Medicinal Plant-Associated Microbes as a Source of Protection and Production of Crops

  • Osama Abdalla Abdelshafy Mohamad
  • Jin-Biao Ma
  • Yong-Hong Liu
  • Li Li
  • Shaimaa Hatab
  • Wen-Jun LiEmail author
Part of the Microorganisms for Sustainability book series (MICRO, volume 15)


Symbiosis research has been undertaken by researchers working independently of one another and often focused on a broad range of symbiotic interactions ranging from bipartite microbial consortia to multicellular hosts and their complex microbial communities. Recent investigations in symbiosis can impact areas such as agriculture sustainability, where a basic understanding of plant-microbe symbiosis will provide foundational information on the increasingly important issue of climate change. In this respect, in this chapter, we provided comments and references to finally establish symbiosis as an overdue central discipline of biological science. The interactions between medicinal plants and beneficial microorganisms, such as some Actinobacteria, Firmicutes, etc., proved the importance of these interactions to both symbionts in terms of enhanced adaptability, survival, and fitness of plants under different environmental stresses.


Environmental microbiology Medicinal plants Endophytes Biofertilizer Biocontrol Bioactive compounds 


  1. Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int J Microbiol 2014:296521PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad P, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703Google Scholar
  3. Arkhipova T, Prinsen E, Veselov S, Martinenko E, Melentiev A, Kudoyarova G (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315CrossRefGoogle Scholar
  4. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  5. Atanasov AG et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bacon C, Hinton D, Snook M (2005) Tentative identification of Bacillus mojavensis antifungal inhibitor. Phytopathology 95:S5Google Scholar
  7. Bafana A (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29:63–74PubMedCrossRefGoogle Scholar
  8. Baker K, Cook RJ (1974) Biological control of plant pathogens. WH Freeman, San Francisco, p 433Google Scholar
  9. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252CrossRefGoogle Scholar
  11. Baugh CL, Escobar B (2007) The genus Bacillus and genus Trichoderma for agricultural bio-augmentation. Rice Farm Mag 1:1–4Google Scholar
  12. Bertalan M et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450. Scholar
  13. Bhuvaneswari S, Madhavan S, Panneerselvam A (2013) Enumeration of endophytic bacteria from Solanum trilobatum L. World J Pharm Res 3:2270–2279Google Scholar
  14. Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol 4:e23PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boyle C, Götz M, Dammann-Tugend U, Schulz B (2001) Endophyte-host interactions III. Local vs. systemic colonization. Symbiosis 31:259–281Google Scholar
  16. Carroll G (2011) Forest endophytes: pattern and process. Can J Bot 73:1316–1324CrossRefGoogle Scholar
  17. Castillo UF et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscansa. Microbiology 148:2675–2685PubMedCrossRefGoogle Scholar
  18. Castillo U et al (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224:183–190PubMedCrossRefGoogle Scholar
  19. Castillo UF et al (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052 FEMS. Microbiol Lett 255:296–300CrossRefGoogle Scholar
  20. Chang CL, Lin Y, Bartolome AP, Chen Y-C, Chiu S-C, Yang W-C (2013) Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid-Based Complement Alternat Med 2013:378657PubMedPubMedCentralGoogle Scholar
  21. Chowdhury SP, Hartmann A, Gao X, Borriss R (2015a) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front Microbiol 6:780PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chowdhury SP et al (2015b) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact 28:984–995PubMedCrossRefGoogle Scholar
  23. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693. Scholar
  24. Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. Am Phytopathol SocGoogle Scholar
  25. Coombs JT, Franco CMM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cushnie TT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44:377–386PubMedPubMedCentralCrossRefGoogle Scholar
  27. Daffonchio D, Hirt H, Berg G (2015) Plant-microbe interactions and water management in arid and saline soils. In: Principles of plant-microbe interactions. Springer, Cham, pp 265–276Google Scholar
  28. Dai C, Yu B, Xu Z, Yuan S (2003) Effect of environmental factors on the growth and fatty acid composition of five endophytic fungi from Sapium sebiferum. Ying Yong Sheng Tai Xue Bao 14:1525–1528PubMedGoogle Scholar
  29. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  30. Deng Y et al (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. Carotovora J Bacteriol 193:2070–2071PubMedCrossRefGoogle Scholar
  31. Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774CrossRefGoogle Scholar
  32. Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105:1139–1147PubMedPubMedCentralCrossRefGoogle Scholar
  33. Droby S (2005) Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. In: I international symposium on natural preservatives in food systems 709, p 45–52Google Scholar
  34. Ebrahim MK, Saleem A-R (2017) Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. J Taibah Univ Sci 11:850–860CrossRefGoogle Scholar
  35. Egamberdieva D, da Silva JAT (2015) Medicinal plants and PGPR: a new frontier for phytochemicals. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 287–303CrossRefGoogle Scholar
  36. Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G (2017a) Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol 8:199PubMedPubMedCentralGoogle Scholar
  37. Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd_Allah EF (2017b) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887PubMedPubMedCentralCrossRefGoogle Scholar
  38. El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8:56–64CrossRefGoogle Scholar
  39. El-Gendy MM, EL-Bondkly AM (2010) Production and genetic improvement of a novel antimycotic agent, saadamycin, against dermatophytes and other clinical fungi from endophytic Streptomyces sp. Hedaya48. J Ind Microbiol Biotechnol 37:831–841CrossRefGoogle Scholar
  40. Erdogan O, Benlioglu K (2010) Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biol Control 53:39–45CrossRefGoogle Scholar
  41. Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327CrossRefGoogle Scholar
  42. Ezra D et al (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp.(MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793CrossRefGoogle Scholar
  43. Fernandes P, Ferreira BS, Cabral JMS (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216PubMedCrossRefGoogle Scholar
  44. Furnkranz M, Lukesch B, Muller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428PubMedCrossRefGoogle Scholar
  45. Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342PubMedPubMedCentralGoogle Scholar
  46. Gasser I et al (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125CrossRefGoogle Scholar
  47. Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289PubMedPubMedCentralCrossRefGoogle Scholar
  48. Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276PubMedCrossRefGoogle Scholar
  49. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142CrossRefGoogle Scholar
  50. Hameeda B, Harini G, Rupela O, Wani S, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242CrossRefGoogle Scholar
  51. Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M (2016) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res Int 2016:1–11CrossRefGoogle Scholar
  52. Horikoshi K (2008) Past, present and future of extremophiles. Extremophiles 12:1–2PubMedCrossRefGoogle Scholar
  53. Hsouna AB, Trigui M, Mansour RB, Jarraya RM, Damak M, Jaoua S (2011) Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int J Food Microbiol 148:66–72PubMedCrossRefGoogle Scholar
  54. Huang B, Lv C, Zhuang P, Zhang H, Fan L (2011) Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L. Plant Biol 13:925–931PubMedCrossRefGoogle Scholar
  55. Igarashi Y (2004) Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica 18:63–66CrossRefGoogle Scholar
  56. Igarashi Y, Miura S-S, Fujita T, Furumai T (2006) Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiot 59:193PubMedCrossRefGoogle Scholar
  57. Igarashi Y et al (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. Nov Bioorg Med Chem Lett 17:3702–3705PubMedCrossRefGoogle Scholar
  58. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766CrossRefGoogle Scholar
  59. James EK, Olivares FL, de Oliveira AL, dos Reis FB Jr, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760PubMedCrossRefGoogle Scholar
  60. James EK et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906PubMedCrossRefGoogle Scholar
  61. Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441PubMedCrossRefGoogle Scholar
  62. Jha Y, Subramanian R (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20:201–207PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jin H et al (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 37:376–385PubMedCrossRefGoogle Scholar
  64. Jošić D, Protolipac K, Starović M, Stojanović S, Pavlović S, Miladinović M, Radović S (2012) Phenazines producing Pseudomonas isolates decrease Alternaria tenuissima growth, pathogenicity and disease incidence on cardoon. Arch Biol Sci 64:1495–1503CrossRefGoogle Scholar
  65. Kaplan D et al (2013) A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. Am J Bot 100:1713–1725PubMedCrossRefGoogle Scholar
  66. Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y (2009) Production of bioactive metabolites by Nocardia levis MK-VL_113. Lett Appl Microbiol 49:484–490PubMedCrossRefGoogle Scholar
  67. Khan AL et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695CrossRefGoogle Scholar
  68. Khatiwora E, Adsul VB, Kulkarni M, Deshpande N, Kashalkar R (2012) Antibacterial activity of dibutyl phthalate: a secondary metabolite isolated from Ipomoea carnea stem. J Pharm Res 5:150–152Google Scholar
  69. Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong Y-S, Lee D (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiot 59:797PubMedCrossRefGoogle Scholar
  70. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307PubMedGoogle Scholar
  71. Knight C, Bowman MJ, Frederick L, Day A, Lee C, Dunlap CA (2018) The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiol Res 216:40–46PubMedCrossRefGoogle Scholar
  72. Krause A, Bischoff B, Miche L, Battistoni F, Reinhold-Hurek B (2011) Exploring the function of alcohol dehydrogenases during the endophytic life of Azoarcus Sp. strain BH72. Mol Plant-Microbe Interact 24:1325–1332PubMedCrossRefGoogle Scholar
  73. Krid S, Triki MA, Gargouri A, Rhouma A (2012) Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Ann Microbiol 62:149–154CrossRefGoogle Scholar
  74. Lacava PT, Li W, Araújo WL, Azevedo JLC, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393PubMedGoogle Scholar
  75. Lemanceau P, Bauer P, Kraemer S, Briat J-F (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535CrossRefGoogle Scholar
  76. Leveau JH, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lewis GP (2005) Legumes of the world. Royal Botanic Gardens, KewGoogle Scholar
  78. Li L et al. (2018) Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111(10): 1735–1748PubMedCrossRefGoogle Scholar
  79. Liarzi O, Bucki P, Miyara SB, Ezra D (2016) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11:e0168437PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lin Z-J, Lu X-M, Zhu T-J, Fang Y-C, Gu Q-Q, Zhu W (2008) GPR12 selections of the metabolites from an endophytic Streptomyces sp. asociated with Cistanches deserticola. Arch Pharm Res 31:1108PubMedCrossRefGoogle Scholar
  81. Liu Y-H et al (2016) Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits 3. Biotech 6:209Google Scholar
  82. Liu Y et al (2017) Endophytic bacteria associated with endangered plant Ferula sinkiangensis KM Shen in an arid land: diversity and plant growth-promoting traits. J Arid Land 9:432–445CrossRefGoogle Scholar
  83. Lu C, Shen Y (2003) A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J Antibiot 56:415–418PubMedCrossRefGoogle Scholar
  84. Lu C, Shen Y (2007) A novel ansamycin, naphthomycin K from Streptomyces sp. J Antibiot 60:649PubMedCrossRefGoogle Scholar
  85. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  86. Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefGoogle Scholar
  87. Ma W et al (2010) The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. J Virol 84:2122–2133PubMedCrossRefGoogle Scholar
  88. Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223PubMedCrossRefGoogle Scholar
  89. Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532PubMedPubMedCentralCrossRefGoogle Scholar
  90. Malfanova N, Lugtenberg BJJ, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there? In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, Wiley, pp 391–403Google Scholar
  91. Maloy OC (1993) Plant disease control: principles and practice. Wiley, New YorkGoogle Scholar
  92. Mandal S, DebMandal M (2016) Chapter 94 – Thyme (Thymus vulgaris L.) oils. In: Preedy VR (ed) Essential oils in food preservation, flavor and safety. Academic, San Diego, pp 825–834CrossRefGoogle Scholar
  93. Mansoor F, Sultana V, Ehteshamul-Haque S (2007) Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39:2113–2119Google Scholar
  94. Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811CrossRefGoogle Scholar
  95. Mohamad OA et al (2018a) Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol 9:924PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mohamad OAA et al (2018b) Halophilic actinobacteria biological activity and potential applications. In: Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Springer, Cham, pp 333–364CrossRefGoogle Scholar
  97. Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698PubMedPubMedCentralGoogle Scholar
  98. Naragani K, Mangamuri U, Muvva V, Poda S, Munaganti R (2016) Antimicrobial potential of Streptomyces cheonanensis VUK-a from mangrove origin. Int J Pharm Pharm Sci 8:53–57Google Scholar
  99. Nautiyal J, Christian M, Parker MG (2013) Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol Metab 24:451–459PubMedCrossRefGoogle Scholar
  100. Nithya V, Halami PM (2012) Novel whole-cell reporter assay for stress-based classification of antibacterial compounds produced by locally isolated Bacillus spp. Indian J Microbiol 52:180–184PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nongkhlaw FM, Joshi SR (2015) Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Countries 9:954–961CrossRefGoogle Scholar
  102. Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20:168–177CrossRefGoogle Scholar
  103. Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pastor-Villaescusa B, Rangel-Huerta OD, Aguilera CM, Gil A (2015) A systematic review of the efficacy of bioactive compounds in cardiovascular disease: carbohydrates, active lipids and nitrogen compounds. Ann Nutr Metab 66:168–181PubMedCrossRefGoogle Scholar
  105. Pedrosa FO et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064PubMedPubMedCentralCrossRefGoogle Scholar
  106. Prasanth Reddy V, Ravi Vital K, Varsha P, Satyam S (2014) Review on Thymus vulgaris traditional uses and pharmacological properties. Med Aromat Plants 3:164Google Scholar
  107. Pujiyanto S, Lestari Y, Suwanto A, Budiarti S, Darusman LK (2012) Alpha-glucosidase inhibitor activity and characterization of endophytic actinomycetes isolated from some Indonesian diabetic medicinal plants. Int J Pharm Pharm Sci 4:327–333Google Scholar
  108. Pullen C et al (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216:162–167PubMedCrossRefGoogle Scholar
  109. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces Camptothecin. J Nat Prod 68:1717–1719PubMedCrossRefGoogle Scholar
  110. Qin S et al (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4:522–531PubMedCrossRefPubMedCentralGoogle Scholar
  111. Quadt-Hallmann A, Hallmann J, Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria. Can J Microbiol 43:254–259CrossRefGoogle Scholar
  112. Radhakrishnan R, Lee I-J (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189PubMedCrossRefGoogle Scholar
  113. Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667PubMedPubMedCentralCrossRefGoogle Scholar
  114. Raio A, Puopolo G, Cimmino A, Danti R, Della Rocca G, Evidente A (2011) Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. Biol Control 58:133–138CrossRefGoogle Scholar
  115. Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 12:e0187412PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24Google Scholar
  117. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedPubMedCentralGoogle Scholar
  118. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443PubMedCrossRefGoogle Scholar
  119. Roncato-Maccari LD et al (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47PubMedCrossRefGoogle Scholar
  120. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefGoogle Scholar
  121. Ryan RP et al (2009) The versatility and adaptation of bacteria from the genus. Nat Rev Microbiol 7:514–525CrossRefGoogle Scholar
  122. Samish Z, Etinger-Tulczynska R (1963) Distribution of bacteria within the tissue of healthy tomatoes. Appl Microbiol 11:7–10PubMedPubMedCentralGoogle Scholar
  123. Sanchez A, Thijs S, Beckers B, Gonzalez Chavez MDC, Weyens N, Carrillo R, Vangronsveld J (2017) Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. 422(1–2):51–66Google Scholar
  124. Sánchez-López AS, Thijs S, Beckers B, González-Chávez MC, Weyens N, Carrillo-González R, Vangronsveld J (2018) Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant Soil 422:51–66CrossRefGoogle Scholar
  125. Santhanam R, Groten K, Meldau DG, Baldwin IT (2014) Analysis of plant-bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous jasmonic acid levels and developmental stages. PLoS One 9:e94710PubMedPubMedCentralCrossRefGoogle Scholar
  126. Saraf M, Pandya U, Thakkar A, Patel P (2013) Evaluation of rhizobacterial isolates for their biocontrol potential of seed borne fungal pathogens of Jatropha curcas L. Int J Innov Res Sci Eng Technol 2:7560–7566Google Scholar
  127. Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450CrossRefGoogle Scholar
  128. Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants “new avenues for phytochemicals.” J Phytol 2(7):91–100Google Scholar
  129. Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6:210PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half third ed. Marcel Dekker, New York/Basel, pp 887–917CrossRefGoogle Scholar
  131. Singh JS (2013) Plant growth promoting rhizobacteria. Resonance 18:275–281CrossRefGoogle Scholar
  132. Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44PubMedCrossRefGoogle Scholar
  133. Song S-Q, Otkur M, Zhang Z-D, Tang Q-Y (1992) Isolation and characterization of endophytic microorganisms in Glaycyrrhiza inflat Bat. from Xinjiang. MicrobiologyGoogle Scholar
  134. Song M, Yun HY, Kim YH (2014) Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 38:136–145PubMedCrossRefGoogle Scholar
  135. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedPubMedCentralCrossRefGoogle Scholar
  136. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950PubMedCrossRefGoogle Scholar
  137. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268PubMedCrossRefGoogle Scholar
  138. Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263CrossRefGoogle Scholar
  139. Suresh A, Pallavi P, Srinivas P, Kumar VP, Reddy SR (2010) Plant growth promoting activities of fluorescent pseudomonads associated with some crop plants. Afr J Microbiol Res 4:1491–1494Google Scholar
  140. Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109:635–639PubMedCrossRefGoogle Scholar
  141. Suzuki T, Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2005) Visualization of infection of an endophytic actinomycete Streptomyces galbus in leaves of tissue-cultured. Rhododendron 19:7–12Google Scholar
  142. Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695PubMedCrossRefGoogle Scholar
  143. Taechowisan T, Wanbanjob A, Tuntiwachwuttikul P, Taylor WC (2006) Identification of Streptomyces sp. Tc022, an endophyte in Alpinia galanga, and the isolation of actinomycin D. Ann Microbiol 56:113–117CrossRefGoogle Scholar
  144. Taechowisan T, Lu C, Shen Y, Lumyong S (2007) Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J Cancer Res Ther 3:86PubMedCrossRefGoogle Scholar
  145. Taghavi S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  146. Taghavi S et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tank N, Saraf M (2003) Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella foenum-graecum. Indian J Microbiol 43:37–40Google Scholar
  148. Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300PubMedPubMedCentralCrossRefGoogle Scholar
  149. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  150. Vieira ML et al (2011) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell.(Solanaceae). Can J Microbiol 58:54–66PubMedCrossRefGoogle Scholar
  151. Wahyudi AT, Astuti RP, Widyawati A, Mery A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3:34–40Google Scholar
  152. Wang P, Kong F, Wei J, Wang Y, Wang W, Hong K, Zhu W (2014) Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Mar Drugs 12:477–490PubMedPubMedCentralCrossRefGoogle Scholar
  153. Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wu L, Han T, Li W, Jia M, Xue L, Rahman K, Qin L (2013) Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China. Curr Microbiol 66:40–48PubMedCrossRefGoogle Scholar
  155. Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen S-E (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43:632–642CrossRefGoogle Scholar
  156. Yi H-S, Yang JW, Ryu C-M (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122PubMedPubMedCentralCrossRefGoogle Scholar
  157. Young J (1992) Phylogenetic classification of nitrogen-fixing organisms. Biol Nitrogen Fixation 1544:43–86Google Scholar
  158. Zachow C, Fatehi J, Cardinale M, Tilcher R, Berg G (2010) Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol Ecol 74:124–135PubMedCrossRefGoogle Scholar
  159. Zhang S, Qi-Yong Z (2007) Isolation and characterization of endophytic microorganisms in Glaycyrrhiza inflat bat. from Xinjiang. J Microbiol 5:014Google Scholar
  160. Zhang J, Wang J-D, Liu C-X, Yuan J-H, Wang X-J, Xiang W-S (2014) A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat Prod Res 28:431–437PubMedCrossRefGoogle Scholar
  161. Zhou H, Yang Y, Peng T, Li W, Zhao L, Xu L, Ding Z (2014) Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat Prod Res 28:265–267PubMedCrossRefGoogle Scholar
  162. Zinniel DK et al (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Osama Abdalla Abdelshafy Mohamad
    • 1
    • 2
  • Jin-Biao Ma
    • 1
  • Yong-Hong Liu
    • 1
  • Li Li
    • 1
  • Shaimaa Hatab
    • 3
  • Wen-Jun Li
    • 1
    • 4
    Email author
  1. 1.Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  2. 2.Department of Biological, Marine Sciences, and Environmental Agriculture, Institute for Post Graduate Environmental StudiesArish UniversityAl-ArishEgypt
  3. 3.Department of Food Science and Technology, College of Environmental Agricultural SciencesArish UniversityEl-ArishEgypt
  4. 4.State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations