Phytochemicals as Bioenhancers

  • Madhumita Roy
  • Amitava Datta


In the previous chapter, we have learned about absorption of drugs. Bioavailability is somewhat related to absorption. In pharmacology this is defined as a category of absorption, the fraction of the given dosage of drug which remains unchanged and goes to the systemic circulation. Absorption of drugs in general and bioavailability in particular are crucial issues in therapy. We will discuss bioavailability of phytochemicals in details in this chapter, along with the factors that influence bioavailability, the processes that improve bioavailability, and the phytochemicals that act as important bioenhancers, agents that improve the bioavailability of drugs.


  1. 1.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular biology of the cell, 4th edn. (Garland Science/The Lipid Bilayer, New York, 2002).
  2. 2.
    A.R. Annamalai, R. Manavalan, Effects of Trikatu and its individual components and piperine on gastrointestinal tracts: Trikatu a bioavailable enhancer. Ind. Drugs 27(12), 595–604 (1989)Google Scholar
  3. 3.
    C.K. Atal, R.K. Dubey, J. Singh, Biochemical basis of enhanced drug bioavailability by piperine: Evidence that piperine is a potent inhibitor of drug metabolism. J. Pharmacol. Exp. Therap. 232, 258–262 (1985)Google Scholar
  4. 4.
    S.I.F. Badawy, M.M. Ghorab, C.M. Adeyeye, Characterization and bioavailability of danazolhydroxypropyl-β-cyclodextrin coprecipitates. Int. J. Pharm. 128(1–2), 45–54 (1996)CrossRefGoogle Scholar
  5. 5.
    S. Bajad, K.S. Bedi, A.K. Singla, R.K. Johri, Piperine inhibits gastric emptying and gastrointestinal transit in rats and mice. Planta Med. 67, 176–179 (2001)CrossRefGoogle Scholar
  6. 6.
    D. Brahmbhatt, Bioadhesive drug delivery systems: Overview and recent advances. Int. J. Chem. Life Sci. 6(3), 2016–2024 (2017)CrossRefGoogle Scholar
  7. 7.
    R. Censi, P.D. Martino, Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 20, 18759–18776 (2015)CrossRefGoogle Scholar
  8. 8.
    S.A. Chavhan, S.A. Shinde, H.N. Gupta, Natural bioenhancers. Int. J. Pharm. Sci. Res. 3(1), 29–37 (2018)Google Scholar
  9. 9.
    Y.A. Cho, W. Lee, J.S. Choi, Effects of curcumin on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen, in rats: Possible role of CYP3A4 and P-glycoprotein inhibition by curcumin. Pharmazie 67, 124–130 (2012)PubMedGoogle Scholar
  10. 10.
    P. Crowley, L. Martini, Optimising drug delivery: The challenges and opportunities. ONDrug Deliv. 59, 4–11 (2015)Google Scholar
  11. 11.
    S. De Iudicibus, A. De Pellegrin, G. Stocco, F. Bartoli, R. Bussani, G. Decorti, ABCB1 gene polymorphisms and expression of P-glycoprotein and long-term prognosis in colorectal cancer. Anticancer Res. 28(6B), 3921–3928 (2008)PubMedGoogle Scholar
  12. 12.
    S.M. Dizaj, Z. Vazifehasl, S. Salatin, K. Adibkia, Y. Javadzadeh, Nanosizing of drugs: Effect on dissolution rate. Res. Pharm. Sci. 10(2), 95–108 (2015)PubMedPubMedCentralGoogle Scholar
  13. 13.
    G.B. Dudhatra, S.K. Mody, M.M. Awale, H.B. Patel, C.M. Modi, A. Kumar, D.R. Kamani, B.N. Chauhan, A comprehensive review on Pharmacotherapeutics of herbal bioenhancers. Sci. World J. 2012, 637953 (2012)CrossRefGoogle Scholar
  14. 14.
    I. Elsayed, A. Ahmed, A. Ahmed, H. Elshafeey, Nanosizing of a poorly soluble drug: Technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int. J. Nanomedicine 9(1), 2943–2953 (2014)PubMedPubMedCentralGoogle Scholar
  15. 15.
    R.H. Engel, S.J. Riggi, M.J. Fahrenbach, Insulin: Intestinal absorption as water-in-oil-in-water emulsions. Nature 219, 856–857 (1968)CrossRefGoogle Scholar
  16. 16.
    M.E. Goldsmith, J.M. Gudas, E. Schneider, K.H. Cowan, Wild type p53 stimulates expression from the human multidrug resistance promoter in a p53-negative cell line. J. Biol. Chem. 270(4), 1894–1898 (1995)CrossRefGoogle Scholar
  17. 17.
    J.P. Griffin, The Textbook of Pharmaceutical Medicine, 6th edn. (BMJ Books/Wiley-Blackwell, New Jersey, 2013)CrossRefGoogle Scholar
  18. 18.
    R. Gupta, K. Kesarwani, Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed. 3(4), 253–266 (2013)PubMedPubMedCentralGoogle Scholar
  19. 19.
    S. Gupta, R. Kesarla, A. Omri, Formulation strategies to improve, the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm 2013, 1–16 (2013)., Article ID 848043Google Scholar
  20. 20.
    G. Jain, U.K. Patil, Strategies for enhancement of bioavailability of medicinal agents with natural products. Int. J. Pharm. Sci. Res. 6(12), 5315–5324 (2015)Google Scholar
  21. 21.
    S. Javed, W. Ahsan, K. Kohli, The concept of bioenhancers in bioavailability enhancement of drugs – a patent review. J. Sci. Lett 1(3), 143–165 (2016)Google Scholar
  22. 22.
    J. Jin, L. Zhu, M. Chen, H. Xu, H. Wang, X. Feng, X. Zhu, Q. Zhou, The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence 9, 923–942 (2015)PubMedPubMedCentralGoogle Scholar
  23. 23.
    R.L. Juliano, V. Ling, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455(1), 152–162 (1976)CrossRefGoogle Scholar
  24. 24.
    K. Kesarwani, R. Gupta, Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed. 3(4), 253–266 (2013)CrossRefGoogle Scholar
  25. 25.
    S.P.S. Khanuja, J.S. Arya, T. Santakumar, D. Saikia, H. Kaur, Nitrile glycoside useful as a bioenhancer of drugs and nutrients, process of its isolation from Moringa oleifera. U.S. Patent US 6858588 (2005)Google Scholar
  26. 26.
    J.D. Lambert, S. Kwon, J. Ju, M. Bose, M.-J. Lee, J. Hong, X. Hao, C.S. Yang, Effect of genistein on the bioavailability and intestinal cancer chemopreventive activity of (−)-epigallocatechin-3-gallate. Carcinogenesis 29(10), 2019–2024 (2008)CrossRefGoogle Scholar
  27. 27.
    X. Li, L. Gu, Y. Xu, Y. Wang, Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behaviour in rats. Drug Dev. Ind. Pharm. 35, 827–833 (2009)CrossRefGoogle Scholar
  28. 28.
    C.A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44(1), 235–249 (2000)CrossRefGoogle Scholar
  29. 29.
    A. Lutful, P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7, 27–34 (2013)Google Scholar
  30. 30.
    M. Majeed, V. Badmaev, R. Rajendran, Use of piperine to increase the bioavailability of nutritional compounds. United States Patent, Number 5536506 (1995)Google Scholar
  31. 31.
    A. Mishra, R. Panola, A.C. Rana, Microemulsions: As drug delivery system. J. Sci. Innov. Res. 3(4), 467–474 (2014)Google Scholar
  32. 32.
    J. Möschwitzer, Particle size reduction technologies in the pharmaceutical development process. Am. Pharm. Rev. 2010, 54–59 (2010)Google Scholar
  33. 33.
    N. Naseri, H. Valizadeh, P. Zakeri-Milani, Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 5(3), 305–313 (2015)CrossRefGoogle Scholar
  34. 34.
    R.J. Nijveldt, E.V. Nood, D.E. van Hoorn, P.G. Boelens, K. Norren, P.A. van Leeuwen, Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74, 418–425 (2001)CrossRefGoogle Scholar
  35. 35.
    H.M. Patel, B.E. Ryman, Oral administration of insulin by encapsulation within liposomes. FEBS Lett. 62, 60–63 (1976)CrossRefGoogle Scholar
  36. 36.
    M.J. Patel, S.S. Patel, N.M. Patel, M.M. Patel, A self-microemulsifying drug delivery system (SMEDDS). Int. J. Pharm. Sci. Rev. Res. 4(3), 29–35 (2010)Google Scholar
  37. 37.
    B. Peterson, M. Weyers, J.H. Steenekamp, J.D. Steyn, C. Gouws, J.H. Hamman, Drug bioavailability enhancing agents of natural origin (Bioenhancers) that modulate drug membrane permeation and pre-systemic metabolism. Pharmaceutics 11, 33 (2019)CrossRefGoogle Scholar
  38. 38.
    G.K. Randhawa, J.S. Kullar, Rajkumar, Bioenhancers from mother nature and their applicability in modern medicine. Int. J. Appl. Basic Med. Res. 1(1), 5–10 (2011)CrossRefGoogle Scholar
  39. 39.
    A. Sarawade, M.P. Ratnaparkhi, S. Chaudhari, Floating drug delivery system: an overview. Int. J. Res. Dev. Pharm. Life Sci. 3(5), 1106–1115 (2014)Google Scholar
  40. 40.
    N.G. Schipper, S. Olsson, J.A. Hoogstraate, A.G. de Boer, K.M. Varum, P. Artursson, Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm. Res. 14(7), 923–929 (1997)CrossRefGoogle Scholar
  41. 41.
    L. Shargel, A.B.C. Yu, Applied Biopharmaceutics & Pharmacokinetics, 7th edn. (McGraw-Hill, New York, 1999). ISBN 0-8385-0278-4Google Scholar
  42. 42.
    K. Sigfridsson, A.J. Lundqvist, M. Strimfors, Particle size reduction and pharmacokinetic evaluation of a poorly soluble acid and a poorly soluble base during early development. Drug Dev. Ind. Pharm. 37, 243–251 (2011)CrossRefGoogle Scholar
  43. 43.
    R. Singha, S. Devib, J.H. Patela, U.D. Patela, S.K. Bhavsar, A.M. Thaker, Indian herbal bioenhancers: A review. Phcog. Rev. 3(5), 80–82 (2009)Google Scholar
  44. 44.
    S.S. Solanki, B. Sarkar, R.K. Dhanwani, Microemulsion Drug Delivery System: For Bioavailability Enhancement of Ampelopsin. ISRN Pharmaceutics. Article ID 108164, 4 pages (2012)Google Scholar
  45. 45.
    D.V. Tatiraju, V.B. Bagade, P.J. Karambelkar, V.M. Jadhav, V. Kadam, Natural bioenhancers: An overview. J. Pharm. Phytochem. 2(3), 55–60 (2013)Google Scholar
  46. 46.
    H. Thakkar, B. Patel, S. Thakkar, A review on techniques for oral bioavailability enhancement of drugs. Int. J. Pharm. Sci. Rev. Res. 4(3), 203–223 (2010)Google Scholar
  47. 47.
    F. Veiga, C. Fernandes, F. Teixeira, Oral bioavailability and hypoglycaemic activity of tolbutamide/cyclodextrin inclusion complexes. Int. J. Pharm. 202(1–2), 165–171 (2000)CrossRefGoogle Scholar
  48. 48.
    G. Zhou, M.T. Kuo, NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J. Biol. Chem. 272(24), 15174–15183 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Madhumita Roy
    • 1
  • Amitava Datta
    • 2
  1. 1.Environmental Carcinogenesis and ToxicologyChittaranjan National Cancer InstituteKolkataIndia
  2. 2.Department of Computer Science and Software EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations