Advertisement

Signal Processing Applications of Charge-Coupled Devices

  • Suhash Chandra Dutta RoyEmail author
Chapter

Abstract

The charge-coupled device, first disclosed in the Bell System Technical Journal in 1970, is an analog, sampled data delay line and has made a significant impact in the field of signal processing. In this chapter, a brief introduction to the device is followed by the considerations, which make it so important and convenient in signal processing applications. A number of specific applications are outlined and their advantages and limitations are briefly discussed. In particular, the effect of the most important limiting factor, namely, charge-transfer inefficiency is discussed in some detail and several methods of compensation are outlined. The chapter concludes with an indication of the work being done at IIT Delhi on the various aspects relating to theory, fabrication and signal processing applications of the device.

Keywords

Charge-coupled devices Signal processing Charge-transfer inefficiency Transversal filters Spectral analysis 

References

  1. 1.
    J.M.L. Janssen, Discontinuous low-frequency delay line with continuously-variable delay. Nature 169, 148–149 (1952)CrossRefGoogle Scholar
  2. 2.
    G. Kraus, Analog Speicherketle: Eine neuartige Schaltung zum Speichem und Verzoegern von Signalen. Electron. Lett. 3, 544–546 (1967)CrossRefGoogle Scholar
  3. 3.
    F.L.J. Sangster, The bucket brigade delay line, a shift register for analog signals. Philips Tech. Rev. 31, 97–110 (1970)Google Scholar
  4. 4.
    W.S. Boyle, G.E. Smith, Charge-coupled semiconductor devices. Bell Syst. Tech. J. 49, 587–593 (1970)CrossRefGoogle Scholar
  5. 5.
    M.F. Tompsett, G.F. Amelio, G.E. Smith, Charge coupled 8-bit shift register. Appl. Phys. Lett. 17, 111–115 (1970)CrossRefGoogle Scholar
  6. 6.
    M.F. Tompsett, W.J. Bertram, D.A. Sealer, C.H. Sequin, Charge-coupling improves its image, challenging video camera tubes. Electronics 46, 162–168 (1973)Google Scholar
  7. 7.
    M.F. Tompsett, G.F. Amelio, W.J. Bertram, R.R. Buckley, W.J. Mc Namara, J.C. Mickelsen, D.A. Sealer, Charge-coupled imaging devices: experimental results. IEEE Trans. ED-18, 992–996 (1971)Google Scholar
  8. 8.
    L.J.M. Esser, The peristaltic charge-coupled device for high speed charge transfer. ISSCC Dig. Tech. Papers 28–29 (1974)Google Scholar
  9. 9.
    M.P. Singh, D.R. Lamb, P.C.T. Roberts, Effect of signal and fat zero size on the performance of 3-phase CCD shift registers. Proc. IEE. 122, 693–696 (1975)Google Scholar
  10. 10.
    C.K. Kim, M. Lenzlinger, Charge-transfer in charge-coupled devices. J. Appl. Phys. 42, 3586–3594 (1971)CrossRefGoogle Scholar
  11. 11.
    J.E. Carnes, W.F. Kosonocky, Fast interface state losses in charge-coupled devices. Appl. Phys. Lett. 20, 261–263 (1972)CrossRefGoogle Scholar
  12. 12.
    M.F. Tompsett, The quantitative effects of interface states on the performance of charge-coupled devices. IEEE Trans. ED-20, 45–55 (1973)Google Scholar
  13. 13.
    J.E. Carnes, W.F. Kosonocky, E.G. Ramberg, Drift-aiding fringing fields in charge-coupled devices. IEEE J. Solid State Circuits SC-6, 322–326 (1971)Google Scholar
  14. 14.
    R.J. Strain, N.L. Shryer, A nonlinear diffusion analysis of charge-coupled device transfer. Bell Syst. Tech. J. 50, 1721–1740 (1971)CrossRefGoogle Scholar
  15. 15.
    L.G. Heller, W.H. Chang, A.W. Lo, A model of charge transfer in bucket-brigade and charge-coupled devices. IBM J. Res. Dev. 16, 184–187 (1972)CrossRefGoogle Scholar
  16. 16.
    H.S. Lee, L.G. Heller, Charge-control method of charge-coupled device-transfer analysis. IEEE Trans. ED-19, 1270–1279 (1972)Google Scholar
  17. 17.
    W.F. Kosononocky, J.E. Carses, Two-phase charge coupled devices with overlapping polysilicon and aluminium gates. RCA Rev. 34, 164–202 (1973)Google Scholar
  18. 18.
    M.A. White, D.R. Lampe, F.C. Blaha, I.A. Mack, Characterisation of surface channel CCD image arrays at low light levels. IEEE J. Solid-State Circuits SC-9, 1-D (See also Ref. 18 for correlated double sampling.) (1974)Google Scholar
  19. 19.
    R.W. Broderson, S.P. Emmons, Noise in buried channel charge-coupled devices. IEEE J. Solid State Circuits SC-11, 147–155 (1976)Google Scholar
  20. 20.
    D.D. Wen, Design and operation of a floating-gate amplifier. IEEE J. Solid State Circuits SC-9, 410–414 (1974)Google Scholar
  21. 21.
    G.F. Vanstosf, J.B.G. Roberts, A.E. Long, The measurement of the charge residual for C. C. D. transfer using frequency and impulse responses. Solid-State Electron. 17, 889–895 (1974)CrossRefGoogle Scholar
  22. 22.
    M.F. Tompsett, B.B. Kosicki, D. Kahg, Measurements of transfer inefficiency of 250-element undercut isolated charge-coupled devices. Bell Syst. Tech. J. 52, 1–7 (1973)CrossRefGoogle Scholar
  23. 23.
    R.W. Broderson, D.D. Buss, A.F. Tasch Jr., Experimental characterisation of transfer efficiency in charge-coupled devices. IEEE Trans. ED-22, 40–46 (1975)Google Scholar
  24. 24.
    P.A. Levine, Measurement of transfer efficiency by use of feedback to increase the effective number of transfers. IEEE J. Solid-State Circuits SC-8, 104–108 (1973)Google Scholar
  25. 25.
    S.C. Dutta Roy, V.G. Das, Pre-distortion technique for the measurement of transfer inefficiency of charge transfer devices. Proc. IEEE 66, 601–602 (1978)CrossRefGoogle Scholar
  26. 26.
    J.M. Caywood, D.D. Buss, Frequency response of a multiplexed charge-transfer delay line. IEEE J. Solid-State Circuits SC-9, 310–311 (1974)Google Scholar
  27. 27.
    S.C. Dutta Roy, On the frequency response of a multiplexed charge-transfer delay line. Electron. Lett. 12(7), 280–281 (1976). Erratum in 12, 391 (1976)Google Scholar
  28. 28.
    R.C. Tozer, G.S. Honson, Reduction of high-level nonlinear smearing in C.C.D.s. Electron. Lett. 12, 355–356 (1976)Google Scholar
  29. 29.
    D.C. Cooper, E.H. Darlington, S.M. Pettord, J.B.G. Roberts, Reducing the effect of charge-transfer inefficiency in a C.C.D. video integrator. Electron. Lett. 11, 384–385 (1975)Google Scholar
  30. 30.
    J. Mavor, M.C. Davie, P.B. Denyer, Techniques for increasing the effective charge-transfer efficiency of tapped C. C. D. registers. Electron. Lett. 13, 31–33 (1977)CrossRefGoogle Scholar
  31. 31.
    L. Boonstra, F.I.J. Sangster, Progress on bucket brigade charge-transfer devices. ISSCC Dig. Tech. Papers 15, 140–144 (1972)Google Scholar
  32. 32.
    K.K. Thorbner, Optimum linear filtering for charge transfer devices. IEEE J. Solid-State Circuits SC-9, 285–291 (1974)Google Scholar
  33. 33.
    S.C. Dutta Roy, R.K. Arora, Exact circuit design using inefficient C.T.D.s. Electron. Lett. 12, 18–19 (1976)Google Scholar
  34. 34.
    S.C. Durra Roy, V.G. Das, On exact compensation of transfer inefficiency in a charge-transfer delay line. Electron. Lett. 14, 115–116 (1978)Google Scholar
  35. 35.
    H.E. Kallman, Transversal filters. Proc. IRE 7, 302–310 (1940)CrossRefGoogle Scholar
  36. 36.
    D.D. Buss, D.R. Collins, W.H. Bailey, C.R. Reeves, Transversal filtering using charge-transfer devices. IEEE J. Solid-State Circuits SC-8, 138–146 (1973)Google Scholar
  37. 37.
    R.D. Baertsch, W.E. Engeler, H.S. Goldberg, C.M. Puckbite, J.J. Tiemnn, The design and operation of practical charge-transfer transversal filters. IEEE Trans. ED-23, 133–141 (1976)Google Scholar
  38. 38.
    A.A. Ibrahim, G.J. Hupe, L.P. Sellars, Multiple filter characteristics using a single CCD structure, in Proceedings of the 1975 International Conference on the Applications of Charge Coupled Devices, October (1975), pp. 245–249Google Scholar
  39. 39.
    D.D. Buss, W.H. Bailey, J.D. Holmes, L.R. Hitb, Charge transfer device transversal filters for communication systems. Microelectronics 7, 46–53 (1975)Google Scholar
  40. 40.
    D.D. Buss, R.W. Brodbrsen, C.R. Hewes, A.F. Tasch Jr., Communication applications of CCD transversal filters. IEEE Natl. Telecom. Conf. Rec. 1, 1–5 (1975)Google Scholar
  41. 41.
    D.D. Buss, C.R. Reeves, W.H. Bailey, D.R. Collins, Charge-transfer devices in frequency filtering, in Proceedings of the 26th Annual Symposium on Frequency Control, June (1972), pp. 171–179Google Scholar
  42. 42.
    D.D. Buss, W.H. Bailey, Applications of charge transfer devices to communications, in Proceedings of the CCD Applications Conference, San Diego, September (1973), pp. 83–93Google Scholar
  43. 43.
    G.P. Weckler, A tapped analog-delay for sampled-data signal processing-PETICON Application Note No. 105 (1975)Google Scholar
  44. 44.
    R.W. Brodersen, C.R. Hewes, D.D. Buss, Spectral filtering and Fourier analysis using CCD’s, in Presented at IEEE International Symposium on Circuits and Systems, Massachusetts, April (1975)Google Scholar
  45. 45.
    A.A. Ibrahim, L. Sellars, CCD’s for transversal filter applications, in Technical Digest on IEEE International Electron Devices Meeting, Washington, December (1974), pp. 240–243Google Scholar
  46. 46.
    T. Foxall, A.A. Ibrahim, G.J. Hupe, Double-split electrode transversal filter. Electron. Lett. 13, 323–324 (1977)CrossRefGoogle Scholar
  47. 47.
    P.B. Denyer, J. Mavor, Design of CCD delay lines with floating-gate taps. IEEE J. Solid-State Circuit 1, 121–129 (1977)Google Scholar
  48. 48.
    J. Mavor, P.B. Denyer, Design and development of CCD programmable transversal filters. IEE J. Electron. Circuits Syst. 2, 1–8 (1978)CrossRefGoogle Scholar
  49. 49.
    A.O. Oppenhcim, R.W. Schafer, Digital Signal Processing (Prentice Hall, Inc., Englewood Cliffs, NJ, 1975)Google Scholar
  50. 50.
    C.R. Hewes, R.W. Brodbrsen, D.D. Buss, Frequency filtering using change-coupled devices, in Proceedings of 29th Annual Frequency Control Symposium, May (1975)Google Scholar
  51. 51.
    R.W. Brodersen, C.R. Hewes, D.D. Buss, A 500-stage CCD transversal filter for spectral analysis. IEEE J. Solid-State Circuits SC-11, 75–83 (1976)Google Scholar
  52. 52.
    D.R. Collins, W.H. Bailey, W.M. Gosney, D.D. Buss, Charge-coupled device analog matched filters. Electron. Lett. 8, 328–329 (1972)CrossRefGoogle Scholar
  53. 53.
    A. Chowaniec, G.S. Hobson, A wide-band quadrature phasing system using charge-transfer devices. Solid-State Electron. 19, 201–207 (1976)CrossRefGoogle Scholar
  54. 54.
    R.D. Melen, J.D. Schott, J.T. Walker, J.D. Meindl, CCD dynamically focussed lenses for ultrasonic imaging systems, in Proceedings of CCD (1975), pp. 165–171Google Scholar
  55. 55.
    J. Carver, G.S. Hobson, Interference rejection filter using charge-coupled devices. Electron. Lett. 13, 732–733 (1977)CrossRefGoogle Scholar
  56. 56.
    J.W. Arthur, J. Mavor, C.F.N. Cowan, Novel linear regression analyser using analog CCD. Electron. Lett. 13, 751–753 (1977)CrossRefGoogle Scholar
  57. 57.
    T.P. Pulford, A.H. James, Radar display system using CCD for time expansion. Electron. Lett. 13, 700–701 (1977)CrossRefGoogle Scholar
  58. 58.
    F.L.J. Sangster, K. Teer, Bucket-brigade electronics-new possibilities for delay, time-axis conversion and scanning. IEEE J. Solid-State Circuits SC-4, 131–136 (1969)Google Scholar
  59. 59.
    T.A. Zimmerman, C.S. Miller, The application of charge-coupled devices to digital-signal processing, in International Communications Conference, San Franscisco, June (1975)Google Scholar
  60. 60.
    D.A. Scaler, C.H. Sequin, A.M. Mohsen, M.F. Tompsett, Design and characterisation of charge coupled devices for analog signal processing, in International Communications Conference, San Franscisco, June (1975)Google Scholar
  61. 61.
    A Programmable Binary-Analog Correlator-Reticon Application Note No. 106Google Scholar
  62. 62.
    G.S. Hobson, Charge-coupled devices. Proc. IEE 124, 925–945 (1977)Google Scholar
  63. 63.
    D.D. Buss, W.H. Bailey, A.F. Tash Jr., Signal processing applications of charge-coupled devices, in Proceedings of CCD 1974 Conference (University of Edinburgh, 1974)Google Scholar
  64. 64.
    D.D. Buss, W.H. Bailey, D.R. Collins, Analysis and applications of analog CCD circuits, in Proceedings of the International Symposium on Circuit Theory, Toronto, April (1973), pp. 3–7Google Scholar
  65. 65.
    D.D. Buss, W.H. Bailey, R.W. Broderson, C.R. Hewes, Signal processing applications of charge coupled devices. 1974 WESCON Professional Program, Session 2 (1974)Google Scholar
  66. 66.
    J.A. Sekula, P.R. Prince, C.S. Wank, Non-recursive matched filters using charge-coupled devices, in Technical Digest on IEEE International Electron Devices Meeting, Washington, December (1974), pp. 244–247Google Scholar
  67. 67.
    D.D. Buss, W.H. Bailey, L.R. Hite, Spread-spectrum communications using charge transfer devices, in Proceedings of 1973 Symposium on Spread Spectrum Communications, San Diego, California, March (1973), pp. 83–92Google Scholar
  68. 68.
    J.E. Cooley, J.W. Tukey, An algorithm for the machine computation of complex fourier series. Math. Comput. 19, 297–301 (1965)CrossRefGoogle Scholar
  69. 69.
    L.I. Bluestein, A linear filtering approach to the computation of the discrete fourier transform. NEREM Rec. 218–219 (1968)Google Scholar
  70. 70.
    B. Wardrop, E. Bull, A discrete fourier transform processor using charge-coupled devices. Marconi Rev. 40, 204 (First Quarter) (1977)Google Scholar
  71. 71.
    IEEE J. Solid-State Circuits, Special Issue on Analog Circuits, SC-12 (1977) Google Scholar
  72. 72.
    M.A. Jack, D.G. Park, P.M. Grant, CCD spectrum analyser using prime transform algorithm. Electron. Lett. 13, 431–432 (1977)CrossRefGoogle Scholar
  73. 73.
    L.R. Rabiner, R.W. Schaffer, C.M. Radar, The chirp-Z-transform algorithm and its application. Bell Syst. Tech. J. 48, 1249–1292 (1969)MathSciNetCrossRefGoogle Scholar
  74. 74.
    D.D. Buss, R.L. Yeenkant, R.W. Brodersen, C.R. Hewes, Comparison between the CCD CZT and the digital FFT, in Proceedings of CCD, 1975, San Diego, October (1975), pp. 267–281Google Scholar
  75. 75.
    J.S. Seeks, J.D. Jackson, G.R. Adams, Spectrum analysis with a CCD delay line. Electron. Lett. 13, 738–739 (1977)CrossRefGoogle Scholar
  76. 76.
    J.H. Mcclellan, T.W. Parks, L.R. Rabiner, A computer program for designing optimum FIR linear phase digital filters. IEEE Trans. AU-21, 506–526 (1973)Google Scholar
  77. 77.
    W.J. Butler, W.E. Engeler, H.S. Goldberg, C.M. Pucketie, H. Lobenstein, Charge transfer analog memories for radar and ECM systems. IEEE Trans. ED-23, 161–168 (1976)Google Scholar
  78. 78.
    W.J. Butler, C.M. Puckett, N.C. Giltinger, An experimental TV ghost suppressor circuit using charge transfer devices. IEEE J. Solid-State Circuits SC-10, 247–249 (1975)Google Scholar
  79. 79.
    J.B.G. Roberts, E. James, K.A. Roche, Moving target indicator recursive radar filter using bucket brigade devices. Electron. Lett. 9, 89–90 (1973)CrossRefGoogle Scholar
  80. 80.
    J.E. Bounden, M.J. Tomlinson, CCD Chebyshev filter for radar MTI applications. Electron. Lett. 10, 89–90 (1974)CrossRefGoogle Scholar
  81. 81.
    J.B.G. Roberts, R. James, D.V. Mccaughan, R.F. Simons, A processor for pulse-doppler radar. IEEE J. Solid-State Circuits SC-11, 100–104 (1976)Google Scholar
  82. 82.
    D.D. Buss, W.H. Bailey, M.M. Whatley, R.G. Brodersen, Application of CCDs to radar signal processing, in Northeast Electronics Research and Engineering Meeting, Part 4 (1974), pp. 83–98Google Scholar
  83. 83.
    B. Wardrop, E. Bull, Application of CCD to MTI filters. Marconi Rev. (Fourth Quarter) (1976)Google Scholar
  84. 84.
    D.F. Barbe, W.D. Baker, K.L. Davis, Signal processing with charge-coupled devices. IEEE J. Solid-State Circuits SC-13, 34–51 (1978)Google Scholar
  85. 85.
    R.A. Haken, J.D.E. Beynon, I.M. Baker, P.C.T. Roberts, Charge-coupled structures with self-aligned sub-micron gaps. IEEE Trans. ED-22, 289–293 (1975) Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations