High-Throughput Analytical Techniques to Screen Plant Transgenics

  • Furkan Ahmad
  • Pragadheesh VSEmail author


Analytical chemistry plays a vital role in the screening of marker compounds in transgenic plants. A transgenic plant, due to the introduction of a new trait, possesses a different chemical composition, from the naturally occurring population, which needs a systematic evaluation to quantify one or more marker compounds. Advancement in the analytical technique aids the high-throughput screening of plant metabolites in large number with less time. Sample preparation is an important task prior to the analysis, which focuses the enrichment of marker compound in the extract having a complex mixture of plant metabolites. Selection of appropriate extraction method based on the target compound and analysis is essential for the biological or chemical assays. Hyphenation of liquid chromatography (LC) and gas chromatography (GC) with mass spectrometry (MS) employs the separation and identification of transgenic plant metabolites in real time. High-resolution mass spectrometry imaging, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectroscopy are the other spectroscopic techniques which are widely used for the screening of new plant metabolites. The chapter “High-throughput analytical techniques to screen plant transgenics” highlights the recent developments on the screening of transgenic plants including the sample preparation, analysis, interpretation, and elucidation of the structure of plant metabolites with future prospective.


Analytical chemistry Transgenic plants Plant metabolites Liquid chromatography Gas chromatography Nuclear magnetic resonance Fourier transform infrared spectroscopy 


  1. Abdelkader MSA, Lockwood GB (2016) Essential oils from the plant, hairy root cultures and shoot cultures of Egyptian Anethum graveolens (dill). J Essent Oil Res 28:104–112. CrossRefGoogle Scholar
  2. Adams RP (1995) Identification of essential oil components by gas chromatography/ mass spectroscopy. Allured Publishing, Carol StreamGoogle Scholar
  3. Aharoni A, Giri AP, Deuerlein S, Griepink F, Kogel W De, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic arabidopsis Plant Cell 15:2866–2884
  4. Anklam E, Gadani F, Heinze P, Pijnenburg H, Den VEG (2002) Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. Eur Food Res Technol 214:3–26. CrossRefGoogle Scholar
  5. Apparecido R, do P, Carlos EF, Lião LM, Vieira LGE, Alcantara GB (2017) NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development. Metabolomics 13:20CrossRefGoogle Scholar
  6. Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH (2006) Ametabolomic study of substantial equivalence offield-grown genetically modified wheat. Plant Biotechnol J 4:381–392CrossRefGoogle Scholar
  7. Barros E, Lezar S, Anttonen MJ, van Dijk JP, Röhlig RM, Kok EJ, Engel KH (2010) Comparison of two GM maize varieties with a nearisogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol J 8:436–451CrossRefGoogle Scholar
  8. Boba A, Kulma A, Kostyn K, Starzycki M, Starzycka E, Szopa J (2011) The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiol Mol Plant Pathol 76:39–47. CrossRefGoogle Scholar
  9. Bonn J (2008) Improved techniques for sampling and sample introduction in gas chromatography. Royal Institute of Technology, Stockholm. dated 24/07/2019
  10. Castro C, Manetti C (2007) A multiway approach to analyze metabonomic data: A study of maize seeds development. Anal Biochem 371:194–200CrossRefGoogle Scholar
  11. Charlton A, Allnutt T, Holmes S, Chisholm J, Bean S, Ellis N, Mullineaux P, Oehlschlager S (2004) NMR profiling of transgenic peas. Plant Biotechnol J 2:27–35CrossRefGoogle Scholar
  12. Choi HK, Choi YH, Verbernea M, Lefeberc AWM, Erkelensc C, Verpoorte R (2004) Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 65:857–864CrossRefGoogle Scholar
  13. Clough SJ, Bent AF (1998) Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. CrossRefGoogle Scholar
  14. Colombo R, Lanças FM, Yariwake JH (2006) Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection. J Chromatogr A 1103:118–124. CrossRefPubMedGoogle Scholar
  15. Colquhoun IJ (2007) Use of NMR for metabolic profiling in plant systems. J Pestic Sci 32:200–212CrossRefGoogle Scholar
  16. Cozzolino D (2011) Infrared methods for high throughput screening of metabolites: food and medical applications. Comb Chem High Throughput Screen 14:125–131CrossRefGoogle Scholar
  17. Daviet L, Schalk M (2010) Biotechnology in plant essential oil production: progress and perspective in metabolic engineering of the terpene pathway. Flavour Fragr J 25:123–127. CrossRefGoogle Scholar
  18. Defernez M, Gunning YM, Parr AJ, Shepherd LVT, Davies HV, Colquhoun IJ (2004) NMR and HPLC–UV profiling of potatoes with genetic modifications to metabolic pathways. J Agric Food Chem 52:6075–6085CrossRefGoogle Scholar
  19. Diemer F, Caissard J-C, Moja S, Chalchat J-C, Jullien F (2001) Altered monoterpene composition in transgenic mint following the introduction of 4S-limonene synthase. Plant Physiol Biochem 39:603–614. CrossRefGoogle Scholar
  20. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23:213–226.
  21. Foubert K, Cuyckens F, Vleeschouwer K, Theunis M, Vlietinck A, Pieters L, Apers S (2010) Rapid quantification of 14 saponins of Maesa lanceolata by UPLC – MS/MS. Talanta 81:1258–1263. CrossRefPubMedGoogle Scholar
  22. Garcia-Villalba R, Leon C, Dinelli G, Segura-Carretero A, Fernandez-Gutierrez A, Garcia-Canas V, Cifuentes A (2008) Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis – time-of-flight mass spectrometry. J Chromatogr A 1195:164–173. CrossRefPubMedGoogle Scholar
  23. Gras R, Hua Y, Luong J (2017) High-throughput gas chromatography for volatile compounds analysis by fast temperature programming and adsorption chromatography. J Sep Sci 40:1979–1984. CrossRefPubMedGoogle Scholar
  24. Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468CrossRefGoogle Scholar
  25. Herrera-estrella LR (2000) Genetically modified crops and developing countries. Plant Physiol 124:923–925CrossRefGoogle Scholar
  26. Holmes E, Tang H, Wang Y, Seger C (2006) The assessment of plant metabolite profile by NMR-based methodologies. Planta Med 72:771–785CrossRefGoogle Scholar
  27. Jonsson P, Johansson AI, Gullberg J, Trygg J, Grung B, Marklund S, Sjöström M, Antti H, Moritz T (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem 77:5635–5642. CrossRefPubMedGoogle Scholar
  28. Kallenbach M, Oh Y, Eilers EJ, Veit D, Baldwin IT, Schuman MC (2014) A robust, simple, high-throughput technique for time- resolved plant volatile analysis in field experiments. Plant J 78:1060–1072. CrossRefGoogle Scholar
  29. Keun HC, Ebbels TM, Antti H, Bollard ME, Beckonert O, Schlotterbeck G, Senn H, Niederhauser U, Holmes E, Lindon JC, Nicholson JK (2002) Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem Res Toxicol 15:1380–1386CrossRefGoogle Scholar
  30. Keymanesh K, Darvishi MH, Sardari S (2009) Metabolome comparison of transgenic and non-transgenic rice by statistical analysis of FTIR and NMR spectra. Rice Sci 16:119–123CrossRefGoogle Scholar
  31. Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13. CrossRefPubMedGoogle Scholar
  32. Kraft P, Denizot N (2013) Synthesis of a spirocyclic seco structure of the principal vetiver odorant Khusimone. Eur J Org Chem 2013:49–58. CrossRefGoogle Scholar
  33. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265CrossRefGoogle Scholar
  34. Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111. CrossRefGoogle Scholar
  35. Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME (2003a) Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem 51:2447–2456CrossRefGoogle Scholar
  36. Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ (2003b) Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem 51:2438–2446CrossRefGoogle Scholar
  37. Leon C, Rodriguez-meizoso I, Lucio M, Garcia-Canas V, Ibanez E, Schmitt-Kopplin P, Cifuentes A (2009) Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A 1216:7314–7323. CrossRefGoogle Scholar
  38. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam K, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the Terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lucas AM, Pasquali G, Astarita LV, Cassel E (2017) Comparison of genetically engineered (GE) and non-GE Eucalyptus trees using secondary metabolites obtained by steam distillation. J Essent Oil Res 29:22–31. CrossRefGoogle Scholar
  40. Lucker J, Bouwmeester HJ, Schwab W, Blaas J, Plas LHW Van Der, Verhoeven HA (2001) Expression of Clarkia S -linalool synthase in transgenic petunia plants results in the accumulation of S -linalyl- b - D - glucopyranoside. 27:315–324Google Scholar
  41. Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci 98:8915–8920. CrossRefPubMedGoogle Scholar
  42. Manetti C, Bianchetti C, Bizzarri M, Casciani L, Castro C, D’Ascenzo G, Delfini M, di Cocco ME, Lagana A, Miccheli A, Motto M, Conti F (2004) NMR-based metabonomic study of transgenic maize. Phytochemistry 65:3187–3198CrossRefGoogle Scholar
  43. Manetti C, Bianchetti C, Casciani L, Castro C, di Cocco ME, Miccheli A, Motto M, Conti F (2006) A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. J Exp Bot 57:2613–2625CrossRefGoogle Scholar
  44. Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol 142:1759–1770CrossRefGoogle Scholar
  45. Meija J, Montes-bayo M, Duc DL Le, Terry N, Caruso JA (2002) Simultaneous Monitoring of volatile selenium and sulfur species from Se accumulating plants (wild type and genetically modified) by GC / MS and GC / ICPMS using solid-phase microextraction for sample introduction. 74:5837–5844Google Scholar
  46. Mierziak J, Wojtasik W, Kostyn K, Tadeusz C, Szopa J, Kulma A (2014) Crossbreeding of transgenic flax plants overproducing flavonoids and glucosyltransferase results in progeny with improved antifungal and antioxidative properties. Mol Breed 34:1917–1932. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mounts TL, Abidi SL, Rennick KA (2009) Effect of genetic modification on the content and composition of bioactive constituents in soybean oil. J Am Oil Chem Soc 73:581–586. CrossRefGoogle Scholar
  48. Munck L, Moller B, Jacobsen S, Sondergaard I (2004) Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1→3,1→4)-b-glucan in barley. J Cereal Sci 40:213–222CrossRefGoogle Scholar
  49. Nordström K, Dahlbom J, Pragadheesh VS, Ghosh S, Olsson A, Dyakova O, Krishna Suresh S, Olsson S (2017) In situ modeling of multimodal floral cues attracting wild pollinators across environments. Proc Natl Acad Sci 114:13218–13223. CrossRefPubMedGoogle Scholar
  50. Noteborn HP, Lommen A, van der Jagt RC, Weseman JM (2000) Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops. J Biotechnol 77:103–114CrossRefGoogle Scholar
  51. Ohara K, Ujihara T, Endo T, Sato F, Yazaki K (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. J Exp Bot 54:2635–2642. CrossRefPubMedGoogle Scholar
  52. Piccioni F, Capitani D, Zolla L, Mannina L (2009) NMR metabolic profiling of transgenic maize with the Cry1A(b) gene. J Agric Food Chem 57:6041–6049CrossRefGoogle Scholar
  53. Picone G, Mezzetti B, Babini E, Capocasa F, Placucci G, Capozzi F (2011) Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera). J Agric Food Chem 59:9271–9279CrossRefGoogle Scholar
  54. Seethapathy S, Tadeusz G, Li X (2008) Passive sampling in environmental analysis. J Chromatogr A 1184:234–253. CrossRefPubMedGoogle Scholar
  55. Sobolev AP, Segre AL, Giannino D, Mariotti D, Nicolodi C, Brosio E, Amato ME (2007) Strong increase of foliar inulin occurs in transgenic lettuce plants (Lactuca sativa L.) overexpressing the asparagine Synthetase A gene from Escherichia coli. J Agric Food Chem 55:10827–10831CrossRefGoogle Scholar
  56. Sobolev AP, Testone G, Santoro F, Nicolodi C, Iannelli MA, Amato ME, Ianniello A, Brosio E, Giannino D, Mannina L (2010a) Quality traits of conventional and transgenic lettuce (Lactuca sativa L.) at harvesting by NMR metabolic profiling. J Agric Food Chem 58:6928–6936CrossRefGoogle Scholar
  57. Sobolev AP, Capitani D, Giannino D, Nicolodi C, Testone G, Santoro F, Frugis G, Iannelli MA, Mattoo AK, Brosio E, Gianferri R, D’Amico I, Mannina L (2010b) NMR-metabolic methodology in the study of GM foods. Nutrients 2:1–15CrossRefGoogle Scholar
  58. Szarka S, Héthelyi ÉB, Lemberkovics É, Bálványos I, Szőke É, Farkas E, Kuzovkina IN (2007) Essential oil constituents of intact plants and in vitro cultures of tagetes patula L. J Essent Oil Res 19:85–88. CrossRefGoogle Scholar
  59. Toth A, Praszna L (1998) Improvement of the reproducibility of retention indices in temperature-programmed gas - liquid chromatography. Part I. DB-1 column. Flavour Fragr J 13:196–202CrossRefGoogle Scholar
  60. Verma RS, Chauhan A, Padalia RC, Jat SK, Thul S, Sundaresan V (2013) Phytochemical diversity of Murraya koenigii (L.) Spreng. From Western Himalaya. Chem Biodivers 10:628–641CrossRefGoogle Scholar
  61. Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NCA (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465. CrossRefPubMedGoogle Scholar
  62. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447. CrossRefPubMedGoogle Scholar
  63. Xie L, Ying Y, Ying T, Yu H, Fu X (2007) Discrimination of transgenic tomatoes based on visible/near-infrared spectra. Anal Chim Acta 584:379–384CrossRefGoogle Scholar
  64. Yamada T, Yeh T-F, Chang H-M, Li L, Kadla JF, Chiang VL (2006) Rapid analysis of transgenic trees using transmittance near-infrared spectroscopy (NIR). Holzforschung 60:24–28CrossRefGoogle Scholar
  65. Yuan Y, Qi L, Yang J, Wu C, Liu Y, Huang L (2015) A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell Tissue Organ Cult 120:961–972. CrossRefGoogle Scholar
  66. Zellner B d’A, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L (2008) Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr J 29:297–314.
  67. Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–300CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Natural ProductsNational Institute of Pharmaceutical Education and ResearchSAS NagarIndia
  2. 2.Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations