Skip to main content

Role of Microorganisms in Regulating Carbon Cycle in Tropical and Subtropical Soils

  • Chapter
  • First Online:
Carbon Management in Tropical and Sub-Tropical Terrestrial Systems

Abstract

The tropics and subtropics of the world are the most densely populated regions of the world. A majority of its population thrives on agriculture for sustaining its livelihood and nutritional requirement. With the increase in the global population and many new technological breakthroughs in agriculture, the food production has increased many folds from these regions. These regions are now being called the food bowl of the world. Albeit of these facts, intensive agro-practices have led to increased burden on our natural resources, in particular to our soils. It is now very well established that soil organic carbon content is getting depleted at a faster rate than the rate at which they are being replenished. Naturally, the biogeochemical cycling of the organic matter efficiently and harmoniously is being orchestrated by the soil microbial flora. Studying the responses of soil microbial flora with respect to various cues of the environmental and anthropogenic activities is helping the soil ecologist and microbiologist in monitoring and controlling any disturbances in the soil carbon cycling. Many of the high precision modelling techniques involving amalgamation of high-throughput spectrometric and next-generation genomic tools have helped over time in closely monitoring and generating high-precision modelling of the soil organic carbon cycling of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison SD, Vitousek PM (2004) Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36:285–296

    Google Scholar 

  • Berg IA (2011) Ecological aspects of distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77(6):1925–1936

    Article  CAS  Google Scholar 

  • Bhagat C, Dudhagara P, Tank S (2018) Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS. J Appl Microbiol 124:316–335

    Article  CAS  Google Scholar 

  • Bhatnagar JM, Peay KG, Treseder KK (2018) Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol Monogr 88:429–444. https://doi.org/10.1002/ecm.1303

    Article  Google Scholar 

  • Bird JA, Herman DJ, Firestone MK (2011) Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biol Biochem 43:718–725

    Article  CAS  Google Scholar 

  • Bleidorn C (2016) Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst Biodivers 14:1–8

    Article  Google Scholar 

  • Bond-Lamberty B, Bolton H, Fansler S (2016) Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment. PLoS One 11:e0150599

    Article  CAS  Google Scholar 

  • Boykoff M, Daly M, Fernández Reyes R (2018) World newspaper coverage of climate change or global warming, 2004–2018-June 2018

    Google Scholar 

  • Brogi SR, Ha SY, Kim K (2018) Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada): implication for increased autochthonous DOM during ice melting. Sci Total Environ 627:802–811

    Article  CAS  Google Scholar 

  • Buringh P, Buringh P (1979) Introduction to the study of soils in tropical and subtropical regions. Pudoc, Wageningen

    Google Scholar 

  • Calderón K, Spor A, Breuil MC (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11:272

    Article  CAS  Google Scholar 

  • Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19:544–549. https://doi.org/10.1016/j.copbio.2008.10.010

    Article  CAS  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    Article  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  CAS  Google Scholar 

  • Coyne MS, Coyne MS (1999) Soil microbiology: an exploratory approach. Delmar, New York

    Google Scholar 

  • Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309:43–76

    Article  CAS  Google Scholar 

  • Das S, Adhya TK (2012) Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biol Biochem 47:36–45

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:1163

    Article  CAS  Google Scholar 

  • Derrien M, Lee YK, Park JE (2017) Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins. Environ Sci Pollut Res 24:16933–16945

    Article  CAS  Google Scholar 

  • Derrien M, Kim MS, Ock G (2018) Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy. Sci Total Environ 618:569–578. https://doi.org/10.1016/j.scitotenv.2017.11.067

    Article  CAS  Google Scholar 

  • Dubbs LL, Whalen SC (2010) Reduced net atmospheric CH4 consumption is a sustained response to elevated CO2 in a temperate forest. Biol Fertil Soils 46:597–606

    Article  Google Scholar 

  • Fazli P, Man HC, Shah UKM, Idris A (2013) Characteristics of methanogens and methanotrophs in rice fields: a review. Asia-Pac J Mol Biol Biotechnol 21:3–17

    Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579

    Article  CAS  Google Scholar 

  • Ge T, Wu X, Chen X (2013) Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils. Geochim Cosmochim Acta 113:70–78

    Article  CAS  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  Google Scholar 

  • Gupta S, Allen-Vercoe E, Petrof EO (2016) Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol 9:229–239

    Article  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  Google Scholar 

  • Ho A, Kerckhof F, Luke C (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5:335–345

    Article  CAS  Google Scholar 

  • Howe KJ, Ishida KP, Clark MM (2002) Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination 147:251–255

    Article  CAS  Google Scholar 

  • Howe A, Yang F, Williams RJ (2016) Identification of the core set of carbon-associated genes in a bioenergy grassland soil. PLoS One 11:e0166578

    Article  CAS  Google Scholar 

  • Hu HW, He JZ (2018) Manipulating the soil microbiome for improved nitrogen management. Microbilogy Australia-March 2018, pp 24–27

    Google Scholar 

  • Hügler M, Gärtner A, Imhoff JF (2010) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73:526–537

    Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1990) Humic substances formed during the composting of organic matter. Soil Sci Soc Am J 54:1316–1323

    Article  CAS  Google Scholar 

  • Jenkins S, Swenson TL, Lau R (2017) Construction of viable soil defined media using quantitative metabolomics analysis of soil metabolites. Front Microbiol 8:2618

    Article  Google Scholar 

  • Ji H, Zhuang S, Zhu Z, Zhong Z (2015) Soil organic carbon pool and its chemical composition in phyllostachy pubescens forests at two altitudes in Jian-ou City, China. PLoS One 10:e0146029

    Article  CAS  Google Scholar 

  • Johns CW, Lee AB, Springer TI (2017) Using NMR-based metabolomics to monitor the biochemical composition of agricultural soils: a pilot study. Eur J Soil Biol 83:98–105

    Article  CAS  Google Scholar 

  • Johnston CA, Groffman P, Breshears DD (2004) Carbon cycling in soil. Front Ecol Environ 2:522–528

    Article  Google Scholar 

  • Killham K, Prosser JI (2014) The bacteria and archaea. Soil Microbiol Ecol Biochem 4:41–76

    Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing Earth’s temperature. Science (80) 330:356–359

    Article  CAS  Google Scholar 

  • Li XM, Sun GX, Chen SC (2018) Molecular chemodiversity of dissolved organic matter in paddy soils. Environ Sci Technol 52:963–971. https://doi.org/10.1021/acs.est.7b00377

    Article  CAS  Google Scholar 

  • Liang Y, Van Nostrand JD, Deng Y (2010) Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 5:403

    Article  Google Scholar 

  • Liang Y, Jiang Y, Wang F (2015) Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME J 9:2561

    Article  Google Scholar 

  • Ling N, Zhu C, Xue C (2016) Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 99:137–149

    Article  CAS  Google Scholar 

  • Liu Y, Liu X, Cheng K (2016) Responses of methanogenic and methanotrophic communities to elevated atmospheric CO2 and temperature in a paddy field. Front Microbiol 7:1895

    Google Scholar 

  • Ma K, Lu Y (2011) Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiol Ecol 75:446–456

    Article  CAS  Google Scholar 

  • Macrae A, Coelho RRR, Peixoto R, Rosado AS (2013) Tropical soil microbial communities. In: The prokaryotes. Springer, Berlin/Heidelberg, pp 85–95

    Chapter  Google Scholar 

  • Michalzik B, Bischoff S, Näthe K (2017) Tree species driving functional properties of mobile organic matter in throughfall and forest floor solutions of beech, spruce and pine forests

    Google Scholar 

  • Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295:265–277. https://doi.org/10.1007/s11104-007-9281-x

    Article  CAS  Google Scholar 

  • Navarrete AA, Venturini AM, Meyer KM (2015) Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon. Front Microbiol 6:1443

    Article  Google Scholar 

  • Neilson JW, Califf K, Cardona C (2017) Significant impacts of increasing aridity on the arid soil microbiome. MSystems 2:e00195–e00116

    Article  Google Scholar 

  • Nicolardi S, Bogdanov B, Deelder AM (2015) Developments in FTICR-MS and its potential for body fluid signatures. Int J Mol Sci 16:27133–27144

    Article  CAS  Google Scholar 

  • Nottingham AT, Turner BL, Chamberlain PM (2012) Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility. Biogeochemistry 111:219–237

    Article  CAS  Google Scholar 

  • Paetsch L, Mueller CW, Kögel-Knabner I (2018) Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Sci Rep 8:6852

    Article  CAS  Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic, Amsterdam, pp 1–598

    Google Scholar 

  • Pazinato JM, Paulo EN, Mendes LW (2010) Molecular characterization of the archaeal community in an Amazonian wetland soil and culture-dependent isolation of methanogenic archaea. Diversity 2:1026–1047

    Article  CAS  Google Scholar 

  • Qiao NA, Schaefer D, Blagodatskaya E (2014) Labile carbon retention compensates for CO2 released by priming in forest soils. Glob Chang Biol 20:1943–1954

    Article  Google Scholar 

  • Reddy MS, Joshi S (2018) Carbon dioxide sequestration on biocement-based composites. In: Carbon dioxide sequestration in cementitious construction materials. Elsevier, pp 225–243

    Google Scholar 

  • Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Article  CAS  Google Scholar 

  • Ross SM (1993) Organic matter in tropical soils: current conditions, concerns and prospects for conservation. Prog Phys Geogr 17:265–305

    Article  Google Scholar 

  • Saarnio S, Winiwarter W, Leitao J (2009) Methane release from wetlands and watercourses in Europe. Atmos Environ 43:1421–1429

    Article  CAS  Google Scholar 

  • Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  Google Scholar 

  • Serrano-Silva N, Sarria-Guzmán Y, Dendooven L, Luna-Guido M (2014) Methanogenesis and methanotrophy in soil: a review. Pedosphere 24:291–307

    Article  CAS  Google Scholar 

  • Shively JM, English RS, Baker SH, Cannon GC (2001) Carbon cycling: the prokaryotic contribution. Curr Opin Microbiol 4:301–306

    Article  CAS  Google Scholar 

  • Swenson TL, Jenkins S, Bowen BP, Northen TR (2015) Untargeted soil metabolomics methods for analysis of extractable organic matter. Soil Biol Biochem 80:189–198

    Article  CAS  Google Scholar 

  • Swenson TL, Karaoz U, Swenson JM (2018) Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat Commun 9:19

    Article  CAS  Google Scholar 

  • Thakur IS, Kumar M, Varjani SJ (2018) Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: opportunities and challenges. Bioresour Technol 256:478–490

    Article  CAS  Google Scholar 

  • Tolli J, King GM (2005) Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl Environ Microbiol 71:8411–8418

    Article  CAS  Google Scholar 

  • Tripathi BM, Song W, Slik JWF (2016) Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity. Front Microbiol 7:376

    Article  Google Scholar 

  • Tu Q, Yu H, He Z (2014) GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol Ecol Resour 14:914–928

    CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wendlandt K, Stottmeister U, Helm J (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 10:87–102

    CAS  Google Scholar 

  • Whitaker J, Ostle N, Nottingham AT (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an A ndes-to-A mazon elevation gradient. J Ecol 102:1058–1071

    Article  CAS  Google Scholar 

  • Wood SA, Bradford MA (2018) Leveraging a new understanding of how belowground food webs stabilize soil organic matter to promote ecological intensification of agriculture. In: Soil carbon storage. Elsevier, Amsterdam, pp 117–136

    Chapter  Google Scholar 

  • Wu X, Ge T, Yuan H (2014) Changes in bacterial CO 2 fixation with depth in agricultural soils. Appl Microbiol Biotechnol 98:2309–2319

    Article  CAS  Google Scholar 

  • Yamashita Y, Maie N, Briceño H, Jaffé R (2010) Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela

    Google Scholar 

  • Yamashita Y, Panton A, Mahaffey C, Jaffé R (2011) Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation–emission matrix fluorescence and parallel factor analysis. Ocean Dyn 61:569–579. https://doi.org/10.1007/s10236-010-0365-4

    Article  Google Scholar 

  • Yuan H, Ge T, Chen C (2012) Microbial autotrophy plays a significant role in the sequestration of soil carbon. Appl Environ Microbiol AEM:06881

    Google Scholar 

  • Zhou WJ, Sha LQ, Schaefer DA (2015) Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biol Biochem 81:255–258. https://doi.org/10.1016/j.soilbio.2014.11.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Kumar, M., Saxena, A.K. (2020). Role of Microorganisms in Regulating Carbon Cycle in Tropical and Subtropical Soils. In: Ghosh, P., Mahanta, S., Mandal, D., Mandal, B., Ramakrishnan, S. (eds) Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9628-1_15

Download citation

Publish with us

Policies and ethics