Advertisement

Host Metabolic Interaction and Perspectives in Phytoplasma Research

  • Govind Pratap Rao
  • Ramaswamy Manimekalai
  • Manish Kumar
  • Hemavati Ranebennur
  • Shigeyuki Kakizawa
  • Assunta Bertaccini
Chapter

Abstract

Phytoplasmas are plant pathogenic bacteria that have large economic impacts on crops and landscape plants. Knowledge of their biology is limited also because they are still not easily cultured in media. It is still a mystery how phytoplasmas use the sugar-rich phloem sap and how they interact with the hosts. It is agriculturally important to identify the factors involved in their pathogenicity and to discover effective measures to control phytoplasma-associated diseases. The knowledge about host-pathogen interaction during the infection process can help to elucidate the processes leading to symptom expression. Transcriptomics studies paved the way for analysing the gene expression pattern in phytoplasma-infected plants and revealed the up-regulation of genes responsible for hormonal balance, transcription factors, and signalling. Recent studies have identified potential virulence factors that induce some of the typical phytoplasma disease symptoms and have started the annotation of their genomes having unique reductive evolution features. The novel manipulation tool represented by the potential of the synthetic biology can be helpful for its potential application in studying efficient management strategies to reduce the agricultural impact of the diseases associated with the phytoplasma presence.

Keywords

Host-pathogen interactions Carbohydrate metabolism Protein metabolism Molecular responses Transcriptomics Synthetic approach 

References

  1. Abreu IA, Cabelli DE (2010) Superoxide dismutases – a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta – Proteins and Proteomics 1804, 263–274.CrossRefGoogle Scholar
  2. Andersen MT, Liefting LW, Havukkala I, Beever RE (2013) Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics 14, 529.PubMedPubMedCentralCrossRefGoogle Scholar
  3. André A, Maucourt M, Moing A, Rolin D, Renaudin J (2005) Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles. Molecular Plant-Microbe Interactions 18, 33–42.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G, Richardson SM, Dymond JS, Kuang Z, Scheifele LZ, Cooper EM,Cai Y, Zeller K, Agmon N, Han JS, Hadjithomas M, Tullman J, Caravelli K, Cirelli K, Guo Z, London V, Yeluru A, Murugan S, Kandavelou K, Agier N, Fischer G, Yang K, Martin JA, Bilgel M, Bohutski P, Boulier KM, Capaldo BJ, Chang J, Charoen K, Choi WJ, Deng P, DiCarlo JE, Doong J, Dunn J, Feinberg JI, Fernandez C, Floria CE, Gladowski D, Hadidi P, Ishizuka I, Jabbari J, Lau CY, Lee PA, Li S, Lin D, Linder ME, Ling J, Liu J, Liu J, London M, Ma H, Mao J, McDade JE, McMillan A, Moore AM, Oh WC, Ouyang Y, Patel R, Paul M, Paulsen LC, Qiu J, Rhee A, Rubashkin MG, Soh IY, Sotuyo NE, Srinivas V, Suarez A, Wong A, Wong R, Xie WR, Xu Y, Yu AT, Koszul R, Bader JS, Boeke JD, Chandrasegaran S (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bai XD, Zhang JH, Ewing A, Miller SA, Radek AJ, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout S (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology 188, 3682–3696.PubMedPubMedCentralGoogle Scholar
  6. Bai XD, Correa VR, Toruno TY, Ammar ED, Kamoun S, Hogenhout SA (2009) AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant-Microbe Interactions 22, 18–30.CrossRefGoogle Scholar
  7. Barbara DJ, Morton A, Clark MF, Davies DL (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148, 157–167.PubMedPubMedCentralGoogle Scholar
  8. Batjer LP, Schneider H (1960) Relation of pear decline to rootstocks and sieve-tube necrosis. Proceedings of American Society for Horticultural Science 76, 85–97.Google Scholar
  9. Bertaccini A, Weintraub P, Rao GP, Mori N (2019) Phytoplasmas: Plant Pathogenic Bacteria-II. Transmission and Management of Phytoplasma Associated Diseases. Springer, Singapore, 258 pp.CrossRefGoogle Scholar
  10. Bertamini M, Grando MS, Nedunchezhian N (2003) Effects of phytoplasma infection on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biologia Plantarum 47, 237–242.CrossRefGoogle Scholar
  11. Bizarro CV, Schuck DC (2007) Purine and pyrimidine nucleotide metabolism in Mollicutes. Genetics and Molecular Biology 30, 190–201.CrossRefGoogle Scholar
  12. Boeke JD, Church G, Hessel A, Kelley NJ, Arkin A, Cai Y, Carlson R, Chakravarti A, Cornish VW, Holt L,Isaacs FJ, Kuiken T, Lajoie M, Lessor T, Lunshof J, Maurano MT, Mitchell LA, Rine J, Rosser S, Sanjana NE, Silver PA, Valle D, Wang H, Way JC, Yang L. 2016. The genome project-write. Science 353, 126–127.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Braun EJ, Sinclair WA (1978) Translocation in phloem necrosis-diseased American elm seedlings. Phytopathology 68, 1733–1737.CrossRefGoogle Scholar
  14. Brückner R, Wagner E, Götz F (1993) Characterization of a sucrase gene from Staphylococcus xylosus. Journal of Bacteriology 175, 851–857.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bukata L, Altabe S, de Mendoza D, Ugalde RA, Comerci DJ (2008) Phosphatidyl ethanolamine synthesis is required for optimal virulence of Brucella abortus. Journal of Bacteriology 190, 8197–8203.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R (2008) Arginine Biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. The Journal of Biological Chemistry 283, 6347–6358.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cao X, Fan G, Dong Y, Zhao Z, Deng M, Wang Z, Liu W (2017) Proteome profiling of paulownia seedlings infected with phytoplasma. Frontiers in Plant Science 8, 342.PubMedPubMedCentralGoogle Scholar
  18. Carginale V, Maria G, Capasso C, Ionata E, La Cara F, Pastore M, Bertaccini A, Capasso A (2004) Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca L. by messenger RNA differential display. Gene 12, 29–34.CrossRefGoogle Scholar
  19. Carle P, Laigret F, Tully JG, Bové J-M (1995) Heterogeneity of genome sizes within the genus Spiroplasma. International Journal of Systematic Bacteriology 45, 178–181.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chang C-J, Donaldson R, Wilkinson RE (1994) Growth comparison between Spiroplasma citri-infected and aster yellows mycoplasma like organism-infected periwinkles. IOM Letters 3, 276–277.Google Scholar
  21. Chen C, Sun Q, Narayanan B, Nuss DL, Herzberg O (2010) Structure of oxalacetate acetylhydrolase, a virulence factor of the chestnut blight fungus. Journal of Biological Chemistry 285, 26685–26696.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen W, Li Y, Wang Q, Wang N, Wu Y (2014) Comparative genome analysis of wheat blue dwarf phytoplasma, an obligate pathogen that causes wheat blue dwarf disease in China. Plos One 9, e96436.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chimalapati S, Cohen JM, Camberlein E, MacDonald N, Durmort C, Vernet T, Brown JS. (2012) Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo. Plos One 7, e41393.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Choi YH, Tapias EC, Kim HK, Lefeber AW, Erkelens C, Verhoeven JTJ, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology 135, 2398–2410.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions 17, 1175–1184.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends in Plant Science 10, 526–535.CrossRefGoogle Scholar
  27. Chung W, Chen L, Lo W, Lin C, Kuo C (2013) Comparative analysis of the peanut witches’ broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. Plos One 8, e62770.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Conde-Alvarez R, Grilló MJ, Salcedo SP, De Miguel MJ, Fugier E, Gorvel JP, Iriarte M (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cellular Microbiology 8, 1322–1335.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor DG (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea 51, 607–617.Google Scholar
  30. Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods 127, 105–110.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Contaldo N, D’Amico G, Paltrinieri S, Diallo HA, Bertaccini A, Arocha Rosete Y (2019) Molecular and biological characterization of phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiological Research 223–225, 51–57.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cooperman BS, Baykov AA, Lahti R (1992) Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends in Biochemical Sciences 17, 262–266.PubMedCrossRefGoogle Scholar
  33. Dalbey RE, Kuhn A (2000) Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annual Review of Cell Biology 16, 51–87.CrossRefGoogle Scholar
  34. Eastmond PJ, Graham IA (2003) Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Current Opinion in Plant Biology 6, 231–235.PubMedCrossRefGoogle Scholar
  35. Economou A (1999) Following the leader: bacterial protein export through the Sec pathway. Trends in Microbiology 7, 315–320.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Eden-Green SJ, Waters H (1982) Collection and properties of phloem sap from healthy and lethal yellowing-diseased coconut palms in Jamaica. Phytopathology 72, 667–672.CrossRefGoogle Scholar
  37. Fan XP, Liu W, Qiao YS, Shang YJ, Wang GP, Tian X, Han YH, Bertaccini A (2017) Comparative transcriptome analysis of Ziziphus jujuba healthy and infected by jujube witches’ broom phytoplasmas. Scientia Horticulturae 226, 50–58.CrossRefGoogle Scholar
  38. Fontaniella B, Vicente C, Estrella Legaz M, de Armas R, Rodríguez CW, Martínez M, Piñón D, Acevedo R, Solas MT (2003) Yellow leaf syndrome modifies the composition of sugarcane juices in polysaccharides, phenols, and polyamines. Plant Physiology and Biochemistry 41, 1027–1036.CrossRefGoogle Scholar
  39. Fontaniella B, Vicente C, de Armas R, Legaz ME (2007) Effect of leaf scald (Xanthomonas albilineans) on polyamine and phenolic acid metabolism of two sugarcane cultivars. European Journal of Plant Pathology 119, 401–409.CrossRefGoogle Scholar
  40. Garnier M, Foissac X, Gaurivaud P, Laigret F, Renaudin J, Saillard C, Bové J-M (2001) Mycoplasmas, plants, insects vectors: a matrimonial triangle. Life Sciences 32, 923–928.Google Scholar
  41. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220.PubMedCrossRefGoogle Scholar
  42. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Research 36, 181–184.CrossRefGoogle Scholar
  44. Hanson AD, Gregory JF (2002) Synthesis and turnover of folates in plants. Current Opinion in Plant Biology 5, 244–249.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Gruden K (2009) “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10, 460.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun L, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC (2016) Design and synthesis of a minimal bacterial genome. Science 351, 6253.CrossRefGoogle Scholar
  47. Hwang DM, Dempsey A, Tan KT, Liew CC (1996) A modular domain of NiFu, a nitrogen fixation cluster protein, is highly conserved in evolution. Journal of Molecular Evolution 43, 536–540.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Itaya M, Tsuge K, Koizumi M, Fujita K (2005) Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proceedings of the National Academy of Sciences of the United States of America 102, 15971–15976.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Itaya M, Fujita K, Kuroki A, Tsuge K (2008) Bottom-up genome assembly using the Bacillus subtilis genome vector. Nature Methods 5, 41–43.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jagoueix-Eveillard S, Tarendeau F, Guolter K, Danet J-L, Bové J-M, Garnier M (2001) Catharanthus roseus genes regulated differentially by mollicute infections. Molecular Plant-Microbe Interactions 14, 225–233.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Javid-Majd F, Blanchard JS (2000) Mechanistic analysis of the argE-encoded N-acetylornithine deacetylase. Biochemistry 39, 1285–1293.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ji X, Gai Y, Zheng C, Mu Z (2009) Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9, 5328–5339.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jung HY, Miyata SI, Oshima K, Kakizawa S, Nishigawa H, Wei W, Suzuki S, Ugaki M, Hibi T, Namba S (2003) First complete nucleotide sequence and heterologous gene organization of the two rRNA operons in the phytoplasma genome. DNA and Cell Biology 22, 209–215.PubMedCrossRefGoogle Scholar
  54. Kakizawa S, Oshima K, Kuboyama T, Nishigawa H, Jung H-Y, Sawayanagi T, Namba S. (2001) Cloning and expression analysis of phytoplasma protein translocation genes. Molecular Plant-Microbe Interactions 14, 1043–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kakizawa S, Oshima K, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Namba S (2004) Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135–142.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kartte S, Seemüller E (1991) Susceptibility of grafted Malus taxa and hybrids to apple proliferation disease. Journal of Phytopathology 131, 137–148.CrossRefGoogle Scholar
  57. Kawar PG, Devarumath RM, Nerkar YS (2009) Use of RAPD markers for assessment of genetic diversity in sugarcane cultivars. Indian Journal of Biotechnology 8, 67–71.Google Scholar
  58. Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E (2008) The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9, 306.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. Scientific World Journal 2012, 185942.Google Scholar
  60. Lartigue C, Vashee S, Algire MA, Chuang RY, Benders GA, Ma L, Noskov VN, Denisova EA, Gibson DG, Assad-Garcia N, Alperovich N, Thomas DW, Merryman C, Hutchison 3rd CA, Smith HO, Venter JC, Glass JI (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–1696.PubMedCrossRefGoogle Scholar
  61. Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20, 87–91.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology 55, 59–68.CrossRefGoogle Scholar
  63. Manimekalai R, Anil Kumar NC, Roshna OM, Satyamoorthy K (2014) Isolation and comparative analysis of potc gene of ABC-transporter system from coconut and sugarcane – 16SrXI group phytoplasmas. Journal of Plant Pathology 96, 35–42.Google Scholar
  64. Manimekalai R, Roshna OM, Ganga Raj KP, Viswanathan R, Rao GP (2015) ABC transporter from sugarcane grassy shoot phytoplasma: gene sequencing and sequence characterization. Sugar Tech 18, 407–413.Google Scholar
  65. Mardi M, Farsad LK, Gharechahi J, Salekdeh GH (2015) In-depth transcriptome sequencing of Mexican lime trees infected with ‘Candidatus Phytoplasma aurantifolia’. Plos One 10, e0130425.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mariscal AM, Kakizawa S, Hsu JY, Tanaka K, Gonzalez-Gonzalez L, Broto A, Querol E, Lluch-Senar M, Pinero-Lambea C, Sun L,Weyman PD, Wise KS, Merryman C, Tse G, Moore AJ, Hutchison 3rd CA, Smith HO, Tomita M, Venter JC, Glass JI, Pinol J, Suzuki Y (2018) Tuning gene activity by inducible and targeted regulation of gene expression in minimal bacterial cells. ACS Synthetic Biology 7, 1538–1552.PubMedCrossRefGoogle Scholar
  67. Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93, 976–981.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Minion FC, Jarvill-Taylor KJ, Billings DE, Tigges E (1993) Membrane-associated nuclease activities in mycoplasmas. Journal of Bacteriology 175, 7842–7847.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Møller-Jensen J, Löwe J (2005) Increasing complexity of the bacterial cytoskeleton. Current Opinion in Cell Biology 17, 75–81.PubMedCrossRefGoogle Scholar
  70. Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Nekouei MK, Haynes PA, Mardi M, Hosseini Salekdeh G (2013). Shotgun proteomic analysis of the Mexican Lime tree infected with ‘Candidatus Phytoplasma aurantifolia’. Journal of Proteome Research 12, 785–795.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Current opinion in Microbiology 8, 188–195.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Musetti R, Favali MA (2004) Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. Current Issues on Multidisciplinary Microscopy Research and Education 2, 72–80.Google Scholar
  73. Musetti R, Favali MA, Pressacco L (2000) Histopathology and polyphenol content in plants infected by phytoplasmas. Cytobios 102, 133–148.PubMedGoogle Scholar
  74. Nejat N, David C, Vadamalai G, Ziemann M, James Neda N (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Molecular Genetics and Genomics 290, 1899–1910.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Applied and Environmental Microbiology 73, 1355–1361.PubMedCrossRefGoogle Scholar
  76. O’Brien SJ, Simonson JM, Grabowski MW (1981) Analysis of multiple isoenzyme expression among twenty-two species of Mycoplasma and Acholeplasma. Journal of Bacteriology 146, 222–232.Google Scholar
  77. Orlovskis Z, Canale MC, Haryono M, Lopes JRS, Kuo CH, Hogenhout SA (2017) A few sequence polymorphisms among isolates of maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Annals of Botany 119, 869–884.Google Scholar
  78. Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27.CrossRefGoogle Scholar
  79. Pacifico D, Abbà S, Palmano S (2019) Transcriptomic analyses of phytoplasmas. Methods in Molecular Biology 1875, 239–251.PubMedCrossRefGoogle Scholar
  80. Pailler J, Aucher W, Pires M, Buddelmeijer N (2012) Phosphatidyl glycerol: prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. Journal of Bacteriology 194, 2142–2151.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Paul MJ, Jhurreea D, Zhang Y, Primavesi LF, Delatte T, Schluepmann H, Wingler A (2010) Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate. Plant Signal Behaviours 5, 386–392.CrossRefGoogle Scholar
  82. Pollack JD, Mcelwain MC, Desantis D, Manolukas JT, Tully JG, Chang C-J, Whitcomb RF, Hackett KJ, Williams MW (1989) Metabolism of members of the Spiroplasmataceae. International Journal of Systematic Bacteriology 39, 406–412.CrossRefGoogle Scholar
  83. Pollack JD, Williams MV, McElhaney RN (1997) The comparative metabolism of the mollicutes (mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Critical Reviews in Microbiology 23, 269–354.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pollack JD, Myers MA, Dandekar T, Herrmann R (2002) Suspected utility of enzymes with multiple activities in the small genome Mycoplasma species: the replacement of the missing “household” nucleoside diphosphate kinase gene and activity by glycolytic enzymes. Omics 6, 247–258.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Pracros P, Renaudin J, Eveillard S, Mouras A, Hernould M (2006) Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular Plant-Microbe Interactions 19, 62–68.CrossRefGoogle Scholar
  86. Pretorius IS, Boeke JD (2018) Yeast 2.0-connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Research 18, foy032.Google Scholar
  87. Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiology and Molecular Biology Reviews 62, 1094–1156.PubMedPubMedCentralGoogle Scholar
  88. Reed KE, Cronan JE (1993) Lipoic acid metabolism in Escherichia coli: sequencing and functional characterization of the lipA and lipB genes. Journal of Bacteriology 175, 1325–1336.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Samuelson JC, Chen MY, Jiang FL, Moller I, Wiedmann M, Kuhn A, Phillips G, Dalbey R (2000) YidC mediates membrane protein insertion in bacteria. Nature 406, 637–641.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R, Kuhn A (2004) Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO Journal 23, 294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Current Opinion in Plant Biology 9, 484–489.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sparrow CP, Raetz CR (1985) Purification and properties of the membrane-bound CDP-diglyceride synthetase from Escherichia coli. Journal of Biological Chemistry 5, 12084–12091.Google Scholar
  93. Taheri F, Nematzadeh G, Zamharir MG, Khayam Nekouei M, Naghavi M, Mardi M, Salekdeh GH (2011) Proteomic analysis of the Mexican lime tree response to ‘Candidatus Phytoplasma aurantifolia’ infection. Molecular Biology Systematics 7, 3028–3035.Google Scholar
  94. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiological Molecular Biology Reviews 64, 515–547.CrossRefGoogle Scholar
  95. Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS (2008) Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rp-A) and ‘Ca. Phytoplasma asteris’ strains OY-M and AY-WB. Journal of Bacteriology 190, 3979–3991.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the Academy of Nutrition and Dietetics 101, 294.Google Scholar
  97. Voet JG, Abeles RH (1970) Mechanism of action of sucrose phosphorylase. Isolation and properties of a β-linked covalent glucose-enzyme complex. Journal of Biological Chemistry 245, 1020–1031.Google Scholar
  98. Wang J, Song L, Jiao Q, Yang S, Gao R, Lu X, Zhou G (2018a) Comparative genome analysis of jujube witches’ broom phytoplasma, an obligate pathogen that causes jujube witches’ broom disease. BMC Genomics 19, 689.Google Scholar
  99. Wang H, Ye X, Li J, Tan B, Chen P, Cheng J, Wang W, Zheng X, Feng J (2018b) Transcriptome profiling analysis revealed co-regulation of multiple pathways in jujube during infection by ‘Candidatus Phytoplasma ziziphi’. Gene 665, 82–95.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Webb E, Claas K, Downs D (1998) ThiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. Journal of Biological Chemistry 273, 8946–8950.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wei W, Kakizawa S, Jung H-Y, Suzuki S, Tanaka M, Nishigawa H, Miyata S, Oshima K, Ugaki M, Hibi T, Namba S (2004) Antibody against the SecA membrane protein of one phytoplasma reacts with those of phylogenetically different phytoplasmas. Phytopathology 94, 683–686.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Weisberg WG, Tully JG, Rose DLJ, Petzel P, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, Van Etten J (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. Journal of Bacteriology 171, 6455–6467.CrossRefGoogle Scholar
  103. Ye X, Wang H, Chen P, Fu B, Zhang M, Li J, Zheng X, Tan B, Feng J (2017) Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals multiple levels of regulation in phytoplasma-infected Ziziphus jujube Mill. Horticulture Research 4, 170-180.Google Scholar
  104. Zamharir MG, Mardi M, Alavi SM, Hasanzadeh N, Nekouei MK, Zamanizadeh HR, Salekdeh GH (2011) Identification of genes differentially expressed during interaction of Mexican lime tree infected with ‘Candidatus Phytoplasma aurantifolia’. BMC Microbiology 11, 1.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Matthew JP (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiology 149, 1860–1871.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ziegler H (1975) Nature of transported substances. In: Transport in Plants I. Springer, Berlin, Heidelberg, Germany, 59–100 pp.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Govind Pratap Rao
    • 1
  • Ramaswamy Manimekalai
    • 2
  • Manish Kumar
    • 1
  • Hemavati Ranebennur
    • 1
  • Shigeyuki Kakizawa
    • 3
  • Assunta Bertaccini
    • 4
  1. 1.Plant Virology Unit, Division of Plant PathologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Sugarcane Breeding InstituteCoimbatoreIndia
  3. 3.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  4. 4.Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly

Personalised recommendations