Advertisement

Genome Modification Approaches to Improve Performance, Quality, and Stress Tolerance of Important Mediterranean Fruit Species (Olea europaea L., Vitis vinifera L., and Quercus suber L.)

  • Hélia CardosoEmail author
  • Andreia Figueiredo
  • Susana Serrazina
  • Rita Pires
  • Augusto Peixe
Chapter

Abstract

In the last decades, the interest on traditional Mediterranean fruits highly increased, not only due to the constant demand of consumers for new crop alternatives but also due to the identification in such species of molecules with important properties for human health (e.g., resveratrol from grapes and oleuropein from olives). Efforts to improve the production capacity and fruit quality, as well as the resistance to biotic and abiotic stress, in such fruit species, were achieved by plant breeders using mainly classical breeding approaches (e.g., selection, hybridization, and mutagenesis); nevertheless, breeding support by plant tissue culture techniques, by marker-assisted selection, as well as by genome modification was also used. Here we will present the state of the art related with the production of transgenic plants in three Mediterranean fruit species with important impact on the economy, olive, grapevine, and cork oak. The achievements, problems, and future perspectives will be discussed.

Keywords

Mediterranean fruit species; Genome modification; Improved nutrition; Stress tolerance; Transgenic plants 

Notes

Acknowledgments

This work was financially supported by national funds through FCT (Foundation for Science and Technology) under the Project UID/AGR/00115/2019 and PTDC/BIA-BQM/28539/2017 and by the Project OLEAVALOR (ALT20-03-0145-FEDER000014) funded by FEDER through the Program Alentejo 2020; Hélia Cardoso and Susana Serrazina were supported by FCT through postdoc fellowship SFRH/BPD/109849/2015 and SFRH/BPD/108653/2015, respectively; Andreia Figueiredo was also supported by FCT, under the investigator FCT program IF/00819/2015.

References

  1. Agüero CB, Uratsu SL, Greve C et al (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51.  https://doi.org/10.1111/j.1364-3703.2004.00262.x CrossRefPubMedGoogle Scholar
  2. Alagna F, Cirilli M, Galla G, Carbone F, Daddiego L, Facella P et al (2016) Transcript analysis and regulative events during flower development in olive (Olea europaea L.). PLoSONE 11(4):e0152943.  https://doi.org/10.1371/journal.pone.0152943 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673.  https://doi.org/10.1007/BF00265585 CrossRefGoogle Scholar
  4. Álvarez R, Ordás RJ (2007) Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell Tissue Organ Cult 91:45–52.  https://doi.org/10.1007/s11240-007-9276-6 CrossRefGoogle Scholar
  5. Álvarez R, Alonso P, Cortizo M et al (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223.  https://doi.org/10.1007/s00299-004-0810-2 CrossRefPubMedGoogle Scholar
  6. Alvarez M, Millan C, Fernandez O, Ricardo-Javier R,Toribio (2006) Cork Oak Trees (Quercus suber L.). Methods Mol Biol (Clifton; NJ) 344:113–123. doi:  https://doi.org/10.1385/1-59745-131-2:113 CrossRefGoogle Scholar
  7. Álvarez R, Álvarez JM, Humara JM et al (2009) Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Biotechnol Lett 31:1477–1483.  https://doi.org/10.1007/s10529-009-0033-2 CrossRefPubMedGoogle Scholar
  8. Baribault TJ, Skene KGM, Steele Scott N (1989) Genetic transformation of grapevine cells. Plant Cell Rep 8:137–140.  https://doi.org/10.1007/BF00716825 CrossRefPubMedGoogle Scholar
  9. Barranco D, Rallo L (2000) Olive cultivars in Spain. HortTechnology 10:107–110CrossRefGoogle Scholar
  10. Bashir MA, Silvestri C, Astolfi F, Coppa E, Cristofori V, Rugini E (2018) Transgenic olive (Olea europaea L.) shots overexpressing osmotin gene are less sensitive to in vitro-induced salt stress. OliveBioteq18. Seville, Spain.Google Scholar
  11. Behelgardy MF, Motamed N, Jazii FR (2012) Expression of the P5CS Gene in Transgenic Versus Nontransgenic Olive (Olea europaea) under Salinity Stress. World Applied Sciences Journal 18(4):580–583.  https://doi.org/10.5829/idosi.wasj.2012.18.04.1488 CrossRefGoogle Scholar
  12. Benelli C, Fabbri A, Grassi S, Lambardi M, Rugini E (2001) Histology of somatic embryogenesis in mature tissue of olive. J Horticult Sci Biotechnol 76:112–119CrossRefGoogle Scholar
  13. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acid Res 12:8711–8721PubMedCrossRefGoogle Scholar
  14. Binet MN, Lepetit M, Weil JH, Tessier LH (1991) Analysis of a sunflower polyubiquitin promoter by transient expression. Plant Sci. 79:87–94CrossRefGoogle Scholar
  15. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52.  https://doi.org/10.1016/J.BIOTECHADV.2014.12.006 CrossRefGoogle Scholar
  16. Bourgin JP, Nitsch JP (1967) Production of haploid Nicotiana from excised stamens. Ann Phys Vég 9:377–382Google Scholar
  17. Bowers JE, Meredith CP (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet 16:84–87.  https://doi.org/10.1038/ng0597-84 CrossRefPubMedGoogle Scholar
  18. Bradaï F, Pliego-Alfaro F, Sánchez-Romero C (2016) Long-term somatic embryogenesis in olive (Olea europaea L.): influence on regeneration capability and quality of regenerated plants. Sci Hortic (Amsterdam) 199:23–31.  https://doi.org/10.1016/J.SCIENTA.2015.12.010 CrossRefGoogle Scholar
  19. Braisier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann des Sci For 53:347–358.  https://doi.org/10.1051/forest:19960217 CrossRefGoogle Scholar
  20. Brasier CM, Robredo F, Ferraz JFP (1993) Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathol 42:140–145.  https://doi.org/10.1111/j.1365-3059.1993.tb01482.x CrossRefGoogle Scholar
  21. Brhadda N, Abousalim A, Walali LDE (2003) Effets du milieu de culture et de la lumiére sur lémbriogenése somatique de l’olivier (Olea europaea L.) cv. ‘Picholine Marocaine. Fruits 58:167–174CrossRefGoogle Scholar
  22. Camposeo S (2017) Nuevas variedades de olivo obtenidas del cruzamiento entre genotipos italianos y españoles adaptadas a los sistemas de cultivo superintensivos. Olint 31:15–16Google Scholar
  23. Capelo AM, Silva S, Brito G, Santos C (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tissue Organ Cult 103:237–242.  https://doi.org/10.1007/s11240-010-9773-x CrossRefGoogle Scholar
  24. Capone I, Cardarelli M, Mariotti D, Pomponi M, De Paolis A, Constantino P (1991) Different promoter regions control level and tissue specificity of expression of Agrobacterium rhizogenes rol B gene in plants. Plant Mol Biol 16:427PubMedCrossRefGoogle Scholar
  25. Cardarelli M, Mariotti D, Pomponi M, Spano L, Capone L, Costantino P (1987) Agrobacterium rhizogenes T -DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480PubMedCrossRefGoogle Scholar
  26. Cardoso HG, Campos MC, Pais MS, Peixe A (2010) Use of morphometric parameters for tracking ovule and microspore evolution in grapevine (Vitis vinifera L., cv. ‘Aragonez’) and evaluation of their potential to improve in vitro somatic embryogenesis efficiency from gametophyte tissues. In Vitro Cellular and Developmental Biology - Plant 46:499–508CrossRefGoogle Scholar
  27. Cardoso HG, Campos MC, Pais MS, Peixe A (2019) Somatic embryogenesis in Iberian grapevine (Vitis vinifera L.) cultivars using carpels as initial explants – protocol establishment and histological evaluation. J Agric Sci Technol B9:15–30.  https://doi.org/10.17265/2161-6264/2019.01.002
  28. Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tissue Organ Cult 106:337–344.  https://doi.org/10.1007/s11240-011-9926-6 CrossRefGoogle Scholar
  29. Cerezo S, Barceló A, Samach A, Mercado JÁ, Pliego-Alfaro F (2013) Transformación genética de olivo (Olea europaea L.) con un gen de Medicago truncatula que codifica para un proteína tipo FT. X Reunión de la Sociedad Española de Cultivo In Vitro de Tejidos Vegetales (SECIVTV), Valencia-SpainGoogle Scholar
  30. Cerezo S, Hernández ML, Sicardo MD, Mercado JA, Sanz C, Narváez I, Barceló-Muñoz A, Martínez-Rivas JM, Pliego-Alfaro F (2015) Transformación genética de olivo con el gen OeHPL para el análisis funcional del papel de la enzima 13-hidroperóxido liasa (13-HPL) en la producción de compuestos volátiles. XI Reunión de la Sociedad Española de Cultivo In Vitro de Tejidos Vegetales. Valencia-SpainGoogle Scholar
  31. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectorsfor high-level expression of selectable and/or screenable markergenes in monocotyledonous plants. Transgenic Res. 5:213–218PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ciferri R, Breviglieri N (1942) Introduzione ad una classificazione morfo-ecologica dell olivo coltivato in Italia. L’Olivicoltore 1:1–2Google Scholar
  33. Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D et al (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259.  https://doi.org/10.1023/B:PLAN.0000028791.34706.80 CrossRefPubMedGoogle Scholar
  34. Coelho AC, Ebadzad G, Cravador A (2011) Quercus suber – Phytophthora cinnamomi interaction: a hypothetical molecular mechanism model. New Zeal J For Sci 0134:143–157Google Scholar
  35. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Corredoira E, Toribio M, Vieitez AM (2014) Clonal propagation via somatic embryogenesis in Quercus spp. Tree Biotechnol:262–302.  https://doi.org/10.1201/b16714
  37. Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M, Cano E et al (2016) Genome sequence of the olive tree, Olea europaea. GigaScience 5:1–12CrossRefGoogle Scholar
  38. Cunill M, Duran S (2014) “OLIANA®”, una nueva variedad de olivo adaptada al sistema superintensivo. Olint 25:21–29Google Scholar
  39. D’Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163PubMedCrossRefGoogle Scholar
  40. D’Angeli S, Gutiérrez-Pesce P, Altamura M, Biasi R, Ruggiero B, Muganu M, Bressan R, Rugini E (2001) Proceedings of the SIGA, Salsomaggiore TermeGoogle Scholar
  41. Dai L, Zhou Q, Li R et al (2015) Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell. Tissue Organ Cult 121:397–412.  https://doi.org/10.1007/s11240-015-0711-9 CrossRefGoogle Scholar
  42. Dai L, Wang D, Xie X et al (2016) The novel gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L. Front Plant Sci 7:695.  https://doi.org/10.3389/fpls.2016.00695 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Day AG, Bejarano ER, Burrell M, Buck K, Lichtenstein C (1991) Expression of antisense RNA in transgenic tobacco plants confer resistance to geminivirus infection. Proc Natl Acad Sci USA 88:6721–6725.  https://doi.org/10.1073/pnas.88.15.6721 CrossRefGoogle Scholar
  44. de Sampaio e Paiva Camilo-Alves C, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: A review. Eur J For Res 132:411–432.  https://doi.org/10.1007/s10342-013-0688-z CrossRefGoogle Scholar
  45. Delame M, Prado E, Blanc S et al (2018) Introgression reshapes recombination distribution in grapevine interspecific hybrids. Theor Appl Genet:1–15.  https://doi.org/10.1007/s00122-018-3260-x PubMedCrossRefPubMedCentralGoogle Scholar
  46. DGAV – Direção Regional de Agriculture e Veterinária (2016) Catálogo Nacional de Variedades, Fruteiras. 23 pg:14–16Google Scholar
  47. Dhekney SA, Li ZT, Compton ME Gray DJ (2009) optimizing initiation and maintenance of Vitis embryogenic cultures. Hortscience 44:1400–1406CrossRefGoogle Scholar
  48. Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46(2):120–124Google Scholar
  49. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS One 6:e19379.  https://doi.org/10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fan C, Pu N, Wang X et al (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197–206.  https://doi.org/10.1007/s11240-007-9324-2 CrossRefGoogle Scholar
  51. Fan D, Liu T, Li C et al (2015) Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation. Sci Rep 5:1–7.  https://doi.org/10.1038/srep12217 CrossRefGoogle Scholar
  52. Fernandez i Marti A, Dodd RS (2018) Using CRISPR as a Gene Editing Tool for Validating Adaptive Gene Function in Tree Landscape Genomics. Front Ecol Evol 6:1–7.  https://doi.org/10.3389/fevo.2018.00076 CrossRefGoogle Scholar
  53. Fontaine F, Pinto C, Vallet J et al (2016) The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur J Plant Pathol 144:707–721.  https://doi.org/10.1007/s10658-015-0770-0 CrossRefGoogle Scholar
  54. Franks T, Gang He D, Thomas M (1998) Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333.  https://doi.org/10.1023/A:1009673619456 CrossRefGoogle Scholar
  55. Fugini E and Fedeli E (1990) Olive (Olea europaea L.) as an oilseed crop. In Bajaj YPS (ed) Biotechnology in agriculture and forestry 10, Legumes and oilseed crops I, vol 682 Springer, pp 594–641Google Scholar
  56. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gambino G, Gribaudo I, Leopold S et al (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662.  https://doi.org/10.1007/s00299-005-0006-4 CrossRefPubMedGoogle Scholar
  58. Gómez A, López JA, Pintos B et al (2009) Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns. Proteomics 9:4355–4367.  https://doi.org/10.1002/pmic.200900179 CrossRefPubMedGoogle Scholar
  59. Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verriès C, Souquet JM, Mazauric JP, Klein M, Cheynier V, Ageorges A (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150(1):402–415.  https://doi.org/10.1104/pp.109.135624 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Gomez-Garay A, Manzanera J, Pintos-Lopez B (2014) Embryogenesis in oak species. A review. Forest Systems 23(2):191–198. https://doi.org/10.5424/fs/2014232-05829CrossRefGoogle Scholar
  61. Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant–pathogen interactions. Mol Plant-Microbe Interact 21:1015–1026.  https://doi.org/10.1094/MPMI-21-8-1015 CrossRefPubMedGoogle Scholar
  62. Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci 228:3–10.  https://doi.org/10.1016/J.PLANTSCI.2014.03.023 CrossRefPubMedGoogle Scholar
  63. Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, Ben-Ari G, Mercado JA, Pliego-Alfaro F, Lavee S, Samach A (2017) A possible role for flowering locusT-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant. Cell Environ 40:1263–1280.  https://doi.org/10.1111/pce.12922 CrossRefGoogle Scholar
  64. Hartmann HT (1953) Effect of winter chilling on fruitfulness and vegetative growth in the olive. Am Soc Hort Sci 62:184–190Google Scholar
  65. He Y, Wang R, Dai X, Zhao Y (2017) On improving CRISPR for editing plant genes: ribozyme-mediated guide RNA production and fluorescence-based technology for isolating transgene-free mutants generated by CRISPR. Prog Mol Biol Transl Sci 149:151–166.  https://doi.org/10.1016/bs.pmbts.2017.03.012 Google Scholar
  66. Hébert D, Kikkert J, Smith F, Reisch B (1993) Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rep 12:585–589.  https://doi.org/10.1007/BF00233066 CrossRefPubMedGoogle Scholar
  67. Hedrick U (1908) The grapes of New York. J.B. Lyon Co. State Printers, AlbanyGoogle Scholar
  68. Hernández ML, Sicardo MD, Arjona PM, Padilla MN, Garcia-Vico L, Velazquez-Palmero D-V, Perez A, Sanz C, Martínez-Rivas JM (2018) Molecular and biochemical characterization of genes and enzymes involved in virgin olive oil quality. OliveBioteq18, Seville-SpainGoogle Scholar
  69. Hofstetter V, Buyck B, Croll D et al (2012) What if esca disease of grapevine were not a fungal disease? Fungal Divers 54:51–67.  https://doi.org/10.1007/s13225-012-0171-z CrossRefGoogle Scholar
  70. Höll J, Vannozzi A, Czemmel S et al (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25:4135–4149.  https://doi.org/10.1105/tpc.113.117127 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407.  https://doi.org/10.1111/pbi.12055 CrossRefGoogle Scholar
  72. Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121CrossRefGoogle Scholar
  73. Humara J, Martin MS, Parra F, Ordas RJ (1999) Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledonsusing a modified binary vector. Can J For Res 29:1627–1632CrossRefGoogle Scholar
  74. Iaria D, Chiappetta A, Muzzalupo I (2016) De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube. Scientific World J 2016:Article ID 4305252:1–7CrossRefGoogle Scholar
  75. Jafarzadeh-Bajestani M, Khodai-Kalaki M, Motamed N, Noorayin O (2011) Genetic transformation of olive somatic embryos through agrobacterium tumefaciens and regeneration of transgenic plants. Afr J Biotechnol 10(28):5468–5475Google Scholar
  76. Jaillon O, Aury J-M, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467.  https://doi.org/10.1038/nature06148 CrossRefPubMedGoogle Scholar
  77. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pé E, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2017) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468Google Scholar
  78. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239.  https://doi.org/10.1038/nbt.2508 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Jiménez J, López-Vela D, Ruiz-Galea M et al (2013) Embryogenic suspensions of adult cork oak: the first step towards mass propagation. Trees Struct Funct 27:13–23.  https://doi.org/10.1007/s00468-012-0763-y CrossRefGoogle Scholar
  80. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.  https://doi.org/10.1126/science.1225829 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1:14011.  https://doi.org/10.1038/nplants.2014.11 CrossRefPubMedGoogle Scholar
  82. Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biol Res:1–11.  https://doi.org/10.1186/s40659-018-0152-0
  83. Karaagac E, Vargas AM, de Andrés MT et al (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genomes 8:1003–1015.  https://doi.org/10.1007/s11295-012-0480-0 CrossRefGoogle Scholar
  84. Keller M (2010) The science of grapevines: anatomy and physiology, 1st edn. Elsevier Academic Press, BurlingtonGoogle Scholar
  85. Kishor PBK, Sangam S, Amrutha RN, Laximi P, Naidu K, Rao KR, Rao S, Reddy KJ, Theriappon P, Sreenivasula N (2005) Regulation of proline biosynthesis, degredation, uptake and transport in higher plants: its implication in plant growth and abiotic stress tolerance. Curr Sci 88:427–438Google Scholar
  86. Kiss L, Holb IJ, Rossi V et al (2016) Foreword: special issue on fungal grapevine diseases. Eur J Plant Pathol 144:693–694.  https://doi.org/10.1007/s10658-015-0844-z CrossRefGoogle Scholar
  87. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921.  https://doi.org/10.1111/j.1365-313X.2009.04086.x CrossRefPubMedGoogle Scholar
  88. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29.  https://doi.org/10.1186/1746-4811-9-29 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kumar S, Sachdeva S, Bhat KV, Vats S (2018) Plant responses to drought stress: physiological, biochemical and molecular basis In: Biotic and abiotic stress tolerance in plants, pp 1–25Google Scholar
  90. Laimer M (2007) Transgenic Grapevines. Transgenic Plant Journal 1(1):219–227Google Scholar
  91. Lambardi M, Caccavale A, Rugini E, Caricato G (1999) Histological observations on somatic embryos of olive (Olea europaea L.). Acta Hortic 474:67–70CrossRefGoogle Scholar
  92. Leva A, Muleo R, Petruccelli R (1995) Long-term somatic embryogenesis from immature olive cotyledons. J Hortic Sci 70:417–421.  https://doi.org/10.1080/14620316.1995.11515311 CrossRefGoogle Scholar
  93. Leyva-Pérez MO, Jiménez-Ruiz J, Cabanás C G-L, Valverde-Corredor A, Barroso JB, Luque F, Mercado-Blanco J (2018) Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. New Phytologist n.d.217: 671–686 doi:  https://doi.org/10.1111/nph.14833 PubMedCrossRefGoogle Scholar
  94. Li ZT, Dhekney SA, Dutt M, Gray DJ (2008) An improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue Organ Cult 93:311–321.  https://doi.org/10.1007/s11240-008-9378-9 CrossRefGoogle Scholar
  95. Lijavetzky D, Cabezas J, Ibáñez A et al (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424.  https://doi.org/10.1186/1471-2164-8-424 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Locco P, Franks T, Thomas MR (2001) Genetic Transformation of Major Wine Grape Cultivars of Vitis Vinifera L. Transgenic Res 10(2):105–112CrossRefGoogle Scholar
  97. López-Pérez A-J, Velasco L, Pazos-Navarro M, Dabauza M (2008) Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell Tissue Organ Cult 94:189–199.  https://doi.org/10.1007/s11240-008-9404-y CrossRefGoogle Scholar
  98. Loreto F, Bagnoli F, Fineschi S (2009) One species, many terpenes: matching chemical and biological diversity. Trends Plant Sci 14:416–420.  https://doi.org/10.1016/j.tplants.2009.06.003 CrossRefPubMedGoogle Scholar
  99. Loreto F, Pollastri S, Fineschi S, Velikova V (2013) environmental constraints in the Mediterranean area. Environ Exp Bot.  https://doi.org/10.1016/j.envexpbot.2013.09.005 CrossRefGoogle Scholar
  100. Magalhães AP, Verde N, Reis F et al (2016) RNA-Seq and gene network analysis uncover activation of an ABA-dependent Signalosome during the Cork Oak root response to drought. Front Plant Sci 6:1–17.  https://doi.org/10.3389/fpls.2015.01195 CrossRefGoogle Scholar
  101. Maliogka VI, Martelli GP, Fuchs M (2015) Control of viruses infecting grapevine. Adv Virus Res 91:175–227.  https://doi.org/10.1016/BS.AIVIR.2014.11.002 CrossRefPubMedGoogle Scholar
  102. Malnoy M, Viola R, Jung M-H et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1–9.  https://doi.org/10.3389/fpls.2016.01904 CrossRefGoogle Scholar
  103. Mauro MC, Toutain S, Walter B et al (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106.  https://doi.org/10.1016/0168-9452(95)04246-Q CrossRefGoogle Scholar
  104. Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hortic (Amsterdam) 159:88–95.  https://doi.org/10.1016/J.SCIENTA.2013.05.002 CrossRefGoogle Scholar
  105. McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369.  https://doi.org/10.1038/nrg2344 CrossRefPubMedGoogle Scholar
  106. McGovern PE (2003) Ancient wine: the search for the origins of viniculture. Princeton University Press, PrincetonGoogle Scholar
  107. McGovern PE, Glusker DL, Exner LJ, Voigt MM (1996) Neolithic resinated wine. Nature 381:480–481.  https://doi.org/10.1038/381480a0 CrossRefGoogle Scholar
  108. Mencuccini M (1994) Agrobacterium-mediated gene transfer studies for genetic transformation of olive (Olea europaea L.) tissues. In: Proceedings of the VIIIth international congress of plant tissue and cell culture. Florence 12–I 7 June, p 67Google Scholar
  109. Mencuccini M, Micheli M, Angiolillo A, Baldoni L (1997) Trasferimento genico in olivo mediante Agrobacterium tumefaciens. In: Proceedings of the XLI SIGA, p 123Google Scholar
  110. Mencuccini M, Micheli M, Angiolillo A, Baldon L, Frugis G, Mariotti D (1999a) Agrobacterium-mediated DNA transfer in olive callus (Olea europaea L.). Adv Hort Sci 13:25–28Google Scholar
  111. Mencuccini M, Micheli M, Angiolillo A, Baldoni L (1999b) Genetic transformation of olive (Olea europaea L.) using Agrobacterium tumefaciens. Acta Hort. 474:515–519CrossRefGoogle Scholar
  112. Millardet A (1885) Historie des principales varieté et espéces de la vigne. Mason G, ParisGoogle Scholar
  113. Mitrakos K, Alexaki A, Papadimitriou P (1992) Dependence of Olive morphogenesis on callus origin and age. J Plant Physiol 139:269–273.  https://doi.org/10.1016/S0176-1617(11)80335-4 CrossRefGoogle Scholar
  114. Mohanta T, Bashir T, Hashem A et al (2017) Genome editing tools in plants. Genes (Basel) 8:399.  https://doi.org/10.3390/genes8120399 CrossRefGoogle Scholar
  115. Moreira AC, Medeira C, Maia I, Quartin V, Matos MC, Cravador A (2006) Studies on the association of the Quercus suber decline disease with Phytophthora cinnamomi in Portugal. Bol Inf CIDEU 1:31–38Google Scholar
  116. Mougiou N, Trikka F, Trantas E, Ververidis F, Makris A, Argiriou A, Vlachonasiosa KE (2018) Expression of hydroxytyrosol and oleuropein biosynthetic genes are correlated with metabolite accumulation during fruit development in olive, Olea europaea, cv. Koroneiki. Plant Physiol Biochem 128:41–49PubMedCrossRefGoogle Scholar
  117. Muleo R, Morgante M, Velasco R et al (2012) Olive tree genomics. In: Muzzalupo I (ed) Olive germplasm the olive cultivation table olive and olive oil industry in Italy. InTech, Rijeka, pp 133–148Google Scholar
  118. Mullins MG, Tang FCA, Facciotti D (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris SCHEELE and Buds of Vitis vinifera L. Nat Biotechnol 8:1041–1045.  https://doi.org/10.1038/nbt1190-1041 CrossRefGoogle Scholar
  119. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  120. Myles S, Chia J-M, Hurwitz B et al (2010) Rapid genomic characterization of the genus Vitis. PLoS One 5:e8219.  https://doi.org/10.1371/journal.pone.0008219 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Nagamangala Kanchiswamy C, Sargent DJ, Velasco R et al (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64.  https://doi.org/10.1016/j.tibtech.2014.07.003 CrossRefPubMedGoogle Scholar
  122. Nakano M, Hoshino Y, Mii M (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenesmediated transformation of embryogenic calli. J Exp Bot 45:649–656.  https://doi.org/10.1093/jxb/45.5.649 CrossRefGoogle Scholar
  123. Narvaez I, Khayreddine T, Pliego C, Cerezo S, Jiménez-Díaz RM, Trapero-Casas JL, López-Herrera C, Arjona-Girona I, Martín C, Mercado JA, Pliego-Alfaro F (2018a) Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive. Front Plant Sci 9:680.  https://doi.org/10.3389/fpls.2018.00680 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Narvaez I, Pliego C, Fresta L, Jiménez-Díaz RM, Trapero-Casas JL, López-Herrera C, Arjona-López JM, Mercado JA and Pliego-Alfaro F (2018b) Heterologous expression of AtNPR1 gene in olive for increasing fungal tolerance. OliveBioteq18. Seville-SpainGoogle Scholar
  125. Nirala NK, Das DK, Srivastava PS, et al (2010) Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis J Grapevine Res 49:181–187Google Scholar
  126. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949.  https://doi.org/10.1016/j.cell.2014.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Oliveira V, Lauw A, Pereira H (2016) Sensitivity of cork growth to drought events: insights from a 24-year chronology. Clim Change 137:261–274.  https://doi.org/10.1007/s10584-016-1680-7 CrossRefGoogle Scholar
  128. Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var. sylvestris (Miller) Lehr) mature zygotic embryos. Plant Cell Tissue Organ Cult 27:183–187.  https://doi.org/10.1007/BF00041288 CrossRefGoogle Scholar
  129. Osakabe Y, Osakabe K (2017) Genome editing to improve abiotic stress responses in plants. Prog Mol Biol Transl Sci 149:99–109.  https://doi.org/10.1016/bs.pmbts.2017.03.007 Google Scholar
  130. Osakabe Y, Watanabe T, Sugano SS et al (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:1–10.  https://doi.org/10.1038/srep26685 CrossRefGoogle Scholar
  131. Palliotti A, Bongi G (1996) Freezing injury in the olive leaf and effects of mefluidide treatment. J Hort Sci Biotech 71(1):57–63CrossRefGoogle Scholar
  132. Palomo-Ríos E, Cerezo S, Mercado J, Pliego-Alfaro F (2017) Generation and selection of transgenic olive plants. Bio-Protocol 7.  https://doi.org/10.21769/BioProtoc.2611
  133. Parsons J, MacKay J (2018) The theory and applications of CRISPR in plant and tree improvement. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 13.  https://doi.org/10.1079/PAVSNNR201813007
  134. Pereira H (2015) A rationale behind cork properties: a review of structure and chemistry. bioresources.com 10:1–23
  135. Pereira-Leal JB, Abreu IA, Alabaça CS et al (2014) A comprehensive assessment of the transcriptome of Cork oak (Quercus suber) through EST sequencing. BMC Genom 15:1–14.  https://doi.org/10.1186/1471-2164-15-371 CrossRefGoogle Scholar
  136. Pérez M, Bueno MA, Escalona M et al (2013) Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogenic culture proliferation and somatic embryo production. Trees Struct Funct 27:1277–1284.  https://doi.org/10.1007/s00468-013-0876-y CrossRefGoogle Scholar
  137. Pérez M, Cañal MJ, Toorop PE (2015) Expression analysis of epigenetic and abscisic acid-related genes during maturation of Quercus suber somatic embryos. Plant Cell Tissue Organ Cult 121:353–366.  https://doi.org/10.1007/s11240-014-0706-y CrossRefGoogle Scholar
  138. Pérez-Barranco G, Mercado JA, Pliego-Alfaro F, Sánchez-Romero C (2007) Genetic transformation of olive somatic embryos through biolistic. Acta Hortic 738:473–477CrossRefGoogle Scholar
  139. Pérez-Barranco G, Torreblanca R, Padilla IMG et al (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell. Tissue Organ Cult 97:243–251.  https://doi.org/10.1007/s11240-009-9520-3 CrossRefGoogle Scholar
  140. Perl A, Eshdat Y (1998) DNA Transfer and Gene Expression in Transgenic Grapes. Biotechnol Genet Eng Rev 15:365–386.  https://doi.org/10.1080/02648725.1998.10647962 CrossRefGoogle Scholar
  141. Pintos B, Bueno MA, Cuenca B, Manzanera JA (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tissue Organ Cult 95:217–225.  https://doi.org/10.1007/s11240-008-9435-4 CrossRefGoogle Scholar
  142. Pintos B, Manzanera JA, Bueno MA, et al (2009) Acclimation and establishment of cork oak (Quercus suber) somatic embryo-derived plantlets and post-acclimation cork quality test. Acta Hortic 812:431–436.  https://doi.org/10.17660/ActaHortic.2009.812.61
  143. Pires R, Ribeiro A, Cardoso H, Sobral V, Peixe A (2018). Embriogénese somática e organogénese na variedade de oliveira ‘Galega vulgar’. Abstract bokk of the VIII Simpósio Nacional de Olivicultura. Santarém – Portugal, 7–9 junho 2018Google Scholar
  144. Pliego-Alfaro F, Pérez-Barrance G, Sánchez-Romero C, Mercato JA (2005) Genetic transformation of olive somatic embryos through biolistic. Abstracts “International symposium on biotechnology of temperate fruit crops and tropical species, Florida, USA, p 122Google Scholar
  145. Polito VS, McGranahan G, Pinney K, Leslie C (1989) Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications forAgrobacterium-mediated transformation. Plant Cell Rep 8:219–221.  https://doi.org/10.1007/BF00778537 CrossRefPubMedGoogle Scholar
  146. Pritsa TS, Voyiatzis DG (2004) The in vitro morphogenetic capacity of olive embryo explants at different developmental stages, as affected by L-Glutamine, L-Arginine and 2,4-D. J Biol Res 1:55–61Google Scholar
  147. Rallo L, Barranco D, De la Rosa R et al (2008) ‘Chiquitita’ olive. HortSci 43(2):529–531CrossRefGoogle Scholar
  148. Rallo L, Barranco D, Díez CM et al (2018) Strategies for Olive (Olea europaea L.) Breeding: Cultivated Genetic Resources and Crossbreeding. In: Advances in plant breeding strategies: fruits. Springer, Cham, pp 535–600CrossRefGoogle Scholar
  149. Ramos AM, Usié A, Barbosa P et al (2018) The draft genome sequence of cork oak. Sci Data 5:1–12.  https://doi.org/10.1038/sdata.2018.69 CrossRefGoogle Scholar
  150. Rasheed-Depardieu C, Parent C, Crèvecoueur M et al (2012) Identification and expression of nine oak aquaporin genes in the primary root axis of two oak species, Quercus petraea and Quercus robur. PLoS One 7.  https://doi.org/10.1371/journal.pone.0051838 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Ren C, Liu X, Zhang Z et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289.  https://doi.org/10.1038/srep32289
  152. Ridé M, Ridé S, Petit A et al (2000) Characterization of plasmid-borne and chromosome-encoded traits of Agrobacterium biovar 1, 2, and 3 strains from France. Appl Environ Microbiol 66:1818–1825PubMedPubMedCentralCrossRefGoogle Scholar
  153. Robinson J, Harding J, Vouillamoz J (2012) Wine grapes: a complete guide to 1,368 Vine cultivars, including their origins and flavours. Allen Lane, New York. ISBN 978-0062206367.Google Scholar
  154. Rodríguez-Sanz H, Manzanera JA, Solís MT et al (2014) Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Plant Biol 14:1–18.  https://doi.org/10.1186/s12870-014-0224-4 CrossRefGoogle Scholar
  155. Roka L, Koudounasa K, Darasa G, Zoidakisb J, Vlahoub A, Kalaitzisc P, Hatzopoulosa P (2018) Proteome of olive non-glandular trichomes reveals protective protein network against (a)biotic challenge. J Plant Physiol 231:210–218PubMedCrossRefGoogle Scholar
  156. Rugini E (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic (Amsterdam) 24:123–134.  https://doi.org/10.1016/0304-4238(84)90143-2 CrossRefGoogle Scholar
  157. Rugini, E (1986) Olive. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10. Springer, Berlin/Heidelberg/New York, pp 253–267Google Scholar
  158. Rugini E (1988) Somatic embryogenesis and plant regeneration in olive (Olea europaea L.). Plant Cell Tissue Organ Cult 14:207–214.  https://doi.org/10.1007/BF00043411 CrossRefGoogle Scholar
  159. Rugini E (1992) Involvement of polyamines in auxin and Agrobacterium rhizogenes-induced rooting of fruit trees in vitro. J Am Soc Hortic Sci 117:532–536CrossRefGoogle Scholar
  160. Rugini, E. (1995). Somatic embryogenesis in olive (Olea europaea L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol II. Kluwer Academic Publishers, Dordrecht, pp 171–189CrossRefGoogle Scholar
  161. Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) ‘canino’ and ‘moraiolo’. Plant Cell Rep 14:257–260.  https://doi.org/10.1007/BF00233645 CrossRefPubMedGoogle Scholar
  162. Rugini E., Fedeli E (1990) In: Bajaj YPS (ed) Legumes and oilseed crops I. Biotechnology in agriculture and forestry, vol 10. Springer, Berlin/Heidelberg/New York, pp 593–641Google Scholar
  163. Rugini E, Gutiérrez-Pesce P (2006) Genetic improvement of olive. Pomologia Croatica 12:43–74Google Scholar
  164. Rugini E, Silvestri C (2016) Somatic Embryogenesis in Olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris). Humana Press, New York, pp 341–349CrossRefGoogle Scholar
  165. Rugini E, Tarini P (1986) Somatic embryogenesis in olive (Olea europaea L.). In: Moet Hennessy (ed) Proceedings conference fruit tree biotechnology, p.62, Paris-FranceGoogle Scholar
  166. Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D (1991) Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep 10:291–295PubMedCrossRefGoogle Scholar
  167. Rugini E, Pezza A, Muganu M et al (1995) Somatic embryogenesis in olive (Olea europaea L.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 30. Somatic embryogenesis and synthetic seed I. Springer, Berlin, pp 404–414Google Scholar
  168. Rugini E, Gutiérrez-Pesce P, Spampinato PL, Ciarmiello A, D’ambrosio C (1999) New perspective for Biotechnologies in olive breeding: morphogenesis, in vitro selection & gene transformation. Acta Hortic 474:107–110CrossRefGoogle Scholar
  169. Rugini E, Biasi R, Muleo R (2000) Olive (Olea europaea var. sativa) Transformation. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic Publishers, Dordrecht, pp 245–279. Rugini and Pesce 2006Google Scholar
  170. Rugini E, Mencuccini M, Biasi R, Altamura MM (2005) Olive (Olea europea L.). In Jain SM, Gupta PK (eds) Protocol for Somatic Embryogenesis in Woody Plants. Springer, Dordrecht, pp 345–360Google Scholar
  171. Santos Macedo E, Cardoso HG, Hernández A, Peixe AA, Polidoros A, Ferreira A, Cordeiro A, Arnholdt-Schmitt B (2009) Physiological responses and gene diversity indicate olive alternative oxidase (AOX) as a potential source for markers of efficient adventitious root induction. Physiologia Plantarum 137(4):532–552PubMedCrossRefPubMedCentralGoogle Scholar
  172. Saporta R, San Pedro-Galan T, Gisbert Domenech MC (2016) Attempts at grapevine (Vitis vinifera L.) breeding through genetic transformation: The main limiting factors. VITIS 55:173–186. doi:  https://doi.org/10.5073/VITIS.2016.55.173-186
  173. Scanu B, Linaldeddu BT, Franceschini A et al (2013) Occurrence of Phytophthora cinnamomi in cork oak forests in Italy. For Pathol 43:340–343.  https://doi.org/10.1111/efp.12039 CrossRefGoogle Scholar
  174. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204.  https://doi.org/10.1139/b72-026 CrossRefGoogle Scholar
  175. Scorza R, Cordts JM, Gray DJ, et al (1996) Producing Transgenic “Thompson Seedless” Grape (Vitis vinifera L.) Plants. J Amer Soc Hort Sci 121(4):616–619CrossRefGoogle Scholar
  176. Sebastini L, Busconi M (2017) Recent developments in olive (Olea europaea L.) genetics and genomics: applications in taxonomy, varietal identification, traceability and breeding. Plant Cell Rep.  https://doi.org/10.1007/s00299-017-2145-9 PubMedCrossRefGoogle Scholar
  177. Semiz G, Blande JD, Heijari J, Isik K, Niinemets U, Holopainen JK (2012) Manipulation of VOC emissions with methyl jasmonate and carrageenan in the evergreen conifer Pinus sylvestris and evergreen broadleaf Quercus ilex. Plant Biol (Stuttg) 14:57–65.  https://doi.org/10.1111/j.1438-8677.2011.00485.x CrossRefGoogle Scholar
  178. Serrano MS, De Vita P, Fernández-Rebollo P et al (2012) Phytophthora cinnamomi and Pythium spiculum as main agents of Quercus decline in southern Spain and Portugal. IOBC/WPRS Bull 76:97–100Google Scholar
  179. Sezer F, Taskin KM (2017) Molecular characterization of tocopherol biosynthesis genes from Olea europaea (L.) cv. Ayvalık. Turkish J Bot 41:1–10.  https://doi.org/10.3906/bot-1701-41 CrossRefGoogle Scholar
  180. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410.  https://doi.org/10.1038/nprot.2014.157 CrossRefPubMedGoogle Scholar
  181. Shibli RA, Shatnawi M, Abu-Ein A-JK (2001) Somatic embryogenesis and plant recovery from callus of ‘Nabali’ Olive (Olea europea L.). Sci Hortic (Amsterdam) 88:243–256.  https://doi.org/10.1016/S0304-4238(00)00241-7 CrossRefGoogle Scholar
  182. Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch ED, Regnier FE, Bressan RA (1987) Characterization of osmotin. Plant Physiol 85:529–536PubMedPubMedCentralCrossRefGoogle Scholar
  183. Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protoc 1:2019–2025CrossRefGoogle Scholar
  184. Spathelf P, Van Der Maaten E, Van Der Maaten-Theunissen M et al (2014) Climate change impacts in European forests: the expert views of local observers. Ann For Sci 71:131–137.  https://doi.org/10.1007/s13595-013-0280-1 CrossRefGoogle Scholar
  185. Sprink T, Eriksson D, Schiemann J, Hartung F (2016) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493–1506.  https://doi.org/10.1007/s00299-016-1990-2 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Sternberg SH, Redding S, Jinek M et al (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67.  https://doi.org/10.1038/nature13011 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Strobel GA, Nachmias A, Hess WM (1988) Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can J Bot 66:2581–2585CrossRefGoogle Scholar
  188. Teixeira RT, Fortes AM, Bai H et al (2018) Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection. Planta 247:317–338.  https://doi.org/10.1007/s00425-017-2786-5 CrossRefPubMedGoogle Scholar
  189. Terrier N, Torregrosa L, Ageorges A et al (2009) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149:1028–1041.  https://doi.org/10.1104/pp.108.131862 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Titouh K, Vidoy-Mercado I, Pliego C, Barceló-Muñoz A, San Segundo B, Cerezo S, Mercado JA, Pliego-Alfaro F (2014) Agrobacterium-mediated transformation of olive (Olea europaea L.) with an antifungal protein from Aspergillus giganteus, The third international conference of the IUFRO unit 2.09.02: somatic embryogenesis and other vegetative propagation technologies. Woody Plant Production Integrating Genetic and Vegetative Propagation Technologies. Vitoria-Gasteiz, SpainGoogle Scholar
  191. Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. Methods Temp Fruit Breed 5:79–100Google Scholar
  192. Torreblanca R, Palomo-Ríos E, Cerezo S, Mercado JA, Pliego-Alfaro F (2009) Agrobacterium-mediated transformation of olive (Olea europaea L.) Embryogenic cultures. Acta Hort 839:387–392CrossRefGoogle Scholar
  193. Torreblanca R, Cerezo S, Palomo-Rìos E, Marcado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tissue Organ Cult 103:61–69CrossRefGoogle Scholar
  194. Trabelsi EB, Bouzid S, Bouzid M et al (2003) In-vitro regeneration of olive tree by somatic embryogenesis. J Plant Biol 46:173–180.  https://doi.org/10.1007/BF03030446 CrossRefGoogle Scholar
  195. Unver T, Wu Z, Sterck L et al (2017) Genome of wild olive and the evolution of oil biosynthesis. Proc Nat Acad Sci USA 114:E9413–E9422.  https://doi.org/10.1073/pnas.1708621114 CrossRefPubMedGoogle Scholar
  196. Vain P, Keen N, Murillo J, Rathus C, Nemes C, Finer JJ (1993) Development of the Particle Inflow Gun. Plant Cell Tiss Org Cult 33:237–246CrossRefGoogle Scholar
  197. van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022.  https://doi.org/10.1038/hortres.2014.22 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and itsuse in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250PubMedCrossRefGoogle Scholar
  199. Velada I, Grzebelus D, Lousa D, Soares CM, Santos Macedo E, Peixe A, Arnholdt-Schmitt B, Cardoso HG (2018) AOX1-subfamily gene members in Olea europaea cv. “Galega vulgar” – gene characterization and expression of transcripts during IBA-induced in vitro adventitious rooting. Intl J Mol Sci 19(2):597PubMedCentralCrossRefPubMedGoogle Scholar
  200. Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326.  https://doi.org/10.1371/journal.pone.0001326 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) High-efficiency biolistic co-transformation and regeneration of “Chardonnay” (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260.  https://doi.org/10.1007/s00299-003-0682-x PubMedCrossRefGoogle Scholar
  202. Vidal JR, Kikkert JR, Donzelli BD et al (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814.  https://doi.org/10.1007/s00299-006-0132-7 CrossRefPubMedPubMedCentralGoogle Scholar
  203. VIDAL JR, Gomez C, Cutanda MC et al (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16:138–151.  https://doi.org/10.1111/j.1755-0238.2009.00086.x CrossRefGoogle Scholar
  204. Vitulo N, Forcato C, Carpinelli E et al (2014) A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biol 14:99.  https://doi.org/10.1186/1471-2229-14-99 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Vivier MA, Pretorius IS (2000) Genetic improvement of grapevine: tailoring grape varieties for the third millennium. S Afr J Enol Vitic 21:5–26Google Scholar
  206. Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotechnol 20:472–478.  https://doi.org/10.1016/S0167-7799(02)02058-9 CrossRefPubMedGoogle Scholar
  207. Wang Y, Liu X, Ren C et al (2016) Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biol 16:96.  https://doi.org/10.1186/s12870-016-0787-3 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Wang X, Tu M, Wang D et al (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855.  https://doi.org/10.1111/pbi.12832 CrossRefPubMedGoogle Scholar
  209. White FF, Tavlor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transfered DNA regions of the root-inducing plasmid of agrobacterium rhizogenes. J Bacteriol 164:33–44PubMedPubMedCentralGoogle Scholar
  210. Williams JGK, Hanafey MK, Rafalski JA, Tingey SV (1995) Genetic Analysis Using Random Amplified Polymorphic DNA Markers. Recomb DNA Methodol II:849–884.  https://doi.org/10.1016/B978-0-12-765561-1.50061-8 CrossRefGoogle Scholar
  211. Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164.  https://doi.org/10.1038/nbt.3389 CrossRefGoogle Scholar
  212. Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670–676.  https://doi.org/10.1038/nbt.2889 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Yamamoto T, Iketani H, Ieki H et al (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646.  https://doi.org/10.1007/s002999900174 CrossRefPubMedGoogle Scholar
  214. Zhu B, Chen TH, Li PH (1993) Expression of ABA-responsive osmotin-like protein genes during the induction of freezingtolerance in Solanum commersonii. Plant Mol Biol 21:729–735PubMedCrossRefGoogle Scholar
  215. Zhu B, Chen TH, Li PH (1995) Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato. Plant Mol Biol 28:17–26PubMedCrossRefGoogle Scholar
  216. Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a 1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt-stress in transgenic rice. Plant Sci 139:41–48CrossRefGoogle Scholar
  217. Zini E, Raffeiner M, Di Gaspero G et al (2015) Applying a defined set of molecular markers to improve selection of resistant grapevine accessions. Acta Hortic:73–78.  https://doi.org/10.17660/ActaHortic.2015.1082.9

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hélia Cardoso
    • 1
    Email author
  • Andreia Figueiredo
    • 2
  • Susana Serrazina
    • 2
  • Rita Pires
    • 3
  • Augusto Peixe
    • 4
  1. 1.ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação AvançadaUniversidade de Évora – Pólo da MitraÉvoraPortugal
  2. 2.Biosystems & Integrative Sciences Institute (BioISI), Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  3. 3.Departamento de Fitotecnia, Escola de Ciência e TecnologiaUniversidade de Évora – Pólo da MitraÉvoraPortugal
  4. 4.Departamento de Fitotecnia, ICAAM, Escola de Ciência e TecnologiaUniversidade de Évora – Pólo da MitraÉvoraPortugal

Personalised recommendations