Molecular Mechanisms of Phytochemical Actions in Cancer

  • Madhumita Roy
  • Amitava Datta


Extensive research has shown that a broad range of phytochemicals are important in chemoprevention and chemosensitization. Phytochemicals not only work on genetic pathways; they are responsible for modulating epigenetic control mechanisms like histone acetylation and methylation, DNA methylation, and miRNA posttranslational silencing. We start the chapter with a review of these epigenetic control mechanisms. Inflammation and oxidative stress are two most important causes of carcinogenesis, and we review the molecular mechanisms involved in these two processes, in particular the Keap1-Nrf2 pathway. We then discuss the roles of phytochemicals in mitigating oxidative stress and inflammation. Chemoprevention is important for reducing the burden of cancer worldwide; we review the roles of phytochemicals in chemoprevention next. Finally we discuss how phytochemicals can sensitize cancer cells for enhancing the effects of chemotherapeutic drugs.


  1. 1.
    B. Alberts, A.D. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2015)Google Scholar
  2. 2.
    W. Li, G. Yue, C. Zhang, R. Wu, A.Y. Yang, J. Gasper, A.-N.T. Kong, Dietary phytochemicals and cancer chemoprevention: a perspective on oxidative stress, inflammation, and epigenetics. Chem. Res. Toxicol. 29, 2071–2095 (2016)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Raghunath, K. Sundarraj, R. Nagarajan, F. Arfuso, J. Bian, A.P. Kumar, G. Sethi, E. Perumal, Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 17, 297–314 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    T. Nguyen, P. Nioi, C.B. Pickett, The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284(20), 13291–13295 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    G.-Y. Liou, P. Storz, Reactive oxygen species in cancer. Free Radic. Res. 44(5) (2010). PubMedCrossRefGoogle Scholar
  6. 6.
    A. Hryniuk, S. Grainger, J.G. Savory, D. Lohnes, Cdx1 and Cdx2 function as tumor suppressors. J. Biol. Chem. 289(48), 33343–33354 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    R. Zhang, K. Kang, K.C. Kim, S.Y. Na, W.Y. Chang, G.Y. Kim, H.S. Kim, J.W. Hyun, Oxydative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 524, 214–219 (2013)PubMedCrossRefGoogle Scholar
  8. 8.
    P.K.S. Mahalingaiah, L. Ponnusamy, K.P. Singh, Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget 8(7), 11127–11143 (2017)PubMedCrossRefGoogle Scholar
  9. 9.
    F. Ito, Y. Yamada, A. Shigemitsu, M. Akinishi, H. Kaniwa, R. Miyake, S. Yamanaka, H. Kobayashi, Role of oxidative stress in epigenetic modification in endometriosis. Reprod. Sci. 24(11), 1493–1502 (2017)PubMedCrossRefGoogle Scholar
  10. 10.
    A. Guillaumet-Atkins, Y. Yañez, M..D. Peris-Diaz, I. Calabria, C. Palanca-Ballester, J. Sandoval, Epigenetics and oxidative stress in aging. Oxid. Med. Cell. Longev. 2017, 9175806 (2017)Google Scholar
  11. 11.
    P.K. Mahalingaiah, L. Ponnusamy, K.P. Singh, Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 153, 41–56 (2015)PubMedCrossRefGoogle Scholar
  12. 12.
    P. Katakwar, R. Metgud, S. Naik, R. Mittal, Oxidative stress markers in oral cancer: a review. J. Cancer Res. Ther. 12, 438–446 (2016)PubMedCrossRefGoogle Scholar
  13. 13.
    M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lune, Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17(10), 1195–214 (2003)PubMedCrossRefGoogle Scholar
  14. 14.
    L.M. Coussens, Z. Werb, Inflammation and cancer. Nature 19, 860–867 (2002)CrossRefGoogle Scholar
  15. 15.
    P. Thejass, G. Kuttan, Inhibition of endothelial cell differentiation and proinflammatory cytokine production during angiogenesis by allyl isothiocyanate and phenyl isothiocyanate. Integr. Cancer Ther. 6, 389–399 (2007)PubMedCrossRefGoogle Scholar
  16. 16.
    J.N. Sharma, A. Al-Omran, S.S. Parvathy, Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15(6), 252–259 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    N.M. Reddy, S.R. Kleeberger, T.W. Kensler, M. Yamamoto, P.M. Hassoun, S.P. Reddy, Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice. J. Immunol. 182, 7264–7271 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    K.A. Steinmetz, J.D. Potter, Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 2(5), 325–357 (1991)PubMedCrossRefGoogle Scholar
  19. 19.
    R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism. Nat. Rev. Cancer 11(2), 85–95 (2011)PubMedCrossRefGoogle Scholar
  20. 20.
    J.L. Martindale, N.J. Holbrook, Cellular response to oxidative stress: signalling for suicide and survival. J. Cell. Physiol. 192(1), 1–15 (2002)PubMedCrossRefGoogle Scholar
  21. 21.
    A. Zeke, M. Misheva, A. Reményi, M.A. Bogoyevitch, JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol. Mol. Biol. Rev. 80(3), 793–835 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    S.K. Katiyar, F. Afaq, K. Azizuddin, H. Mukhtar, Inhibition of UVB-inducedoxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol epigallocatechin-3-gallate. Toxicol. Appl. Pharmacol. 176, 110–117 (2001)PubMedCrossRefGoogle Scholar
  23. 23.
    S.K. Manna, A. Mukhopadhyay, B.B. Aggarwal, Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 164, 6509–6519 (2000)PubMedCrossRefGoogle Scholar
  24. 24.
    R. Yu, V. Hebbar, D.W. Kim, S. Mandlekar, J.M. Pezzuto, A.N. Kong, Resveratrol inhibits phorbol ester and UV-induced activator protein 1 activation by interfering with mitogen-activated protein kinase pathways. Mol. Pharmacol. 60, 217–224 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    F. Yin, A.E. Giuliano, A.J. van Herle, Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO). Anticancer Res. 19, 4297–4303 (1999)PubMedGoogle Scholar
  26. 26.
    X. Yan, M. Qi, P. Li, Y. Zhan, H. Shao, Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci. 7, 50 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    B. Sung, H.Y. Chung, N.D. Kim, Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev. 21(4), 216–226 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    N. Ahmad, V.M. Adhami, F. Afaq, D.K. Feyes, H. Mukhtar, Resveratrol causes WAF-1/p21-mediated G 1-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin. Cancer Res. 7, 1466–1473 (2001)PubMedGoogle Scholar
  29. 29.
    J.-H. Ko, G. Sethi, J.-Y. Um, M.K. Shanmugam, F. Arfuso, A.P. Kumar, A. Bishayee, K.S. Ahn, The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 18(12), 2589 (2017)PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Q.B. She, C. Huang, Y. Zhang, Z. Dong, Involvement of c-jun NH2-terminal kinases in resveratrol-induced activation of p53 and apoptosis. Mol. Carcinogenesis 33, 244–250 (2002)CrossRefGoogle Scholar
  31. 31.
    M. Mouria, A.S. Gukovskaya, Y. Jung, P. Buechler, O.J. Hines, H.A. Reber, S.J. Pandol, Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int. J. Cancer 98, 761–769 (2002)PubMedCrossRefGoogle Scholar
  32. 32.
    M.K. Johnson, G. Loo, Effects of epigallocatechin gallate and quercetin on oxidative DNA damage to cellular DNA. Mutat. Res. 459, 211–218 (2000)PubMedCrossRefGoogle Scholar
  33. 33.
    M.R. Kelly, J. Xu, K.E. Alexander, G. Loo, Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA. Mutat. Res. 485, 309–318 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    X. Mao, C. Gu, D. Chen, B. Yu, J. He, Oxidative stress-induced diseases and tea polyphenols. Oncotarget 8(46), 81649–81661 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    G. Loo, Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation. J. Nutr. Biochem. 14(2), 64–73 (2003)PubMedCrossRefGoogle Scholar
  36. 36.
    F. Kassie, B. Pool-Zobel, W. Parzefall, S. Knasmuller, Genotoxic effects of benzyl isothiocyanate, a natural chemopreventive agent. Mutagenesis 14, 595–603 (1999)PubMedCrossRefGoogle Scholar
  37. 37.
    Y. Nakamura, H. Ohigashi, S. Masuda, A. Murakami, Y. Morimitsu, Y. Kawamoto, T. Osawa, M. Imagawa, K. Uchida, Redox regulation of glutathione S-transferase induction by benzyl isothiocyanate: correlation of enzyme induction with the formation of reactive oxygen intermediates. Cancer Res. 60, 219–225 (2000)PubMedGoogle Scholar
  38. 38.
    L. Gamet-Payrastre, P. Li, S. Lumeau, G. Cassar, M.-A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez, F. Terce, Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60, 1426–1433 (2000)PubMedGoogle Scholar
  39. 39.
    C. Fimognari, M. Nusse, R. Cesari, R. Iori, G. Cantelli-Forti, P. Hrelia, Growth inhibition, cell cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23, 581–586 (2002)PubMedCrossRefGoogle Scholar
  40. 40.
    Y.-R. Chen, W. Wang, A.-N.T. Kong, T.-H. Tan, Molecular mechanisms of c-Jun N-terminal kinase-mediated apoptosis induced by anticarcinogenic isothiocyanates. J. Biol. Chem. 273(3), 1769–1775 (1998)PubMedCrossRefGoogle Scholar
  41. 41.
    S.M. de Figueiredo, S.A. Filho, J.A. Nogueira-Machado, R.B. Caligiorne, The anti-oxidant properties of isothiocyanates: a review. Recent Pat. Endocr. Metab. Immune Drug Discov. 7(3), 213–225 (2013)PubMedCrossRefGoogle Scholar
  42. 42.
    L. Valgimigli, R. Iori, Antioxidant and pro-oxidant capacities of ITCs. Environ. Mol. Mutagen. 50, 222–237 (2009)PubMedCrossRefGoogle Scholar
  43. 43.
    T. Liu, L. Zhang, D. Joo, S.-C. Sun NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023 (2017)Google Scholar
  44. 44.
    N. M’hiri, I. Ioannou, M. Ghoul, N.M. Boudhrioua, Phytochemical characteristics of citrus peel and effect of conventional and nonconventional processing on phenolic compounds: a review. Food Rev. Int. 33(6), 587–619 (2017)CrossRefGoogle Scholar
  45. 45.
    T. Etoh, Y.P. Kim, M. Hayashi, M. Suzawa, S. Li, C. Ho, K. Komiyama, Inhibitory effect of a formulated extract from multiple citrus peels on LPS-induced inflammation in RAW 246.7 macrophages. Funct. Foods Health Dis. 3, 242–253 (2013)CrossRefGoogle Scholar
  46. 46.
    A. Fazio, P. Plastina, J. Meijerink, R.F. Witkamp, B. Gabriele, Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem. 140, 817–824 (2013)PubMedCrossRefGoogle Scholar
  47. 47.
    F.C. Lau, D.F. Bielinski, J.A. Joseph, Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 85, 1010–1017 (2007)PubMedCrossRefGoogle Scholar
  48. 48.
    F. Zhu, B. Du, B. Xu, Anti-inflammatory effects of phytochemicals from fruits, vegetables and food legumes: a review. Crit. Rev. Food Sci. Nutr. 58(8), 1260–1270 (2018)PubMedCrossRefGoogle Scholar
  49. 49.
    G. Grosso, F. Bella, J. Godos, S. Sciacca, D. Del Rio, S. Ray, F. Galvano, E.L. Giovannucci, Possible role of diet in cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 75(6), 405–419 (2017)PubMedCrossRefGoogle Scholar
  50. 50.
    S.S. Boyanapalli, A.-N. Kong, “Curcumin, the king of spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological and inflammatory diseases. Curr. Pharmacol. Rep. 1, 129–139 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    L. Shu, K.-L. Cheung, T.O. Khor, C. Chen, A.-N. Kong, Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev. 29, 483–502 (2010)PubMedCrossRefGoogle Scholar
  52. 52.
    L. Das, M. Vinayak, Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signaling and modulation of inflammation in prevention of cancer. PLoS One 10, e0124000 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    B. Chen, Y. Zhang, Y. Wang, J. Rao, X. Jiang, Z. Xu, Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated downregulation of Fen1 expression. J. Steroid Biochem. Mol. Biol. 143, 11–18 (2014)PubMedCrossRefGoogle Scholar
  54. 54.
    S.G. Han, S.S. Han, M. Toborek, B. Hennig, EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol. Appl. Pharmacol. 261, 181–188 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    R. Kanlaya, S. Khamchun, C. Kapincharanon, B. Thongboonkerd, Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci. Rep. 6, 30233 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Z. Jian, K. Li, L. Liu, Y. Zhang, Z. Zhou, C. Li, T. Gao, Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J. Invest. Dermatol. 131(7), 1420–1427 (2011)PubMedCrossRefGoogle Scholar
  57. 57.
    X. Zhai, M. Lin, F. Zhang, Y. Hu, X. Xu, Y. Li, K. Liu, X. Ma, X. Tian, J. Yao, Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol. Nutr. Food Res. 57, 249–259 (2013)PubMedCrossRefGoogle Scholar
  58. 58.
    J.V. Higdon, B. Delage, D.E. Williams, R.H. Dashwood, Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res. 55(3), 224–236 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    X. Wu, Q.-h. Zhou, K. Xu, Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol. Sin. 30(5), 501–512 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    L.W. Wattenberg, Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J. Natl. Cancer Inst. 58, 395–398 (1977)PubMedCrossRefGoogle Scholar
  61. 61.
    L.W. Wattenberg, Inhibition effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 8, 1971–1973 (1987)PubMedCrossRefGoogle Scholar
  62. 62.
    M. Ramos-Gomez, M.K. Kwak, P.M. Dolan, K. Itoh, M. Yamamoto, P. Talalay, T.W. Kensler, Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. 98, 3410–3415 (2001)PubMedCrossRefGoogle Scholar
  63. 63.
    T.O. Khor, M.T. Huang, A. Prawan, Y. Liu, X. Hao, S. Yu, W.K. Cheung, J.Y. Chan, B. Reddy, C.S. Yang, A.N. Kong, Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev. Res. 1, 187–191 (2008)CrossRefGoogle Scholar
  64. 64.
    F. Hong, M.L. Freeman, D.C. Liebler, Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem. Res. Toxicol. 18, 1917–1926 (2005)PubMedCrossRefGoogle Scholar
  65. 65.
    C. Xu, X. Yuan, Z. Pan, G. Shen, J.H. Kim, S. Yu, T.O. Khor, W. Li, J. Ma, A.N. Kong, Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol. Cancer Ther. 5, 1918–1926 (2006)PubMedCrossRefGoogle Scholar
  66. 66.
    W. Tang, J.W. Liu, W.M. Zhao, D.Z. Wei, J.J. Zhong, Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci. 80(3), 205–211 (2006)PubMedCrossRefGoogle Scholar
  67. 67.
    J.Y. Cheung, R.C. Ong, Y.K. Suen, V. Ooi, H.N. Wong, T.C. Mak, K.P. Fung, B. Yu, S.K. Kong, Polyphyllin D is a potent apoptosis inducer in drug-resistant HepG2 cells. Cancer Lett. 217(2), 203–211 (2005)PubMedCrossRefGoogle Scholar
  68. 68.
    M.S. Lee, J.C. Yuet-Wa, S.K. Kong, B. Yu, V.O. Eng-Choon, H.W. Nai-Ching, T.M. Chung-Wai, K.P. Fung, Effects of polyphyllin D, a steroidal saponin in Paris polyphylla, in growth inhibition of human breast cancer cells and in xenograft. Cancer Biol. Ther. 4(11), 1248–1254 (2005)PubMedCrossRefGoogle Scholar
  69. 69.
    A.K. Taraphdar, M. Roy, R.K. Bhattacharya, Natural products as inducers of apoptosis: implication for cancer therapy and prevention. Curr. Sci. 80(11), 1387–1396 (2001)Google Scholar
  70. 70.
    I.-S. Lee, A. Nishikawa, F. Furukawa, K. Kasahara, S.-U. Kim, Effects of Selaginella tamariscina on in vitro tumor cell growth, p53 expression, G1 arrest and in vivo gastric cell proliferation. Cancer Lett. 144, 93–99 (1999)PubMedCrossRefGoogle Scholar
  71. 71.
    W. Ren, D.G. Tang, Extract of Solanum muricatum (Pepino/CSG) inhibits tumor growth by inducing apoptosis. Anticancer Res. 19(1A), 403–408 (1999)PubMedGoogle Scholar
  72. 72.
    M. Inoue, R. Suzuki, T. Koide, N. Sakaguchi, Y. Ogihara, Y. Yabu, Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 204(2), 898–904 (1994)PubMedCrossRefGoogle Scholar
  73. 73.
    M. Roy, S. Chakraborty, M. Siddiqi, R.K. Bhattacharya, Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pac. J. Cancer Prev. 3(1), 61–67 (2002)PubMedGoogle Scholar
  74. 74.
    S. Chakrabarty, M. Roy, B. Hazra, R.K. Bhattacharya, Induction of apoptosis in human cancer cell lines by diospyrin, a plant derived bisnaphthoquinonoid and its synthetic derivatives. Cancer Lett. 188, 85–93 (2002)PubMedCrossRefGoogle Scholar
  75. 75.
    T. Kundu, S. Dey, M. Roy, M. Siddiqi, B.K. Bhattacharya, Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin. Cancer Lett. 230(1), 111–121 (2005)PubMedCrossRefGoogle Scholar
  76. 76.
    T. Kundu, R.K. Bhattacharya, M. Siddiqi, M. Roy, Correlation of apoptosis with comet formation induced by tea polyphenols in human leukaemia cells. J. Environ. Pathol. Toxicol. Oncol. 24(2), 89–102 (2005)CrossRefGoogle Scholar
  77. 77.
    S. Chakraborty, T. Kundu, R.K. Bhattacharya, M. Siddiqi, M. Roy, Tea induced apoptosis in human leukemia cell K562 as assessed by comet formation. Asian Pac. J. Cancer Prev. 7(2), 201–207 (2006)PubMedGoogle Scholar
  78. 78.
    S. Mukherjee, U. Ghosh, N.P. Bhattacharya, R.K. Bhattacharya, S. Dey, M. Roy, Curcumin induced apoptosis in human leukemia cell HL-60 is associated with inhibition of telomerase activity. Mol. Cell. Biochem. 297, 31–39 (2007)CrossRefGoogle Scholar
  79. 79.
    S. Mukherjee, R. Sarkar, J. Biswas, M. Roy, Curcumin inhibits histone deacetylase leading to cell cycle arrest and apoptosis via upregulation of p21 in breast cancer cell lines. Int. J. Green Nanotechnol. 4, 183–197 (2012)CrossRefGoogle Scholar
  80. 80.
    M. Roy, S. Mukherjee, J. Biswas, Inhibition of an epigenetic modulator, histone deacetylase by PEITC in breast cancer - a detailed mechanistic approach. Int. J. Ther. Appl. 5, 1–13 (2012)Google Scholar
  81. 81.
    R. Sarkar, S. Mukherjee, J. Biswas, M. Roy, Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins. Biochem. Biophys. Res. Commun. 427, 80–85 (2012)PubMedCrossRefGoogle Scholar
  82. 82.
    R. Sarkar, S. Mukherjee, M. Roy, Targeting heat shock proteins (HSPs) by phenethyl isothiocyanate results in cell cycle arrest and apoptosis of human breast cancer cells. Nutr. Cancer 65(3), 1–14 (2013)Google Scholar
  83. 83.
    F.H. Igney, P.H. Krammer, Death and anti-death: tumor resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002)PubMedCrossRefGoogle Scholar
  84. 84.
    B.S. Vinod, T.T. Maliekal, R.J. Anto, Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid. Redox Signal. 18(11), 1307–1348 (2013)PubMedCrossRefGoogle Scholar
  85. 85.
    L. Campos, J.P. Rouault, O. Sabido, P. Oriol, N. Roubi, C. Vasselon, E. Archimbaud, J.P. Magaud, D. Guyotat, High expression of BCL-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81, 3091–3096 (1993)PubMedGoogle Scholar
  86. 86.
    M. Weller, U. Malipiero, A. Aguzzi, J.C. Reed, A. Fontana, Protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J. Clin. Invest. 95, 2633–2643 (1995)PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    O. Hermine, C. Haioun, E. Lepage, M.F. d’Agay, J. Briere, C. Lavignac, G. Fillet, G. Salles, J.P. Marolleau, J. Diebold, F. Reyas, P. Gaulard, Prognostic significance of BCL-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood 87, 265–272 (1996)Google Scholar
  88. 88.
    E. Coustan-Smith, A. Kitanaka, C.H. Pui, L. McNinch, W.E. Evans, S.C. Raimondi, F.G. Behm, M. Aricò, D. Campana, Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87, 1140–1146 (1996)PubMedGoogle Scholar
  89. 89.
    S. Ugurel, G. Rappl, W. Tilgen, U. Reinhold, Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin. Cancer Res. 7, 1282–1286 (2001)PubMedGoogle Scholar
  90. 90.
    C.D. Gerharz, U. Ramp, M. Déjosez, C. Mahotka, B. Czarnotta, U. Bretschneider, I. Lorenz, M. Müller, P.H. Krammer, H.E. Gabbert, Resistance to CD95 (APO-1/Fas)-mediated apoptosis in human renal cell carcinomas: an important factor for evasion from negative growth control. Lab. Invest. 79, 1521–1534 (1999)PubMedGoogle Scholar
  91. 91.
    A.R. Safa, Roles of c-FLIP in apoptosis, necroptosis, and autophagy. J. Carcinog. Mutagen. Suppl. 6, 003 (2013). Google Scholar
  92. 92.
    N. Rampino, H. Yamamoto, Y. Ionov, Y. Li, H. Sawai, J.C. Reed, M. Perucho, Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997)PubMedCrossRefGoogle Scholar
  93. 93.
    J.P. Meijerink, E.J. Mensink, K. Wang, T.W. Sedlak, A.W. Slöetjes, T. de Witte, G. Waksman, S.J. Korsmeyer, Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91, 2991–2997 (1998)PubMedGoogle Scholar
  94. 94.
    S. Krajewski, C. Blomqvist, K. Franssila, M. Krajewska, V.M. Wasenius, E. Niskanen, S. Nordling, J.C. Reed, Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 55, 4471–4478 (1995)PubMedGoogle Scholar
  95. 95.
    A. Arlt, A. Gehrz, S. Müerköster, J. Vorndamm, M.L. Kruse, U.R. Fölsch, H. Schäfer, Role of NF-κB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22(21), 3243–3251 (2003)PubMedCrossRefGoogle Scholar
  96. 96.
    A.B. Kunnumakkara, S. Guha, S. Krishnan, P. Digaradjane, J. Gelovani, B.B. Aggarwal, Curcumin potentiates anti-tumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-κB-regulated gene products. Cancer Res. 67, 3853–3861 (2007)PubMedCrossRefGoogle Scholar
  97. 97.
    S. Lev-Ari, A. Vexler, A. Starr, M. Ashkenazy-Voghera, J. Greif, D. Aderka, R. Ben-Yosef, Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest. 25, 411–418 (2007)PubMedCrossRefGoogle Scholar
  98. 98.
    G. Du, H. Lin, M. Wang, S. Zhang, X. Wu, L. Lu, L. Ji, L. Tu, Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on H1F-1alpha in tumor and normal cells. Cancer Chemother. Pharmacol. 65, 277–287 (2010)PubMedCrossRefGoogle Scholar
  99. 99.
    F.H. Psahoulia, K.G. Drosopoulos, L. Doubravska, L. Andera, A. Pintzas, Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther. 6, 2591–2599 (2007)PubMedCrossRefGoogle Scholar
  100. 100.
    S.C. Gupta, R. Kannappan, S. Reuter, J.H. Kim, B.B. Aggarwal, Chemosensitization of tumors by resveratrol. Ann. N. Y. Acad. Sci. 1215, 150–160 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    S. Shankar, Q. Chen, I. Siddiqui, K. Sarva, R.K. Srivastava, Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4’, r tri-hydroxystilbene): molecular mechanisms and therapeutic potential. J. Mol. Signal. 2, 7 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    I.A. Siddiqui, A. Malik, V.M. Adhami, M. Asim, B.B. Hafeez, S. Sarfaraz, H. Mukhtar, Green tea polyphenol EGCG sensitizes human prostrate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27, 2055–2063 (2008)PubMedCrossRefGoogle Scholar
  103. 103.
    M. Nihal, H. Ahsan, I.A. Siddiqui, H. Mukhtar, N. Ahmad, G.S. Wood, Epigallocatechin-3-gallate (EGCG) sensitizes melanoma cells to interferon induced growth inhibition in a mouse model of human melanoma. Cell Cycle 8, 2057–2063 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    M.J. Scandlyn, E.C. Stuart, T.J. Somers-Edgar, A.R. Menzies, R.J. Rosengren, A new role for tamoxifen in oestrogen receptor-negative breast cancer when it is combined with epigallocatechin gallate. Br. J. Cancer 99, 1056–1063 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    B. Zhang, Z.L. Shi, B. Liu, X.B. Yan, J. Feng, H.M. Tao, Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma: the role of Akt and nuclear factor-κB. Anticancer Drugs 21, 288–296 (2010)PubMedCrossRefGoogle Scholar
  106. 106.
    B.F. El-Rayes, S. Ali, I.F. Ali, P.A. Philip, J. Abbruzzese, F.H. Sarkar, Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-κB. Cancer Res. 66, 10553–10559 (2006)PubMedCrossRefGoogle Scholar
  107. 107.
    C.Y. Jin, C. Park, J. Cheong, B.T. Choi, T.H. Lee, J.D. Lee, W.H. Lee, G.Y. Kim, C.H. Ryu, Y. H. Choi, Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3. Cancer Lett. 257, 56–64 (2007)PubMedCrossRefGoogle Scholar
  108. 108.
    S.Y. Park, D.W. Seol, Regulation of Akt by EGF-R inhibitors, a possible mechanism of EGF-R inhibitor-enhanced TRAIL-induced apoptosis. Biochem. Biophys. Res. Commun. 295, 515–518 (2002)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Madhumita Roy
    • 1
  • Amitava Datta
    • 2
  1. 1.Environmental Carcinogenesis and ToxicologyChittaranjan National Cancer InstituteKolkataIndia
  2. 2.Department of Computer Science and Software EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations