Advertisement

Transcriptomic and Proteomic Studies of Phytoplasma-Infected Plants

  • Marina Dermastia
  • Michael Kube
  • Martina Šeruga-Musić
Chapter

Abstract

Recent advances in the development of high-throughput techniques and the corresponding software tools have enabled novel -omics approaches that are aimed at a better understanding of the mechanisms underlying phytoplasma pathogenicity and interactions with their hosts. In this chapter, the literature on transcriptomic and proteomic studies on phytoplasma-infected plants are outlined and summarised. Although data are available only for a few plant species infected with phytoplasmas belonging to different taxonomic groups, some general conclusions on interactions with their plant hosts can be deduced. Some of the most studied effects on phytoplasma-infected plants include (i) down-regulation of a wide array of genes associated with photosynthesis and changes in the corresponding protein levels; (ii) alterations to carbohydrate metabolism at the transcriptome and proteome levels; (iii) differential expression of plant secondary metabolites, as mainly up-regulation of genes involved in flavonoid biosynthesis; and (iv) changes in expression of genes related to auxin, jasmonic acid and salicylic acid signalling pathways involved in plant defence responses. Furthermore, studies on the roles of micro-RNAs in post-transcriptional gene regulation during plant responses to phytoplasmas, and on the functions of long noncoding RNAs during phytoplasma infection, are also reviewed.

Keywords

Gene expression Metabolome Phytoplasma infection Proteome Transcriptome 

References

  1. Abbà S, Galetto L, Carle P, Carrère S, Delledonne M, Foissac X, Palmano S, Veratti F, Marzachì C (2014) RNA-Seq profile of “flavescence dorée” phytoplasma in grapevine. BMC Genomics 15, 1088.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad JN, Eveillard S (2011) Study of the expression of defense related protein genes in “stolbur” C and “stolbur” PO phytoplasma-infected tomato. Bulletin of Insectology 64(Supplement), S159-S160.Google Scholar
  3. Ahmad JN, Renaudin J, Eveillard S (2013) Expression of defence genes in “stolbur” phytoplasma infected tomatoes, and effect of defence stimulators on disease development. European Journal of Plant Pathology 139, 39–51.CrossRefGoogle Scholar
  4. Ahmad JN, Renaudin J, Eveillard S (2015) Molecular study of the effect of exogenous phytohormones application in “stolbur” phytoplasma infected tomatoes on disease development. Phytopathogenic Mollicutes 5(1-Supplement), S121-S122.CrossRefGoogle Scholar
  5. Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, Tagliafico E, Stefani E, Pecchioni N (2009) Gene expression in grapevine cultivars in response to “bois noir” phytoplasma infection. Plant Science 176, 792–804.CrossRefGoogle Scholar
  6. Ballicora MA, Iglesias AA, Preiss J (2004) ADP-Glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynthesis Research 79, 1–24.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Analitical Bioanalitical Chemistry 389, 1017–1031.CrossRefGoogle Scholar
  8. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Molecular Biology 69, 473–488.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bertaccini A (2017) Phytoplasmas: dangerous and intriguing bacteria. In: Grapevine yellows diseases and their phytoplasma agents. Eds Dermastia M, Bertaccini A, Constable F and Mehle N. SpringerBriefs in Agriculture. Springer, Switzerland, 1–15 pp.Google Scholar
  10. Bertamini M, Nedunchezhian N (2001a) Decline of photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and soluble protein contents, nitrate reductase and photosynthetic activities, and changes in tylakoid membrane protein pattern in canopy shade grapevine (Vitis vinifera L. cv. Chardonnay) Photosynthetica 39, 529–537.CrossRefGoogle Scholar
  11. Bertamini M, Nedunchezhian N (2001b) Effects of phytoplasma [“stolbur”-subgroup (“bois noir”-BN)] on photosynthetic pigments, saccharides, ribulose 1,5-bisphosphate carboxylase, nitrate and nitrite reductases, and photosynthetic activities in field-grown grapevine (Vitis vinifera L. cv. Chardonnay). Photosynthetica 39, 119–122.CrossRefGoogle Scholar
  12. Bertamini M, Nedunchezhian N, Tomasi F, Grando M. (2002) Phytoplasma [“stolbur”-subgroup (“bois noir”-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiological and Molecular Plant Pathology 61, 357–366.CrossRefGoogle Scholar
  13. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nature Revue in Molecular Cell Biology 16, 727–741.CrossRefGoogle Scholar
  14. Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends in Plant Science 10, 526–535.CrossRefGoogle Scholar
  15. Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor DG (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea 51, 607–617.Google Scholar
  16. Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods 127, 105–110.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Contaldo N, D’Amico G, Paltrinieri S, Diallo HA, Bertaccini A, Arocha Rosete Y (2019) Molecular and biological characterization of phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiological Research 223–225, 51–57.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Covington Dunn E, Roitsch T, Dermastia M (2016) Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues. Acta Chimica Slovenica 63, 757–762.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Biochemistry and Molecular Biology of Plants. Eds Buchanan B, Gruissem W and Jones R. American Society of Plant Physiologists, Rockville, Maryland, United States of America, 1250–1318 pp.Google Scholar
  20. Dermastia M (2017) Interactions between grapevines and grapevine yellows phytoplasmas BN and FD. In: Grapevine yellows diseases and their phytoplasma agents. Eds Dermastia M, Bertaccini A, Constable F and Mehle N. SpringerBriefs in Agriculture. Springer, Switzerland, 47–67 pp.Google Scholar
  21. Dermastia M, Nikolic P, Chersicola M, Gruden K (2015) Transcriptional profiling in infected and recovered grapevine plant responses to ‘Candidatus Phytoplasma solani’. Phytopathogenic Mollicutes 5(1-Supplement), S123-S124.CrossRefGoogle Scholar
  22. Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9, 1825–1841.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ehya F, Monavarfeshani A, Mohseni Fard E, Karimi Farsad L, Khayam Nekouei M, Mardi M, Hosseini Salekdeh G (2013) Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees. Plos One 8, e66372.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Endeshaw ST, Murolo S, Romanazzi G, Neri D (2012) Effects of “bois noir” on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay. Physiology of Plant 145, 286–295.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Eom J-S, Chen L-Q, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion on Plant Biology 25, 53–62.CrossRefGoogle Scholar
  26. Fan G, Dong Y, Deng M, Zhao Z, Niu S, Xu E (2014) Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. International Journal of Molecular Science 15, 23141–23162.CrossRefGoogle Scholar
  27. Fan G, Cao X, Niu S, Deng M, Zhao Z, Dong Y (2015a) Transcriptome, microRNA, and degradome analyses of the gene expression of paulownia with phytoplasma. BMC Genomics 16, 896.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fan G, Niu S, Xu T, Deng M, Zhao Z, Wang Y, Cao L, Wang Z (2015b) Plant–pathogen interaction-related microRNAs and their targets provide indicators of phytoplasma infection in Paulownia tomentosa × Paulownia fortunei. Plos One 10, e0140590.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fan G, Xu E, Deng M, Zhao Z, Niu S (2015c) Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection. Genes Genomics 37, 913–929.CrossRefGoogle Scholar
  30. Fan G, Niu S, Zhao Z, Cao Y (2016) Identification of microRNAs and their targets in Paulownia fortunei plants free from phytoplasma pathogen after methyl methane sulfonate treatment. Biochimic 127, 271–280.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fan G, Cao Y, Wang Z (2018) Regulation of long noncoding RNAs responsive to phytoplasma infection in Paulownia tomentosa. International Journal of Genomics 2018, 3174352.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fan X-P, Liu W, Qiao Y-S, Shang Y-J, Wang G-P, Tian X, Han Y-H, Bertaccini A (2017) Comparative transcriptome analysis of Ziziphus jujuba infected by jujube witches’ broom phytoplasmas. Science Horticulturae 226, 50–58.CrossRefGoogle Scholar
  33. Gai Y-P, Li Y-Q, Guo F-Y, Yuan CZ, Mo YY, Zhang HL, Wang H, Ji XL (2014a) Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Science Reporter 4, 5378.CrossRefGoogle Scholar
  34. Gai YP, Han XJ, Li YQ, Yuan CZ, Mo YY, Guo FY, Liu QX, Ji XL (2014b) Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease. Plant, Cell and Environment 37, 1474–1490.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gai Y-P, Zhao H-N, Zhao Y-N, Zhu B-S, Yuan S-S, Li S, Guo F-Y, Ji X-L (2018) MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Science Reporter 8, 812.CrossRefGoogle Scholar
  36. Giorno F, Guerriero G, Biagetti M, Ciccotti AM, Baric S (2013) Gene expression and biochemical changes of carbohydrate metabolism in in vitro micro-propagated apple plantlets infected by ‘Candidatus Phytoplasma mali’. Plant Physiology and Biochemistry 70, 311–317.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Guthrie JN, Walsh KB, Scott PT, Rasmussen TS (2001) The phytopathology of Australian papaya dieback: a proposed role for the phytoplasma. Physiological and Molecular Plant Pathology 58, 23–30.CrossRefGoogle Scholar
  38. Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K (2009) “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10, 460.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jagoueix-Eveillard S, Tarendeau F, Guolter K, Danet J-L, Bové J-M, Garnier M (2001) Catharanthus roseus genes regulated differentially by mollicute infections. Molecular Plant-Microbe Interactions 14, 225–233.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ji X, Gai Y, Zheng C, Mu Z (2009) Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9, 5328–5339.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ji X, Gai Y, Lu B, Zheng C, Mu Z (2010) Shotgun proteomic analysis of mulberry dwarf phytoplasma. Proteome Science 8, 20.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Junqueira A, Bedendo I, Pascholati S (2004) Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiological and Molecular Plant Pathology 65, 181–185.CrossRefGoogle Scholar
  43. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38, D355-D360.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kitazawa Y, Iwabuchi N, Himeno M, Sasano M, Koinuma H, Nijo T, Tomomitsu T, Yoshida T, Okano Y, Yoshikawa N, Maejima K, Oshima K, Namba S (2017) Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins. Journal of Experimental Botany 68, 2799–2811.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinions in Plant Biology 7, 235–246.CrossRefGoogle Scholar
  46. Landi L, Romanazzi G (2011) Seasonal variation of defense-related gene expression in leaves from “bois noir” affected and recovered grapevines. Journal of Agricultural Food Chemistry 59, 6628–6637.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lenz D, May P, Walther D (2011) Comparative analysis of miRNAs and their targets across four plant species. BMC Research Notes 4, 483.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology 55, 59–68.CrossRefGoogle Scholar
  49. Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. Plos One 7, e33055.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Liu L-YD, Tseng H-I, Lin C-P, Lin YY, Huang YH, Huang CK, Chang TH, Lin SS (2014) High-throughput transcriptome analysis for studying the leafy flower transition of Catharanthus roseus induced by peanut witches’ broom phytoplasma infection. Plant Cell Physiology 55, 942–957.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Luge T, Kube M, Freiwald A, Meierhofer D, Seemüller E, Sauer S (2014) Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by ‘Candidatus Phytoplasma mali’ strain AT. Proteomics 14, 1882–1889.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Machenaud J, Henri R, Dieuaide-Noubhani M, Pracros P, Renaudin J, Eveillard S (2007) Gene expression and enzymatic activity of invertases and sucrose synthase in Spiroplasma citri or “stolbur” phytoplasma infected plants. Bulletin of Insectology 60, 219–220.Google Scholar
  53. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157, 831–841.PubMedPubMedCentralCrossRefGoogle Scholar
  54. MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, Hogenhout SA (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. Plos Biology 12, e1001835.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, Yamaji Y, Oshima K, Namba S (2014) Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant Journal 78, 541–554.CrossRefGoogle Scholar
  56. Maejima K, Kitazawa Y, Tomomitsu T, Yusa A, Neriya Y, Himeno M, Yamaji Y, Oshima K, Namba S (2015) Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant Signal Behaviour 10, e1042635.CrossRefGoogle Scholar
  57. Mardi M, Karimi Farsad L, Gharechahi J, Salekdeh GH (2015) In-depth transcriptome sequencing of Mexican lime trees infected with ‘Candidatus Phytoplasma aurantifolia’. Plos One 10, e0130425.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Margaria P, Palmano S (2011) Response of the Vitis vinifera L. cv. Nebbiolo proteome to “flavescence dorée” phytoplasma infection. Proteomics 11, 212–224.CrossRefGoogle Scholar
  59. Margaria P, Abbà S, Palmano S (2013) Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks. BMC Genomics 14, 38.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Margaria P, Ferrandino A, Caciagli P, Kedrina O, Schubert A, Palmano S (2014) Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered Nebbiolo and Barbera grapevines (Vitis vinifera L.) following infection by “flavescence dorée” phytoplasma. Plant, Cell and Environment 37, 2183–2200.CrossRefGoogle Scholar
  61. Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93, 976–981.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Minato N, Himeno M, Hoshi A, Maejima K, Komatsu K, Takebayashi Y, Kasahara H, Yusa A, Yamaji Y, Oshima K, Kamiya Y, Namba S (2015) The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Science Reports 4, 7399.CrossRefGoogle Scholar
  63. Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Khayam Nekouei M, Haynes PA, Mardi M, Salekdeh GH (2013) Shotgun proteomic analysis of the Mexican lime tree infected with ‘Candidatus Phytoplasma aurantifolia’. Journal of Proteome Research 12, 785–795.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Musetti R, Buxa S V, De Marco F, Loschi A, Polizzotto R, Kogel KH, van Bel AJ (2013a) Phytoplasma-triggered Ca(2+) influx is involved in sieve-tube blockage. Molecular Plant-Microbe Interactions 26, 379–386.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Musetti R, Farhan K, De Marco F, Polizzotto R, Paolacci A, Ciaffi M, Ermacora P, Grisan S, Santi S, Osler R (2013b) Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery. European Journal of Plant Pathology 136, 13–19.CrossRefGoogle Scholar
  66. Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Molecular Genetic Genomics 290, 1899–1910.CrossRefGoogle Scholar
  67. Nicolaisen M, Christensen NM (2007) Phytoplasma induced changes in gene expression in poinsettia. Bulletin of Insectology 60, 215–216.Google Scholar
  68. Niu S, Fan G, Deng M, Zhao Z, Xu E, Cao L (2016) Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Molecular Genetic Genomics 291, 181–191.CrossRefGoogle Scholar
  69. Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biological Evolution 4, 230–239.CrossRefGoogle Scholar
  70. Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Misako H, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. Plos One 6, e23242.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Paolacci AR, Catarcione G, Ederli L, Zadra C, Pasqualini S, Badiani M, Musetti R, Santi S, Ciaffi M (2017) Jasmonate-mediated defence responses, unlike salicylate-mediated responses, are involved in the recovery of grapevine from bois noir disease. BMC Plant Biology 17, 118.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M, Dermastia M (2016a) Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. Modra Frankinja with “flavescence dorée” phytoplasma Frontiers in Plant Science 7, 711.Google Scholar
  73. Prezelj N, Fragener L, Weckwerth W, Dermastia M (2016b) Metabolome of grapevine leaf vein-enriched tissue infected with ‘Candidatus Phytoplasma solani’. Mitteilungen Klosterneubg Rebe und Wein, Obs und Früchteverwertung 66, 74–78.Google Scholar
  74. Punelli F, Al Hassan M, Fileccia V, Uva P, Pasquini G, Martinelli F (2016) A microarray analysis highlights the role of tetrapyrrole pathways in grapevine responses to “stolbur” phytoplasma, phloem virus infections and recovered status. Physiological and Molecular Plant Pathology 93, 129–137.CrossRefGoogle Scholar
  75. Roitsch T (1999) Source-sink regulation by sugar and stress. Current Opinions in Plant Biology 2, 198–206.CrossRefGoogle Scholar
  76. Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9, 606–613.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontieres in Plant Science 5, 17.Google Scholar
  78. Rotter A, Camps C, Lohse M, Kappel C, Pilati S, Hren M, Stitt M, Coutos-Thévenot P, Moser C, Usadel B, Delrot S, Gruden K (2009) Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine. BMC Plant Biology 9, 104.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rotter A, Nikolić P, Turnšek N, Kogovšek P, Blejec A, Gruden K, Dermastia M (2018) Statistical modeling of long-term grapevine response to ‘Candidatus Phytoplasma solani’ infection in the field. European Journal of Plant Pathology 150, 653–668.CrossRefGoogle Scholar
  80. Rusjan D, Mikulic-Petkovsek M (2015) Phenolic responses in 1-year-old canes of Vitis vinifera cv. Chardonnay induced by grapevine yellows (“bois noir”). Australian Journal of Grape and Wine Research 21, 123–134.CrossRefGoogle Scholar
  81. Rusjan D, Halbwirth H, Stich K, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M, Dermastia M (2012a) Biochemical response of grapevine variety Chardonnay (Vitis vinifera L.) to infection with grapevine yellows (“bois noir”). European Journal of Plant Pathology 134, 231–237.CrossRefGoogle Scholar
  82. Rusjan D, Veberič R, Mikulič-Petkovšek M (2012b) The response of phenolic compounds in grapes of the variety Chardonnay (Vitis vinifera L.) to the infection by phytoplasma “bois noir”. European Journal of Plant Pathology 133, 965–974.CrossRefGoogle Scholar
  83. Santi S, De Marco F, Polizzotto R, Grisan S, Musetti R (2013a) Recovery from “stolbur” disease in grapevine involves changes in sugar transport and metabolism. Frontieres in Plant Science 4, 171.Google Scholar
  84. Santi S, Grisan S, Pierasco A, De Marco F, Musetti R (2013b) Laser microdissection of grapevine leaf phloem infected by “stolbur” reveals site-specific gene responses associated to sucrose transport and metabolism. Plant, Cell and Environment 36, 343–355.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Snyman MC, Solofoharivelo M-C, Souza-Richards R, Stephan D, Murray S, Burger JT (2017) The use of high-throughput small RNA sequencing reveals differentially expressed microRNAs in response to aster yellows phytoplasma-infection in Vitis vinifera cv. Chardonnay. Plos One 12, e0182629.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sudisha J, Sharathchandra RG, Amruthesh KN, Kumar A, Shetty HS (2012) Pathogenesis related proteins in plant defense response. In: Plant Defence: Biological Control. Springer Netherlands, Dordrecht, The Netherlands, 379–403 pp.Google Scholar
  87. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Science United States of America 108, E1254-E1263.CrossRefGoogle Scholar
  88. Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends in Plant Science 17, 196–203.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37, 914–939.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology 7, 581–591.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wang Z, Liu W, Fan G, Zhai X, Zhao Z, Dong Y, Deng M, Cao Y (2017) Quantitative proteome-level analysis of paulownia witches’ broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. PeerJ 5, e3495.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wang H, Ye X, Li J, Tan B, Chen P, Cheng J, Wang W, Zheng X, Feng J (2018) Transcriptome profiling analysis revealed co-regulation of multiple pathways in jujube during infection by ‘Candidatus Phytoplasma ziziphi’. Gene 665, 82–95.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wei Z, Wang Z, Li X, Zhao Z, Deng M, Dong Y, Cao X, Fan G (2017) Comparative proteomic analysis of Paulownia fortunei response to phytoplasma infection with dimethyl sulfate treatment. International Journal of Genomics 2017, 1–11.CrossRefGoogle Scholar
  94. Yang C-Y, Huang Y-H, Lin C-P, Lin YY, Hsu HC, Wang CN, Liu LY, Shen BN, Lin SS (2015a) MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector. Plant Physiology 168, 1702–1716.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Yang Y, Wen L, Zhu H (2015b) Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Bioscience 5, 59.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ye X, Wang H, Chen P, Bing Fu, Zhang M, Li J, Zheng X, Tan B, Feng J (2017) Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals multiple levels of regulation in phytoplasma-infected Ziziphus jujuba Mill. Horticultural Research 4, 17080.CrossRefGoogle Scholar
  97. Zabotin AI, Barysheva TS, Trofimova OI, Lozovaya V, Widholm J (2002) Regulation of callose metabolism in higher plant cells in vitro. Russian Journal of Plant Physiology 49, 792–798.CrossRefGoogle Scholar
  98. Zhong B-X, Shen Y-W (2004) Accumulation of pathogenesis-related type-5 like proteins in phytoplasma-infected garland chrysanthemum Chrysanthemum coronarium. Acta Biochimica Biophysica Sinica (Shanghai) 36, 773–779.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Marina Dermastia
    • 1
  • Michael Kube
    • 2
  • Martina Šeruga-Musić
    • 3
  1. 1.National Institute of BiologyLjubljanaSlovenia
  2. 2.Integrative Infection Biology Crops-LivestockUniversity of HohenheimStuttgartGermany
  3. 3.Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations