in Molecular Biology, vol. 938, Eds Dickinson M, Hodgetts J. Humana Press, Totowa, New Jersey, United States of America, 205–215 pp.Google Scholar
  16. Fabre A, Danet J-L, Foissac X (2011) The “stolbur” phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene 472, 37–41.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fleury B, Bergonier D, Berthelot X, Peterhans E, Frey J, Vilei EM (2002) Characterization of P40, a cytadhesin of Mycoplasma agalactiae. Infection and Immunity 70, 5612–5621.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Foissac X, Danet J-L, Malembic-Maher S, Salar P, Šafářová D, Válová P, Navrátil M (2013) Tuf and secY PCR amplification and genotyping of phytoplasmas. In: Phytoplasma. Methods in Molecular Biology, vol 938. Eds Dickinson M, Hodgetts J. Humana Press, Totowa, New Jersey, United States of America, 189–204 pp.Google Scholar
  19. Galetto L, Fletcher J, Bosco D, Turina M, Wayadande A, Marzachì C (2008) Characterization of putative membrane protein genes of the ‘Candidatus Phytoplasma asteris’, chrysanthemum yellows isolate. Canadian Journal of Microbiology 54, 341–351.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C (2011) The major antigenic membrane protein of ‘Candidatus Phytoplasma asteris’ selectively interacts with ATP synthase and actin of leafhopper vectors. Plos One 6, e22571.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Galetto L, Rashidi M, Yamchi A, Veratti F, Marzachì C (2014) In vitro expression of phytoplasma immunodominant membrane proteins. In: Phytoplasmas and Phytoplasma Disease Management: How to Reduce their Economic Impact. Ed Bertaccini A. IPWG - International Phytoplasmologist Working Group, Bologna, Italy, 272–279 pp.Google Scholar
  22. Galetto L, Abbà S, Rossi M, Vallino M, Pesando M, Arricau-Bouvery N, Dubrana MP, Chitarra W, Pegoraro M, Bosco D, Marzachì C (2018) Two phytoplasmas elicit different responses in the insect vector Euscelidius variegatus Kirschbaum. Infection and Immunity 86, e00042–18.Google Scholar
  23. Galetto L, Vallino M, Rashidi M, Marzachì C (2019) Immunofluorescence assay to study early events of vector salivary gland colonization by phytoplasmas. In: Phytoplasma - Methods and Protocols. Eds Musetti R, Pagliari L. Springer Science+Business Media, New York, United States of America, 307–317 pp.Google Scholar
  24. Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology 58, 1826–1837.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences of United States of America, 106, 6416–6421.Google Scholar
  26. Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Oshima K, Namba S (2009) In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology 155, 2058–2067.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ishii Y, Kakizawa S, Oshima K (2013) New ex vivo reporter assay system reveals that σ factors of an unculturable pathogen control gene regulation involved in the host switching between insects and plants. MicrobiologyOpen 2, 553–565.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kakizawa S, Oshima K, Kuboyama T, Nishigawa H, Jung H, Sawayanagi T, Tsuchizaki T, Miyata S, Ugaki M, Namba S (2001) Cloning and expression analysis of phytoplasma protein translocation genes. Molecular Plant-Microbe Interactions 14, 1043–50.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kakizawa S, Oshima K, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Tanaka M, Miyata S, Ugaki M, Namba S (2004) Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135–142.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kakizawa S, Oshima K, Namba S (2006a) Diversity and functional importance of phytoplasma membrane proteins. Trends in Microbiology 14, 254–256.PubMedCrossRefGoogle Scholar
  31. Kakizawa S, Oshima K, Jung H-Y, Suzuki S, Nishigawa H, Arashida R, Miyata S-I, Ugaki M, Kishino H, Namba S (2006b) Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. Journal of Bacteriology 188, 3424–3428.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kakizawa S, Oshima K, Ishii Y, Hoshi A, Maejima K, Jung H-Y, Yamaji Y, Namba S (2009) Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiology Letters 293, 92–101.PubMedCrossRefGoogle Scholar
  33. Konnerth A, Krczal G, Boonrod K (2016) Immunodominant membrane proteins of phytoplasmas. Microbiology 162, 1267–1273.PubMedCrossRefGoogle Scholar
  34. Kostadinovska E, Quaglino F, Mitrev S, Casati P, Bulgari D, Bianco PA (2014) Multiple gene analyses identify distinct “bois noir” phytoplasma genotypes in the Republic of Macedonia. Phytopathologia Mediterranea 53, 491–501.Google Scholar
  35. Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. The Scientific World Journal 2012, 1–25.CrossRefGoogle Scholar
  36. Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochimica et Biophysica Acta 1823, 40–48.PubMedCrossRefGoogle Scholar
  37. Le Gall F, Bové J-M, Garnier M (1998) Engineering of a single-chain variable-fragment (scFv) antibody specific for the “stolbur” phytoplasma (mollicute) and its expression in Escherichia coli and tobacco plants. Applied and Environmental Microbiology 64, 4566–4572.Google Scholar
  38. Lee I-M, Gundersen-Rindal D, Bertaccini A (1998) Phytoplasma: ecology and genomic diversity. Phytopathology 88, 1359–1366.PubMedCrossRefGoogle Scholar
  39. Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic Mollicutes. Annual Review of Microbiology 54, 221–255.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20, 87–91.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. International Journal of Systematic and Evolutionary Microbiology 60, 2887–2897.PubMedCrossRefPubMedCentralGoogle Scholar
  42. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157, 831–841.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. Journal of General Plant Pathology 80, 210–221.CrossRefGoogle Scholar
  44. Malembic-Maher S, Gall FL, Danet J-L, Borne FD de, Bové J-M, Garnier-Semancik M (2005) Transformation of tobacco plants for single-chain antibody expression via apoplastic and symplasmic routes, and analysis of their susceptibility to “stolbur” phytoplasma infection. Plant Science 168, 349–358.CrossRefGoogle Scholar
  45. Malembic-Maher S, Desqué D, Khalil D, Salar P, Danet J-L, Bergey B, Duret S, Beven L, Arricau-Bouvery N, Jović L, Krnjajić S, Angelini E, Filippin L, Ember I, Kölber M, Della Bartola M, Materazzi A, Lang F, Jarausch B, Maixner M, Foissac X (2017) When a palearctic bacterium meets a nearctic insect vector: genetic and ecological insights into the emergence of the grapevine “flavescence dorée” epidemics in Europe. IOBC-WPRS Meeting, 15–20 October, Riva Del Garda (Verona), Italy, 211–213.Google Scholar
  46. Marcone C (2014) Molecular biology and pathogenicity of phytoplasmas. Annals of Applied Biology 165, 199–221.CrossRefGoogle Scholar
  47. Morton A, Davies DL, Blomquist CL, Barbara DJ (2003) Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Molecular Plant Pathology 4, 109–114.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Murolo S, Romanazzi G (2015) In-vineyard population structure of ‘Candidatus Phytoplasma solani’ using multilocus sequence typing analysis. Infection, Genetics and Evolution 31, 221–230.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Neriya Y, Sugawara K, Maejima K, Hashimoto M, Komatsu K, Minato N, Miura C, Kakizawa S, Yamaji Y, Oshima K, Namba S (2011) Cloning, expression analysis, and sequence diversity of genes encoding two different immunodominant membrane proteins in poinsettia branch-inducing phytoplasma (PoiBI). FEMS Microbiology Letters 324, 38–47.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Neriya Y, Maejima K, Nijo T, Tomomitsu T, Yusa A, Himeno M, Netsu O, Hamamoto H, Oshima K, Namba S (2014) Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiology Letters 361, 115–122.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27–29.CrossRefGoogle Scholar
  52. Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. Plos One 6, e23242.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Oshima K, Maejima K, Namba S (2013) Genomic and evolutionary aspects of phytoplasmas. Frontiers in Microbiology 4, 230.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Pacifico D, Galetto L, Rashidi M, Abbà S, Palmano S, Firrao G, Bosco D, Marzachì C (2015) Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Applied and Environmental Microbiology 81, 2591–2602.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Pierro R, Passera A, Panattoni A, Casati P, Luvisi A, Rizzo D, Bianco PA, Quaglino F, Materazzi A (2018) Molecular typing of “bois noir” phytoplasma strains in the Chianti Classico area (Tuscany, Central Italy) and their association with symptom severity in Vitis vinifera Sangiovese. Phytopathology 108, 362–373.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Plavec J, Križanac I, Budinšćak Ž, Škorić D, Šeruga-Musić M (2015) A case study of FD and BN phytoplasma variability in Croatia: multigene sequence analysis approach. European Journal of Plant Pathology 142, 591–601.CrossRefGoogle Scholar
  57. Plavec J, Budinšćak Ž, Križanac I, Škorić D, Foissac X, Šeruga-Musić M (2019) Multi-locus sequence typing reveals the presence of three distinct “flavescence dorée” phytoplasma genetic clusters in Croatian vineyards. Plant Pathology 68, 18–30.CrossRefGoogle Scholar
  58. Quaglino F, Kube M, Jawhari M, Abou-Jawdah Y, Siewert C, Choueiri E, Sobh H, Casati P, Tedeschi R, Molino Lova M, Alma A, Bianco PA (2015) ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’ broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiology 15, 148.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Rashidi M, Galetto L, Bosco D, Bulgarelli A, Vallino M, Veratti F, Marzachì C (2015) Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiology 15, 193.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Renaudin J, Béven L, Batailler B, Duret S, Desqué D, Arricau-Bouvery N, Malembic-Maher S, Foissac X (2015) Heterologous expression and processing of the “flavescence dorée” phytoplasma variable membrane protein VmpA in Spiroplasma citri. BMC Microbiology 15, 82.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Seemüller E, Kampmann M, Kiss E, Schneider B (2011) HflB gene-based phytopathogenic classification of ‘Candidatus Phytoplasma mali’ strains and evidence that strain composition determines virulence in multiply infected apple trees. Molecular Plant-Microbe Interactions 24, 1258–1266.CrossRefGoogle Scholar
  62. Seemüller E, Sule S, Kube M, Jelkmann W, Schneider B (2013) The AAA+ ATPases and HflB/FtsH proteases of ‘Candidatus Phytoplasma mali’: phylogenetic diversity, membrane topology, and relationship to strain virulence. Molecular Plant-Microbe Interactions 26, 367–376.CrossRefGoogle Scholar
  63. Seemüller E, Zikeli K, Furch ACU, Wensing A, Jelkmann W (2018) Virulence of ‘Candidatus Phytoplasma mali’ strains is closely linked to conserved substitutions in AAA+ ATPase AP460 and their supposed effect on enzyme function. European Journal of Plant Pathology 150, 701–711.CrossRefGoogle Scholar
  64. Seruga-Musić M, Duc Nguyen H, Cerni S, Mamula Ð, Oshima K, Skorić D (2014) Multilocus sequence analysis of ‘Candidatus Phytoplasma asteris’ strain and the genome analysis of Turnip mosaic virus co-infecting oilseed rape. Journal of Applied Microbiology 117, 774–785.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Shahryari F, Safarnejad MR, Shams-Bakhsh M, Jouzani GRS (2010) Toward immunomodulation of witches’ broom disease of lime (WBDL) by targeting immunodominant membrane protein (IMP) of ‘Candidatus Phytoplasma aurantifolia’. Communications in Agricultural and Applied Biological Sciences 75, 789–795.Google Scholar
  66. Shahryari F, Safarnejad MR, Shams-Bakhsh M, Schillberg S, Nölke G (2013) Generation and expression in plants of a single-chain variable fragment antibody against the immunodominant membrane protein of ‘Candidatus Phytoplasma aurantifolia’. Journal of Microbiology and Biotechnology 23, 1047–1054.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Siampour M, Galetto L, Bosco D, Izadpanah K, Marzachì C (2011) In vitro interactions between immunodominant membrane protein of lime witches’ broom phytoplasma and leafhopper vector proteins. Bulletin of Insectology 64(Supplement), S149-S150.Google Scholar
  68. Siampour M, Izadpanah K, Galetto L, Salehi M, Marzachí C (2013) Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathology 62, 452–459.CrossRefGoogle Scholar
  69. Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Review of Phytopathology 49, 175–195.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: the mscL gene, protein, and activities. Annual Review of Physiology 59, 633–657.PubMedCrossRefGoogle Scholar
  71. Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, Nishigawa H, Ugaki M, Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences, United States of America 103, 4252–4257.CrossRefGoogle Scholar
  72. Tomkins M, Kliot A, Marée AF, Hogenhout SA (2018) A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Current Opinion in Plant Biology 44, 39–48.PubMedCrossRefGoogle Scholar
  73. Toruño TY, Seruga-Musić M, Simi S, Nicolaisen M, Hogenhout SA (2010) Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts: PMUs are extrachromosomal elements. Molecular Microbiology 77, 1406–1415.PubMedCrossRefGoogle Scholar
  74. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annual Review of Entomology 51, 91–111.PubMedCrossRefGoogle Scholar
  75. Yu YL, Yeh KW, Lin CP (1998) An antigenic protein gene of a phytoplasma associated with sweet potato witches’ broom. Microbiology 144, 1257–1262.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Marika Rossi
    • 1
  • Ivana Samarzija
    • 2
  • Martina Šeruga-Musić
    • 2
  • Luciana Galetto
    • 1
  1. 1.Istituto per la Protezione Sostenibile delle PianteCNRTorinoItaly
  2. 2.Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations