Green Biotechnology: A Brief Update on Plastid Genome Engineering

  • R. K. B. Bharadwaj
  • Sarma Rajeev Kumar
  • Ramalingam SathishkumarEmail author


Plant genetic engineering has become an inevitable tool in the molecular breeding of crops. Significant progress has been made in the generation of novel plastid transformation vectors and optimized transformation protocols. There are several advantages of plastid genome engineering over conventional nuclear transformation. Some of the advantages include multigene engineering by expression of biosynthetic pathway genes as operons, extremely high-level expression of protein accumulation, lack of transgene silencing, etc. Transgene containment owing to maternal inheritance is another important advantage of plastid genome engineering. Chloroplast genome modification usually results in alteration of several thousand plastid genome copies in a cell. Several therapeutic proteins, edible vaccines, antimicrobial peptides, and industrially important enzymes have been successfully expressed in chloroplasts so far. Here, we critically recapitulate the latest developments in plastid genome engineering. Latest advancements in plastid genome sequencing are briefed. In addition, advancement of extending the toolbox for plastid engineering for selected applications in the area of molecular farming and production of industrially important enzyme is briefed.


Enzymes Lettuce Molecular farming Plastome Tobacco Vaccines 



The authors thank financial support to Department of Biotechnology, Bharathiar University, under DST- PURSE scheme.


  1. Adem M, Beyene D, Feyissa T (2017) Recent achievements obtained by chloroplast transformation. Plant Methods 13:30PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agrawal P, Verma D, Daniell H (2011) Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS One 6:e29302PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albarracín RM, Becher ML, Farran I, Sander VA, Corigliano MG, Yácono ML, Pariani S, López ES, Veramendi J, Clemente M (2015) The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts. Biotechnol J 10:748–759PubMedCrossRefPubMedCentralGoogle Scholar
  4. Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H (2008) Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun 76:3640–3650PubMedPubMedCentralCrossRefGoogle Scholar
  6. Asaf S, Waqas M, Khan AL, Khan MA, Kang SM, Imran QM, Shahzad R, Bilal S, Yun BW, Lee IJ (2017) The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front Plant Sci 8:304PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bally J, McIntyre GJ, Doran RL, Lee K, Perez A, Jung H, Naim F, Larrinua IM, Narva KE, Waterhouse PM (2016) In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts. Front Plant Sci 7:1453PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21PubMedPubMedCentralCrossRefGoogle Scholar
  9. Birschwilks M, Haupt S, Hofius D, Neumann S (2006) Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J Exp Bot 57:911–921PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:31–33CrossRefGoogle Scholar
  12. Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155:1690–1708PubMedPubMedCentralCrossRefGoogle Scholar
  13. Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, de Pamphilis CW, Boore JL, Jansen RK (2006) Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evolut Biol 6:77CrossRefGoogle Scholar
  15. Castiglia D, Sannino L, Marcolongo L, Ionata E, Tamburino R, De Stradis A, Cobucci-Ponzano B, Moracci M, La Cara F, Scotti N (2016) High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol Biofuels. 9:154Google Scholar
  16. Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res 15:481–488PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chan HT, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H (2016) Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol J 14:2190–2200PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen C, Hua W (2018) The complete chloroplast genome of rosemary (Rosmarinus officinalis). Mitochondrial DNA Part B. Resources 4:147–148Google Scholar
  19. Chen X, Li Q, Li Y, Qian J, Han J (2015) Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform. Front Plant Sci 6:42Google Scholar
  20. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chung H-J, Jung JD, Park H-W, Kim J-H, Cha HW, Min SR, Jeong WJ, Liu JR (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 25:1369–1379PubMedCrossRefPubMedCentralGoogle Scholar
  22. Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1:1071–1079PubMedCrossRefPubMedCentralGoogle Scholar
  23. Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91PubMedPubMedCentralCrossRefGoogle Scholar
  24. Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112:1503–1518PubMedCrossRefPubMedCentralGoogle Scholar
  25. Daniell H, Wurdack KJ, Kanagaraj A, Lee SB, Saski C, Jansen RK (2008) The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116:723–737PubMedPubMedCentralCrossRefGoogle Scholar
  26. Daniell H, Ruiz G, Denes B, Sandberg L, Langridge W (2009a) Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnol 9:33PubMedPubMedCentralCrossRefGoogle Scholar
  27. Daniell H, Singh ND, Mason H, Streatfield SJ (2009b) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679PubMedPubMedCentralCrossRefGoogle Scholar
  28. Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134–163PubMedPubMedCentralCrossRefGoogle Scholar
  29. Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242PubMedCrossRefPubMedCentralGoogle Scholar
  30. Del L, Yácono M, Farran I, Becher ML, Sander V, Sánchez VR, Martín V, Veramendi J, Clemente M (2012) A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. Plant Biotechnol J 10:1136–1144CrossRefGoogle Scholar
  31. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306PubMedCrossRefGoogle Scholar
  32. Dong M, Liu S, Xu Z, Hu Z, Ku W, Wu L (2018) The complete chloroplast genome of an economic plant, Camellia sinensis cultivar Anhua, China. Mitochond DNA B Resour. CrossRefGoogle Scholar
  33. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA (2012) Mind the gap: upgrading genomes with Pacific biosciences RS long-read sequencing technology. PLoS One 7:e47768PubMedPubMedCentralCrossRefGoogle Scholar
  34. Espinoza-Sáncheza EA, Álvarez-Hernándeza MH, Torres-Castillob JA, Rascón-Cruzc Q, Gutiérrez-Díeza A, Zavala-Garcíaa F, Sinagawa-García SR (2015) Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast. Electron J Biotechnol 18:161–168CrossRefGoogle Scholar
  35. Fathi Roudsari M, Salmanian AH, Mousavi A, Hashemi SH, Jafari M (2009) Regeneration of glyphosate-tolerant Nicotiana tabacum after plastid transformation with a mutated variant of bacterial aroA gene. Iran J Biotechnol 7:247–253Google Scholar
  36. Funk HT, Berg S, Krupinska K, Maier UGand Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gisby MF, Mellors P, Madesis P, Ellin M, Laverty H, O’Kane S, Ferguson MW, Day A (2011) A synthetic gene increases TGFβ3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol J 9:618–628PubMedCrossRefGoogle Scholar
  38. Gorantala J, Grover S, Goel D, Rahi A, Jayadev Magani SK, Chandra S, Bhatnagar R (2011) A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine 29:4521–4533PubMedCrossRefGoogle Scholar
  39. Gorantala J, Grover S, Rahi A, Chaudhary P, Rajwanshi R, Sarin NB, Bhatnagar R (2014) Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine. J Biotechnol 176:1–10PubMedCrossRefGoogle Scholar
  40. Goremykin VV, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454PubMedCrossRefGoogle Scholar
  41. Gottschamel J, Lössl A, Ruf S, Wang Y, Skaugen M, Bock R, Clarke JL (2016) Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. Plant Mol Biol 91:497–512PubMedCrossRefGoogle Scholar
  42. Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054PubMedCrossRefGoogle Scholar
  43. Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24:83–107CrossRefGoogle Scholar
  44. Gruzdev EV, Mardanov AV, Beletsky AV, Kochieva EZ, Ravin NV, Skryabin KG (2016) The complete chloroplast genome of parasitic flowering plant Monotropa hypopitys: extensive gene losses and size reduction. Mitochond DNA B Resour. CrossRefGoogle Scholar
  45. Guan Y, Ramalingam S, Nagegowda D, Taylor PW, Chye ML (2008) Brassica juncea chitinase BjCHI1 inhibits growth of fungal phytopathogens and agglutinates Gram-negative bacteria. J Exp Bot 59:3475–3484PubMedPubMedCentralCrossRefGoogle Scholar
  46. Guda C, Lee S-B, Daniell H (2000) Stable expression of biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep 19:257–262PubMedCrossRefGoogle Scholar
  47. Gurdon C, Maliga P (2014) Two distinct plastid genome configurations and unprecedented intraspecies length variation in the accd coding region in Medicago truncatula. DNA Res 21:417–427PubMedPubMedCentralCrossRefGoogle Scholar
  48. Harada H, Maoka T, Osawa A, Hattan J, Kanamoto H, Shindo K, Otomatsu T, Misawa N (2014) Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 23:303–315PubMedCrossRefGoogle Scholar
  49. Hassan SW, Waheed MT, Müller M, Clarke JL, Shinwari ZK, Lössl AG (2014) Expression of HPV-16 L1 capsomeres with glutathione-S-transferase as a fusion protein in tobacco plastids: an approach for a capsomere-based HPV vaccine. Hum Vaccin Immunother 10(10):2975–2982PubMedPubMedCentralCrossRefGoogle Scholar
  50. Herzog RW, Nichols TC, Su J, Zhang B, Sherman A, Merricks EP, Raymer R, Perrin GQ, Häger M, Wiinberg B, Daniell H (2017) Oral tolerance induction in hemophilia B dogs fed with transplastomic Lettuce. Mol Ther 25:512–522PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hoang NV, Furtado A, McQualter RB, Henry RJ (2015) Next generation sequencing of total DNA from sugarcane provides no evidence for chloroplast heteroplasmy. New negatives. Plant Sci 1-2:33–45Google Scholar
  52. Hoelscher M, Tiller N, Teh AY, Wu GZ, Ma JK, Bock R (2018) High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. Plant Mol Biol 97:357–370PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hu Z-Y, Hua W, Huang S-M, Wang H-Z (2011) Complete chloroplast genome sequence of rapeseed (Brassica napus L.) and its evolutionary implications. Genet Resour Crop Evol 58:875–887CrossRefGoogle Scholar
  54. Huang YY, Matzke AJ, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS One 8:e74736PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jackman SD, Warren RL, Gibb EA, Vandervalk BP, Mohamadi H, Chu J, Raymond A, Pleasance S, Coope R, Wildung MR, Ritland CE, Bousquet J, Jones SJ, Bohlmann J, Birol I (2016) Organellar genomes of white spruce (Picea glauca): assembly and annotation. Genome Biol Evol 8:29–41CrossRefGoogle Scholar
  56. Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jin R, Richter S, Zhong R, Lamppa GK (2003) Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Plant Mol Biol 51:493–507PubMedCrossRefGoogle Scholar
  60. Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327PubMedCrossRefGoogle Scholar
  61. Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13:435–446PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jung S, Lee DS, Kim YO, Joshi CP, Bae HJ (2013) Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5′ amplification promoting sequence. Plant Mol Biol 83:317–328PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kaila T, Chaduvla PK, Rawal HC, Saxena S, Tyagi A, Mithra SVA, Solanke AU, Kalia P, Sharma TR, Singh NK, Gaikwad K (2017) Chloroplast genome sequence of clusterbean (Cyamopsis tetragonoloba L.): genome structure and comparative analysis. Genes. 8:pii: E212. PubMedCentralCrossRefGoogle Scholar
  64. Kanagaraj AP, Verma D, Daniell H (2011) Expression of Dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Mol Biol 76:323–333PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kim EH, Suh SC, Park BS, Shin KS, Kweon SJ, Han EJ, Park SH, Kim YS, Kim JK (2009) Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta 230:397–405PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kim JY, Kavas M, Fouad WM, Nong G, Preston JF, Altpeter F (2011) Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production. Plant Mol Biol 76:357–369PubMedCrossRefGoogle Scholar
  68. Kim JS, Kim HT, Kim J-H (2014) The largest plastid genome of monocots: a novel genome type containing at residue repeats in the slipper orchid Cypripedium japonicum. Plant Mol Biol Report 33:1210. CrossRefGoogle Scholar
  69. Kim JH, Lee SI, Kim BR, Choi IY, Ryser P, Kim NS (2017) Chloroplast genomes of Lilium lancifolium, L. amabile, L. callosum, and L. philadelphicum: molecular characterization and their use in phylogenetic analysis in the genus Lilium and other allied genera in the order Liliales. PLoS One. 12:e0186788PubMedPubMedCentralCrossRefGoogle Scholar
  70. Klinger J, Fischer R, Commandeur U (2015) Comparison of Thermobifida fusca cellulases expressed in Escherichia coli and Nicotiana tabacum indicates advantages of the plant system for the expression of bacterial cellulases. Front Plant Sci 6:1047PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ku C, Chung WC, Chen LL, Kuo CH (2013) The complete plastid genome sequence of Madagascar periwinkle Catharanthus roseus (L) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in asterids. PLoS One 8(6):e68518PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kumar SR, Anunanthini P, Sathishkumar R (2017) Plastome engineering: yesterday, today, and tomorrow. In: Mohan C (ed) Sugarcane biotechnology: challenges and prospects, Springer, pp 139–154Google Scholar
  73. Kwon KC, Sherman A, Chang WJ, Kamesh A, Biswas M, Herzog RW, Daniell H (2018) Expression and assembly of largest foreign protein in chloroplasts: Oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia a mice. Plant Biotechnol J 16:1148–1160PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H (2013) Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One 8:e54708PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lee MY, Zhou Y, Lung RW, Chye ML, Yip WK, Zee SY, Lam E (2006) Expression of viral capsid protein antigen against Epstein-Barr virus in plastids of Nicotiana tabacum cv. SR1. Biotechnol Bioeng 94:1129–1137PubMedCrossRefPubMedCentralGoogle Scholar
  76. Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180PubMedCrossRefPubMedCentralGoogle Scholar
  77. Leelavathi S, Gupta N, Maiti S, Ghosh A, Reddy VS (2003) Overproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed 11:59–67CrossRefGoogle Scholar
  78. Li HY, Ramalingam S, Chye ML (2006) Accumulation of recombinant SARS-CoV spike protein in plant cytosol and chloroplasts indicate potential for development of plant-derived oral vaccines. Exp Biol Med 231:1346–1352CrossRefGoogle Scholar
  79. Lim S, Ashida H, Watanabe R, Inai K (2011) Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol Biol 76:335–344PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lin CS, Chen JJ, Huang YT, Chan MT, Daniell H, Chang WJ, Hsu CT, Liao DC, Wu FH, Lin SY, Liao CF, Deyholos MK, Wong GK, Albert VA, Chou ML, Chen CY and Shih MC (2015). The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Scientific Reports.5:9040Google Scholar
  81. Liu B, Zhang D, Gao LZ (2016) The complete chloroplast genome sequence of Cucumis sativus var. Hardwickii, the wild progenitor of cultivated cucumber. Mitochond DNA A DNA Mapp Seq Anal 27:4627–4628CrossRefGoogle Scholar
  82. Longoni P, Leelavathi S, Doria E, Reddy VS, Cella R (2015) Production by tobacco transplastomic plants of recombinant fungal and bacterial cell-wall degrading enzymes to be used for cellulosic biomass saccharification. BioMed Research Intl 289759. CrossRefGoogle Scholar
  83. Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Nat Acad Sci USA 110:E623–E632PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lushchak V, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol Plant 34:1607–1628CrossRefGoogle Scholar
  85. Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628PubMedCrossRefPubMedCentralGoogle Scholar
  86. Maldaner FR, Aragão FJ, dos Santos FB, Franco OL, da Rocha Queiroz Lima M, de Oliveira RR, Vasques RM, Nagata T (2013) Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Appl Microbiol Biotechnol 97:5721–5729PubMedCrossRefPubMedCentralGoogle Scholar
  87. Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510PubMedPubMedCentralCrossRefGoogle Scholar
  88. Martin G, Baurens FC, Cardi C, Aury JM, D’Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8(6):e67350PubMedPubMedCentralCrossRefGoogle Scholar
  89. McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929PubMedCrossRefPubMedCentralGoogle Scholar
  90. Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, Kilian B (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS One 9:e85761PubMedPubMedCentralCrossRefGoogle Scholar
  91. Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, Flowers JM, Pelser P, Barcelona J, Inovejas SA, Uy I, Yuan W, Wilkins O, Michel CI, Locklear S, Concepcion GP, Purugganan MD (2014) Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol Biol Evol 31:793–803PubMedPubMedCentralCrossRefGoogle Scholar
  92. Morgenfeld M, Lentz E, Segretin ME, Alfano EF, Bravo-Almonacid F (2014) Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papillomavirus E7 antigen in tobacco chloroplasts. Mol Biotechnol 56:1021–1031PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mozes-Koch R, Tanne E, Brodezki A, Yehuda R, Gover O, Rabinowitch HD, Sela I (2017) Expression of the entire polyhydroxybutyrate operon of Ralstonia eutropha in plants. J Biol Eng 11:44Google Scholar
  94. Nakahira Y, Ishikawa K, Tanaka K, Tozawa Y, Shiina T (2013) Overproduction of hyperthermostable β-1,4-endoglucanase from the archaeon Pyrococcus horikoshii by tobacco chloroplast engineering. Biosci Biotechnol Biochem 77:2140–2143PubMedCrossRefPubMedCentralGoogle Scholar
  95. Nashima K, Terakami S, Nishitani C, Kunihisa M, Shoda M, Takeuchi M, Urasaki N, Tarora K, Yamamoto T, Katayama H (2015) Complete chloroplast genome sequence of pineapple (Ananas comosus). Tree Genet Genomes 11:60CrossRefGoogle Scholar
  96. Nguyen VB, Giang NL, Waminal NE, Park H-S, Kim N-H, Jang W, Lee J, Yang T-J (2018) Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J Gingseng Res.
  97. Niu Y-F, Gao C-W, Liu J (2018) The complete chloroplast genome sequence of wild banana, Musa balbisiana variety ‘Pisang Klutuk Wulung’ (Musaceae). DNA Res 3:460–461CrossRefGoogle Scholar
  98. Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445PubMedCrossRefPubMedCentralGoogle Scholar
  99. Oh H, Seo B, Lee S, Ahn DH, Jo E, Park JK, Min GS (2016) Two complete chloroplast genome sequences of Cannabis sativa varieties. Mitochond DNA A DNA Mapp Seq Anal 27:2835–2837Google Scholar
  100. Pantaleoni L, Longoni P, Ferroni L, Baldisserotto C, Leelavathi S, Reddy VS, Pancaldi S, Cella R (2014) Chloroplast molecular farming: efficient production of a thermostable xylanase by Nicotiana tabacum plants and long-term conservation of the recombinant enzyme. Protoplasma 251:639–648PubMedCrossRefPubMedCentralGoogle Scholar
  101. Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76:311–321PubMedCrossRefPubMedCentralGoogle Scholar
  102. Pipia I, Kunelauri N, Gogniashvili M, Kotaria N, Kotorashvili A, Lacombe T, Tabidze V(2017). Complete plastid genomes of South Caucasian, European and Mediterranean Basin wild grapevines (Vitis vinifera subsp. sylvestris). Acta Horticult 1188. ISHS 2017.
  103. Poage M, Le Martret B, Jansen MA, Nugent GD, Dix PJ (2011) Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol Biol 76:371–384PubMedCrossRefPubMedCentralGoogle Scholar
  104. Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J, Xu H, Chen S (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One 8:e57607PubMedPubMedCentralCrossRefGoogle Scholar
  105. Raveendar S, Na YW, Lee JR, Shim D, Ma KH, Lee SY, Chung JW (2015) The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing. Molecules 20:13080–13088PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rigano MM, Manna C, Giulini A, Pedrazzini E, Capobianchi M, Castilletti C, Di Caro A, Ippolito G, Beggio P, De Giuli MC, Monti L, Vitale A, Cardi T (2009) Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cellsdagger. Plant Biotechnol J 7:577–591PubMedCrossRefPubMedCentralGoogle Scholar
  107. Rigano M, Scotti N, Cardi T (2012) Unsolved problems in plastid transformation. Bioengineered 3:329–333PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rogalski M, do Nascimento Vieira L, Fraga HP, Guerra MP (2015) Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front Plant Sci 6:586Google Scholar
  109. Roney J, Khatibi P, Westwood J (2007) Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol 143:1037–1043PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rubio-Infante N, Govea-Alonso DO, Alpuche-Solís ÁG, García-Hernández AL, Soria-Guerra RE, Paz-Maldonado LM, Ilhuicatzi-Alvarado D, Varona-Santos JT, Verdín-Terán L, Korban SS, Moreno-Fierros L, Rosales-Mendoza S (2012) A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Mol Biol 78:337–349PubMedCrossRefPubMedCentralGoogle Scholar
  111. Rubio-Infante N, Govea-Alonso DO, Romero-Maldonado A, García-Hernández AL, Ilhuicatzi-Alvarado D, Salazar-González JA, Korban SS, Rosales-Mendoza S, Moreno-Fierros L (2015) A plant-derived multi-hiv antigen induces broad immune responses in orally immunized mice. Mol Biotechnol 57:662–674PubMedCrossRefPubMedCentralGoogle Scholar
  112. Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:222PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts: oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ruhlman TA, Rajasekaran K, Cary JW (2014) Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance. Plant Sci 228:98–106PubMedCrossRefPubMedCentralGoogle Scholar
  115. Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H (2007) The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnol J 5 339–353PubMedPubMedCentralCrossRefGoogle Scholar
  116. Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005) Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322PubMedCrossRefPubMedCentralGoogle Scholar
  117. Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115(4):571–590PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290PubMedCrossRefPubMedCentralGoogle Scholar
  119. Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315PubMedCrossRefPubMedCentralGoogle Scholar
  120. Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T (2009) High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 229:1109–1122PubMedCrossRefPubMedCentralGoogle Scholar
  121. Sharifi Tabar M, Habashi AA, Rajabi Memari H (2013) Human granulocyte colony-stimulating factor (hG-CSF) expression in plastids of Lactuca sativa. Iran Biomed J 17:158–164PubMedPubMedCentralGoogle Scholar
  122. Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, Li X, Zhang B, Xu J, Chen S (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22 pii:E1330PubMedCentralCrossRefGoogle Scholar
  123. Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Kanamoto H, Tomizawa K, Yokota A, Kobayashi H (2008) Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiol 14:1976–1983CrossRefGoogle Scholar
  124. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedPubMedCentralCrossRefGoogle Scholar
  125. Soria-Guerra RE, Alpuche-Solís AG, Rosales-Mendoza S, Moreno-Fierros L, Bendik EM, Martínez-González L, Korban SS (2009) Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer. Planta 229:1293–1302PubMedCrossRefPubMedCentralGoogle Scholar
  126. Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res 12:215–220PubMedCrossRefPubMedCentralGoogle Scholar
  127. Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, Norikane JH, Streatfield SJ, Herzog RW, Daniell H (2015) Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 70:84–93PubMedPubMedCentralCrossRefGoogle Scholar
  128. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Nat Acad Sci USA 90:913–917PubMedCrossRefPubMedCentralGoogle Scholar
  129. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Nat Acad Sci USA 87:8526–8530PubMedCrossRefPubMedCentralGoogle Scholar
  130. Talianova M, Janousek B (2011) What can we learn from tobacco and other Solanaceae about horizontal DNA transfer? Am J Bot 98:1231–1242PubMedCrossRefPubMedCentralGoogle Scholar
  131. Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H, Zhu L (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S (2010) The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 17:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  133. Tangphatsornruang S, Uthaipaisanwong P, Sangsrakru D, Chanprasert J, Yoocha T, Jomchai N, Tragoonrung S (2011) Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene 475:104–112PubMedCrossRefGoogle Scholar
  134. Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:302–312PubMedCrossRefGoogle Scholar
  135. Tong W, Kim TS, Park YJ (2016) Rice chloroplast genome variation architecture and phylogenetic dissection in diverse oryza species assessed by whole-genome resequencing. Rice 9:57PubMedPubMedCentralCrossRefGoogle Scholar
  136. van Eerde A, Gottschamel J, Bock R, Hansen KEA, Munang’andu HM, Daniell H, Liu Clarke J (2018) Production of tetravalent dengue virus envelope protein domain III based antigens in lettuce chloroplasts and immunologic analysis for future oral vaccine development. Plant Biotechnol J 17:1408. CrossRefGoogle Scholar
  137. Vaughn JN, Chaluvadi SR, Tushar, Rangan L, Bennetzen JL (2014) Whole plastome sequences from five ginger species facilitate marker development and define limits to barcode methodology. PLoS One 9(10):e108581PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vergara D, White KH, Keepers KG, Kane NC (2016) The complete chloroplast genomes of Cannabis sativa and Humulus lupulus. Mitochond DNA A DNA Mapp Seq Anal. 27:3793–3794CrossRefGoogle Scholar
  139. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143PubMedPubMedCentralCrossRefGoogle Scholar
  140. Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350PubMedPubMedCentralCrossRefGoogle Scholar
  141. Verma D, Jin S, Kanagaraj A, Singh ND, Daniel J, Kolattukudy PE, Miller M, Daniell H (2013) Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates. PLoS One 8:e57187PubMedPubMedCentralCrossRefGoogle Scholar
  142. Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136:4048–4060PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wang YP, Wei ZY, Zhong XF, Lin CJ, Cai YH, Ma J, Zhang YY, Liu YZ, Xing SC (2015) Stable expression of basic fibroblast growth factor in chloroplasts of tobacco. Intl J Mol Sci 17:pii: E19Google Scholar
  144. Wani SH, Haider N, Kumar H, Singh NB (2010) Plant plastid engineering. Curr Genomics 11:500–512PubMedPubMedCentralCrossRefGoogle Scholar
  145. Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wu Z (2016) The completed eight chloroplast genomes of tomato from Solanum genus. Mitochond DNA A DNA Mapp Seq Anal. 27:4155–4157CrossRefGoogle Scholar
  147. Wu Z, Ge S (2016) The whole chloroplast genome of wild rice (Oryza australiensis). Mitochond DNA A DNA Mapp Seq Anal. 27:1062–1063Google Scholar
  148. Wu ML, Li Q, Xu J, Li XW (2018) Complete chloroplast genome of the medicinal plant Amomum compactum: gene organization, comparative analysis, and phylogenetic relationships within Zingiberales. Chin Med 13:10PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288PubMedCrossRefPubMedCentralGoogle Scholar
  150. Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402PubMedCrossRefPubMedCentralGoogle Scholar
  151. Yanez RJR, Lamprecht R, Granadillo M, Torrens I, Arcalís E, Stöger E, Rybicki EP, Hitzeroth II (2018) LALF32-51 -E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves. Plant Biotechnol J 16:628–637PubMedCrossRefPubMedCentralGoogle Scholar
  152. Yu L-X, Gray BN, Rutzke CJ, Walker LP, Wilson DB, Hanson MR (2007) Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J Biotechnol 131:362–369PubMedCrossRefGoogle Scholar
  153. Yu Y, Lee H-O, Chin JH, Park YH, Yoo S-C (2017) The complete chloroplast genome sequence of Oryza sativa aus-type variety Nagina-22 (Poaceae). Mitochond DNA Part B Resour 2:819–820CrossRefGoogle Scholar
  154. Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124PubMedCrossRefGoogle Scholar
  155. Zhang XH, Keating P, Wang XW, Huang YH, Martin J, Hartmann JX, Liu A (2014) Production of functional native human interleukin-2 in tobacco chloroplasts. Mol Biotechnol 56:369–376PubMedCrossRefGoogle Scholar
  156. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994PubMedCrossRefGoogle Scholar
  157. Zhang D, Li K, Gao J, Liu Y, Gao L-Z (2016) The complete plastid genome sequence of the wild rice Zizania latifolia and comparative chloroplast genomics of the rice tribe oryzeae, poaceae. Frontiers in. Plant Sci.
  158. Zhang H, Jin J, Moore MJ, Yi T, Li D (2018a) Plastome characteristics of Cannabaceae. Plant Diversity 40:127–137PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zhang X, Rong C, Qin L, Mo C, Fan L, Yan J, Zhang M (2018b) Complete chloroplast genome sequence of Malus hupehensis: genome structure, comparative analysis, and phylogenetic relationships. Molecules 23:pii: E2917Google Scholar
  160. Zhou YX, Lee MY, Ng JM, Chye ML, Yip WK, Zee SY, Lam E (2006) A truncated hepatitis E virus ORF2 protein expressed in tobacco plastids is immunogenic in mice. World J Gastroenterol 12:306–312PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. K. B. Bharadwaj
    • 1
  • Sarma Rajeev Kumar
    • 2
    • 3
  • Ramalingam Sathishkumar
    • 3
    Email author
  1. 1.Plant Genetic Engineering Laboratory, Department of BiotechnologyCoimbatoreIndia
  2. 2.String Bio Private Ltd, IBAB CampusBangaloreIndia
  3. 3.Plant Genetic Engineering Laboratory, Department of BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations