Advertisement

Integrating the Bioinformatics and Omics Tools for Systems Analysis of Abiotic Stress Tolerance in Oryza sativa (L.)

  • Pandiyan Muthuramalingam
  • Rajendran Jeyasri
  • Subramanian Radhesh Krishnan
  • Shunmugiah Thevar Karutha Pandian
  • Ramalingam Sathishkumar
  • Manikandan Ramesh
Chapter

Abstract

Abiotic stress can inflict limitations on plant growth, developmental processes and also crop productivity. Here we have portrayed advances in omics tools in the view of conservative and contemporary approaches that could be used to unravel abiotic stress tolerance in rice. Under stressful conditions, plants can develop diverse molecular mechanisms to combat stress challenges, while it is not sufficient to protect them. Hence, speculation of this study is essential for understanding how plants react to adverse environmental conditions with the hope of enhancing the tolerance of plants to abiotic stress. It could be addressed by computational biology (bioinformatics); invigorated sequencing approaches in genomics have paved the way for various analytical applications. Focusing on the technological advances, multiple new omics such as the transcriptome, metabolome, hormonome, epigenome, proteome and phenome have emerged. An emphasis was given to systems approaches with respect to abiotic stress. In addition, the availability of rice whole genome information, advancement and development of omics studies has improved to address the identification of unique and combined abiotic stress responsive cellular metabolisms and this enables the interaction between signalling pathways, molecular biological insights along with novel traits and their significance. Thus, this chapter provides the bioinformatics and systems biology aspects of abiotic stress responses by comparing it with the publically available omics and bioinformatics resources which could provide a base for detailed functional studies of stress tolerance in rice.

Keywords

Rice Abiotic stress Systems biology Omics Modelling Genome Transcriptome Metabolome Proteome Hormonome Phenome 

Notes

Acknowledgements

The author Pandiyan Muthuramalingam (Rc.SO (P)/DBT-BIF/15207/2017 dated February 02, 2018) thanks the DBT-Bioinformatics Infrastructure Facility Scheme, New Delhi, India, for the financial support in the form of fellowship. The authors gratefully acknowledge the use of the Bioinformatics Infrastructure Facility, Alagappa University, funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India grant (No.BT/BI/25/015/2012). The authors also thank RUSA 2.0 [F. 24-51/2014-U, Policy (TN Multi-Gen), Dept of Edn, GoI].

References

  1. Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes R, Ulat V, Chebotarov D, Zhang G, Li Z, Mauleon R, Hamilton R, McNally K (2014) SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res 43:D1023–D1027PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ali GM, Komatsu S (2016) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403CrossRefGoogle Scholar
  3. Becker SA, Feist AM, Mo ML, Hannum G, Palsson B, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738PubMedCrossRefPubMedCentralGoogle Scholar
  4. Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8:R89PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blom C, Voesenek L (1996) Flooding: the survival strategies of plants. Trends Ecol Evolut 11:290–295CrossRefGoogle Scholar
  6. Boele J, Olivier BG, Teusink B (2012) FAME, the flux analysis and modeling environment. BMC Syst Biol 6:8PubMedPubMedCentralCrossRefGoogle Scholar
  7. Browne J (2007) History of plant science. In: Roberts K (ed) Handbook of plant science, 2nd edn. Wiley, Chicester, pp 3–7Google Scholar
  8. Christou P (1994) Rice as a global crop. In: Rice biotechnology and genetic engineering. Technomic Publishing Company, Inc, Lancaster, pp 1–38Google Scholar
  9. Cvijovic M, Olivares-Hernandez R, Agren R, Dahr N, Vongsangnak W, Nookaew I, Patil KR, Nielsen J (2010) BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res 38:W144–W149PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dai Yin C, Yong Hai L, Min S, Da L, Hong Xuan L (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810CrossRefGoogle Scholar
  11. de Carvalho MHC (2008) Drought stress and reactive oxygen species. Plant Signaling Behaviour 3:156–165CrossRefGoogle Scholar
  12. Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Kohl KI (2009) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69:133–153PubMedCrossRefPubMedCentralGoogle Scholar
  13. Dooki AD, Mayer-Posner FJ, Askari H, Aa Z, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507PubMedCrossRefPubMedCentralGoogle Scholar
  14. Droc G, Ruiz M, Larmande P, Pereira A, Piffanelli P, Morel JB, Dievart A, Courtois B, Guiderdoni E, Périn C (2005) OryGenesDB: a database for rice reverse genetics. Nucleic Acids Res 34:D737Google Scholar
  15. Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerso M, Lawrence C, Lushbough C, Brendel V (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:D959–D965PubMedCrossRefPubMedCentralGoogle Scholar
  16. Fan TM, Lane A, Higashi R (2003) In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways. Russ J Plant Physiol 50:787–793CrossRefGoogle Scholar
  17. Feng X, Xu Y, Chen Y, Tang YJ (2012) MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol 6:94PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM (2011) SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome scale metabolic reaction networks. Bioinformatics 27:433–434PubMedCrossRefPubMedCentralGoogle Scholar
  19. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gorantla M, Babu P, Lachagari VR, Reddy A, Wusirika R, Bennetzen JL, Reddy AR (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–265PubMedCrossRefPubMedCentralGoogle Scholar
  21. Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25:2755–2757PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gu H, Zhu P, Jiao Y, Meng Y, Chen M (2011) PRIN: a predicted rice interactome network. BMC Bioinform 12:161CrossRefGoogle Scholar
  23. Guglielminetti L, Perata P, Alpi A (1995) Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol 108:735–741PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hadiarto T, Tran LSP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Reports 30:297–310PubMedCrossRefPubMedCentralGoogle Scholar
  25. He G, Zhu X, Elling AA, Chen L, Wang X, Guo L (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33PubMedPubMedCentralCrossRefGoogle Scholar
  26. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhutter HG (2011) FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinform 12:28CrossRefGoogle Scholar
  28. International Rice Genome Sequencing Project A (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  29. Jung TS, Yeo HC, Reddy SG, Cho WS, Lee DY (2009) WEbcoli: an interactive and asynchronous web application for in silico design and analysis of genome-scale E: coli model. Bioinformatics 25:2850–2852PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell Online 13:889–905CrossRefGoogle Scholar
  31. Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DS, Humphrey J, Kerhornou A, Khobova J, Langridge N, McDowall MD, Maheswari U, Maslen G, Nuhn M, Ong CK, Paulini M, Pedro H, Toneva I, Tuli MA, Walts B, Williams G, Wilson D, Youens-Clark K, Monaco MK, Stein J, Wei X, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Staines DM (2014) Ensembl genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42:D546–D552PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IS et al (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23:617–623PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedPubMedCentralCrossRefGoogle Scholar
  35. Klamt S, Stelling J, Ginkel M, Gilles ED (2003) FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19:261–269PubMedCrossRefPubMedCentralGoogle Scholar
  36. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kompala DS, Ramkrishna D, Tsao GT (1984) Cybernetic modeling of microbial growth on multiple substrates. Biotechnol Bioeng 26:1272–1281PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kurata N, Yamazaki Y (2006) Oryzabase. An integrated biological and genome information database for rice. Plant Physiol 140:12PubMedPubMedCentralCrossRefGoogle Scholar
  39. Lack A, Evans D (2005) Understanding plants – methods in plant biology. In Plant biology. Taylor & Francis Group, New York, pp 5–16Google Scholar
  40. Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231PubMedPubMedCentralCrossRefGoogle Scholar
  41. Latendresse M, Krummenacker M, Trupp M, Karp PD (2012) Construction and completion of flux balance models from pathway databases. Bioinformatics 28:388–396PubMedPubMedCentralCrossRefGoogle Scholar
  42. Le Fevre F, Smidtas S, Combe C, Durot M, d’Alche Buc F, Schachter V (2009) CycSim-an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25:1987–1988PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lee DY, Yun H, Park S, Lee SY (2003a) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19:2144–2146PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lee SY, Lee DY, Hong SH, Kim TY, Yun H, Oh YG, Park S (2003b) MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform 14:23–33PubMedPubMedCentralGoogle Scholar
  45. Li X, Wang X, He K, Ma Y, Su N, He H (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276PubMedPubMedCentralCrossRefGoogle Scholar
  46. Liao YC, Tsai MH, Chen FC, Hsiung CA (2012) GEMSiRV: a software platform for Genome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28:1752–1758PubMedCrossRefPubMedCentralGoogle Scholar
  47. Liu L, Mei Q, Yu Z, Sun T, Zhang Z, Chen M (2013) An integrative bioinformatics framework for genome-scale multiple level network reconstruction of rice. J Integr Bioinform 10(2):94–102CrossRefGoogle Scholar
  48. Muthuramalingam P, Krishnan SR, Pothiraj R, Ramesh M (2017) Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front Plant Sci 8:759PubMedPubMedCentralCrossRefGoogle Scholar
  49. Muthuramalingam P, Krishnan SR, Saravanan K, Mareeswaran N, Kumar R, Ramesh M (2018a) Genome-wide identification of major transcription factor superfamilies in rice identifies key candidates involved in abiotic stress dynamism. J Plant Biochem Biotechnol:1–18Google Scholar
  50. Muthuramalingam P, Krishnan SR, Pandian S, Mareeswaran N, Aruni W, Pandian SK, Ramesh M (2018b) Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci Rep 8(1):9270PubMedPubMedCentralCrossRefGoogle Scholar
  51. Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J (2009) Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. Plant Physiol 151:306–322PubMedPubMedCentralCrossRefGoogle Scholar
  52. Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Develop 14:257–271Google Scholar
  53. Negrao S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira M (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377CrossRefGoogle Scholar
  54. Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung C, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S (2009) Gramene QTL database: development, content and applications. Database:Article ID bap005.  https://doi.org/10.1093/database/bap005
  55. Osakabe K, Osakabe Y (2012) Plant light stress. eLSGoogle Scholar
  56. Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118PubMedCrossRefPubMedCentralGoogle Scholar
  57. Perata P, Alpi A (1993) Plant responses to anaerobiosis. Plant Sci 93:1–17CrossRefGoogle Scholar
  58. Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T (2016) Expression Atlas update – an integrated database of gene and proteinexpression in humans, animals and plants. Nucleic Acids Res 44:746–752CrossRefGoogle Scholar
  59. Price ND, Reed JL, Palsson B (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897PubMedCrossRefPubMedCentralGoogle Scholar
  60. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, Dicuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42:D756–D763PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767PubMedPubMedCentralCrossRefGoogle Scholar
  62. Raghuvanshi S, Gour P, Joseph SV (2016) Manually Curated Database of Rice Proteins (MCDRP), a database of digitized experimental data on rice. Current Plant Biol 8:26–30CrossRefGoogle Scholar
  63. Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10:435–449PubMedCrossRefPubMedCentralGoogle Scholar
  64. Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175–201PubMedCrossRefPubMedCentralGoogle Scholar
  65. Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sakai H, Shin Lee S, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang C, Iwamoto M, Abe T, Yamada Y, Muto A, Inokuchi H, Ikemura T, Matsumoto T, Sasak T, Itoh T (2012) Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54:1–11Google Scholar
  67. Salekdeh G, Siopongco J, Wade LJ, Ghareyazie B, Bennett J et al (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sato Y, Antonio BA, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y (2010) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res 39:D1141–D1148PubMedPubMedCentralCrossRefGoogle Scholar
  69. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6:1290–1307PubMedPubMedCentralCrossRefGoogle Scholar
  70. Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, ZhouW,Millar AH (2011) Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol 156:1706–1724PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sroka J, Bieniasz-Krzywiec L, Gwozdz S, Leniowski D, Lącki J, Markowski M, Avignone-Rossa C, Bushell ME, McFadden J, Kierzek AM (2011) Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface. BMC Bioinform 12:196CrossRefGoogle Scholar
  72. Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci 103:11868–11873CrossRefGoogle Scholar
  73. Takahashi H, Saika H, Matsumura H, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Ann Bot 108:253–261PubMedPubMedCentralCrossRefGoogle Scholar
  74. Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44:1133–1140CrossRefGoogle Scholar
  75. The Arabidopsis Initiative A (2000) Analysis of the genome sequence of the owering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  76. Ueda A, Kathiresan A, Bennett J, Takabe T (2006) Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet 112:1286–1294PubMedCrossRefPubMedCentralGoogle Scholar
  77. Urbanczik R (2006) SNA-a toolbox for the stoichiometric analysis of metabolic networks. BMC Bioinform 7:129CrossRefGoogle Scholar
  78. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X et al (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wang H, Zhang H, Gao F, Li J, Li Z (2007) Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet 115:1109–1126PubMedCrossRefPubMedCentralGoogle Scholar
  80. Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M (2009) Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21:1428–1452PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wright J, Wagner A (2008) The systems biology research tool: evolvable open-source software. BMC Syst Biol 2:55PubMedPubMedCentralCrossRefGoogle Scholar
  82. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244PubMedCrossRefPubMedCentralGoogle Scholar
  83. Yilmaz A, Nishiyama MY, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhao W, Wang J, He X, Huang X, Jiao Y, Dai M, Wei S, Fu J, Chen Y, Ren X, Zhang Y, Ni P, Zhang J, Li S, Wang J, Wong G, Zhao H, Yu J, Yang H, Wang J (2003) BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Res 32:D377–D382CrossRefGoogle Scholar
  85. Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L et al (2007) Global genome expression analysis of rice in response to drought and high salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608PubMedPubMedCentralCrossRefGoogle Scholar
  86. Zuther E, Koehl K, Kopka J (2007) In Comparative metabolome analysis of the salt response in breeding cultivars of rice. Springer, pp 285–315Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pandiyan Muthuramalingam
    • 1
  • Rajendran Jeyasri
    • 1
  • Subramanian Radhesh Krishnan
    • 1
    • 2
  • Shunmugiah Thevar Karutha Pandian
    • 1
  • Ramalingam Sathishkumar
    • 3
  • Manikandan Ramesh
    • 1
  1. 1.Department of Biotechnology, Science CampusAlagappa UniversityKaraikudiIndia
  2. 2.Phytopharma Testing Laboratory, Herbal DivisionT. Stanes & Company LtdCoimbatoreIndia
  3. 3.Plant Genetic Engineering Laboratory, Department of BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations