Fundamentals of Phytochemicals

  • Madhumita Roy
  • Amitava Datta


The beneficial effects of phytochemicals in health and well-being are known for thousands of years. Many of the fruits and vegetables in our diet contain many phytochemicals that are important for chemoprevention. We discuss the details of phytochemicals and their chemical structures and classifications in this chapter. Though there is no universally accepted classification of phytochemicals, we have used their chemical structures for classifying them in different groups. Further, we identify and discuss different phytochemicals in each group, and their specific beneficial effects in treatment of different diseases, with an emphasis on cancer. Finally, we briefly discuss phytochemicals in some common fruits and vegetables and their beneficial effects in cancer prevention and treatment.


  1. 1.
    A. Acharya, I. Das, S. Singh, T. Saha, Chemopreventive properties of indole-3-carbinol, diindolylmethane and other constituents of cardamom against carcinogenesis. Recent Pat. Food Nutr. Agric. 2(2), 166–177 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    A. Ahmad, S.F. Asad, S. Singh, S.M. Hadi, DNA breakage by resveratrol and Cu(II): Reaction mechanism and bacteriophage inactivation. Cancer Lett. 154, 29–37 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    AICR, World Cancer Research Fund, American Institute for Cancer Research. Food, Nutrition, and Physical Activity, and the Prevention of Cancer: A Global Perspective (AICR, Washington, DC, 2007)Google Scholar
  4. 4.
    S.H. Allen, A.B. Johns, S.K. Gudmundsson, A.G. Freeman, F.L. Boyd, H.C. Sexton, W.D. Selleseth, K. Creech, R.K. Moniri, Synthesis of C-6 substituted pyrazolo[1,5-a]pyridines with potent activity against herpesviruses. Bioorg. Med. Chem. 14, 944–954 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    A. Angelini, C. Di Ilio, M.L. Castellani, P. Conti, F. Cuccurullo, Modulation of multidrug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin-resistant sarcoma cells (MES-SA/DX-5): Implications for natural sedatives as chemosensitizing agents in cancer therapy. J. Biol. Regul. Homeost. Agents 24(2), 197–205 (2010)PubMedPubMedCentralGoogle Scholar
  6. 6.
    A.M. Attia, A.A. El-Shehawy, A convenient method for the synthesis of 2-(beta-D-glycopyranosylthio) pyridines. Nucleosides Nucleotides Nucleic Acids 22(9), 1737–1746 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    O.A. Awoyinka, I.O. Balogun, A.A. Ogunnowo, Phytochemical screening and in-vitro bioactivity of Cnidoscolus aconitifolius (Euphorbiaceae). J. Med. Plants Res. 1, 063–065 (2007)Google Scholar
  8. 8.
    T.S. Ballard, P. Mallikarjunan, K. Zhou, S. O’Keefe, Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem. 120, 1185–1192 (2010)CrossRefGoogle Scholar
  9. 9.
    E.C. Bate-Smith, T. Swain, Flavonoid compounds, in Comparative Biochemistry, ed. by M. Florkin, H. S. Mason, III edn., (Academic, New York, 1962), pp. 75–809Google Scholar
  10. 10.
    C.S. Beevers, L. Chen, L. Liu, Y. Luo, N.J. Webster, S. Huang, Curcumin disrupts the mammalian target of rapamycin-raptor complex. Cancer Res. 69(3), 1000–1008 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bellik Y, Boukraâ L, Alzahrani H A, Bakhotmah B A, Abdellah F, . Hammoudi S M and Iguer-Ouada M, 2013. Molecular mechanism underlying anti-inflammatory and Anti-allergic activities of phytochemicals: An update, Molecules, 18, 322–353CrossRefGoogle Scholar
  12. 12.
    N. Benowitz, J. Hukkanen, J. Peyton III, Nicotine chemistry, Metabolism, Kinetics and Biomarkers. Handb. Exp. Pharmacol. 192, 29–60 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Boeing, A. Bechthold, A. Bub, S. Ellinger, D. Haller, A. Kroke, E. Leschik-Bonnet, M.J. Müller, H. Oberritter, M. Schulze, P. Stehle, B. Watzl, Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 51(6), 637–663 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    H.L. Bradlow, M.A. Zeligs, Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments. In Vivo 24(4), 387–391 (2010)PubMedPubMedCentralGoogle Scholar
  15. 15.
    M.X. Chen, L. Li, D.F. Zhong, S.J. Shen, J. Zheng, X.Y. Chen, 9-Glutathiony1-6,7-dihydro-1-hydroxymethy1-5H-pyrrolizine is the major pyrrolic glutathione conjugate of retronecine-type pyrrolizidine alkaloids in liver microsomes and in rats. Chem. Res. Toxicol. 29(2), 180–189 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Y.D. Cho, R.O. Martin, Resolution and unambiguous identification of microgram amounts of 22 lupin alkaloids by sequential use of thin-layer and gas-liquid chromatography and mass spectrometry. Anal. Biochem. 44, 49–57 (1971)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    A.J. Cooper, N.G. Forouhi, Z. Ye, B. Buijsse, L. Arriola, B. Balkau, et al., Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur. J. Clin. Nutr. 66(10), 1082–1092 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    L. Cornara, M. Biagi, J. Xiao, B. Burlando, Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. 8, 412 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    M.M. Cowan, Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12(4), 564–582 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    W. Cui, K. Iwasa, H. Tokuda, A. Kashihara, Y. Mitani, T. Hasegawa, Y. Nishiyama, M. Moriyasu, H. Nishino, M. Hanaoka, C. Mukai, K. Takeda, Potential cancer chemopreventive activity of simple isoquinolines, 1-benzylisoquinolines, and protoberberines. Phytochemistry 67(1), 70–79 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    T.P.T. Cushnie, B. Cushnie, A.J. Lamb, Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. 44, 377–386 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Das, R.K.S. Tiwari, D.K. Shrivastava, Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res. 4(2), 104–111 (2010)Google Scholar
  23. 23.
    R.H. Dashwood, E. Ho, Dietary histone deacetylase inhibitors: From cells to mice to man. Semin. Cancer Biol. 17(5), 363–369 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    G. Duthie, A. Crozier, Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 11(1), 43–47 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    C. Echiburu-Chau, L. Pastén, C. Parra, J. Bórquez, A. Mocan, M.J. Simirgiotis, High resolution UHPLC-MS characterization and isolation of main compounds from the antioxidant medicinal plant Parastrephia lucida (Meyen). Saudi Pharm. J. 25(7), 1032–1039 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    J.A. Edgar, R.J. Molyneux, S.M. Colegate, Pyrrolizidine alkaloids: Potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease. Chem. Res. Toxicol. 28(1), 4–20 (2014)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Falsaperlaa, G. Morgiab, A. Tartaronec, R. Arditoc, G. Romano, Support ellagic acid therapy in patients with hormone refractory prostate cancer (HRPC) on standard chemotherapy using vinorelbine and estramustine. Phosphate. Eur Urol 47, 449 (2005)CrossRefGoogle Scholar
  28. 28.
    C.G. Fraga, M. Galleano, S.V. Verstraeten, P.I. Oteiza, Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 31(6), 435–445 (2010)CrossRefGoogle Scholar
  29. 29.
    G. Galati, P.J. O’Brien, Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37(3), 287–303 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    P. Garcia-Salas, A. Morales-Soto, A. Segura-Carretero, A. Fernandez-Gutierrez, Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15, 8813–8826 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    A. Ghosh, A. Mukherjee, S. Mukherjee, M. Roy, Role of Black Tea in Prevention of Skin Carcinogenesis (LAP LAMBERT Academic Publishing, Germany, 2019)Google Scholar
  32. 32.
    Global Action Plan for the Prevention and Control of NCDs 2013–2020 (World Health Organization, Geneva, 2013); Global Status Report on Noncommunicable Diseases 2014. (World Health Organization, Geneva, 2014)Google Scholar
  33. 33.
    P. Goel, O. Alam, M.J. Naim, F. Nawaz, M. Iqbal, M.I. Alam, Recent advancement of piperidine moiety in treatment of cancer- A review. Eur. J. Med. Chem. 157, 480–502 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    M. Goleniowski, M. Bonfill, R. Cusido, P. Javier, Zphenolic acids, in Natural Products, ed. by K. G. Ramawat, J. M. Me’rillon, (Springer-Verlag, Berlin/Heidelberg, 2013)Google Scholar
  35. 35.
    A. Gopalakrishnan, C.J. Xu, S.S. Nair, C. Chen, V. Hebbar, A.N. Kong, Modulation of activator protein-1 (AP-1) and MAPK pathway by flavonoids in human prostate cancer PC3 cells. Arch. Pharm. Res. 29(8), 633–644 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    N. Gungor, M. Sengul, Antioxidant activity, total phenolic content and selected physicochemical properties of white mulberry (Morus Alba L.). Fruits. Int. J. Food Prop. 11(1), 44–52 (2008)CrossRefGoogle Scholar
  37. 37.
    S.M. Hadi, S.F. Asad, S. Singh, A. Ahmad, Putative mechanism for anticancer and apoptosis inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50, 167–171 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    B. Halliwell, Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 476(2), 107–112 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    B. Halliwell, The wanderings of a free radical. Free Radic. Biol. Med. 46(5), 531–542 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    USDA Nutrient Database 2014. Foods highest in lycopene, Nutrition Data, USDA Nutrient Database, version SR-21. Conde Nast. Retrieved 19 Aug 2014 (2014)
  41. 41.
    N. Kapadia, W. Harding, Aporphine alkaloids as ligands for serotonin receptors. Med. Chem. (Los Angeles) 6, 241–249 (2009)Google Scholar
  42. 42.
    S.L. Haney, C. Allen, M.L. Varney, K.M. Dykstra, E.R. Falcone, S.H. Colligan, Q. Hu, A.M. Aldridge, D.L. Wright, A.J. Wiemer, S.A. Holstein, Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget 8(44), 76085–76098 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    L. Hartley, E. Igbinedion, J. Holmes, N. Flowers, M. Thorogood, A. Clarke, S. Stranges, L. Hooper, K. Rees, Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst. Rev. 6, CD009874 (2013)Google Scholar
  44. 44.
    T.A. Henry, The Plant Alkaloids, 4th edn. (The Blakiston Company, Philadelphia, 1949)Google Scholar
  45. 45.
    A. Herman-Antosiewicz, S.V. Singh, Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: A review. Mutat. Res. 555, 121–131 (2004)PubMedCrossRefGoogle Scholar
  46. 46.
    A. Hollman, Veratrum alkaloids. Br. Heart J. 65(5), 286 (1991)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    R. Hu, T.O. Khor, G. Shen, W.S. Jeong, V. Hebbar, C. Chen, C. Xu, B. Reddy, K. Chada, A.N. Kong, Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27(10), 2038–2046 (2006)PubMedCrossRefGoogle Scholar
  48. 48.
    T. Iwashina, Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull. Natl. Mus. Nat. Sci. 39, 25–51 (2013)Google Scholar
  49. 49.
    R.S. Jackson, 6 – chemical constituents of grapes and wine. Wine Sci. 347–426 (2014)Google Scholar
  50. 50.
    J. Jakubikova, D. Cervi, M. Ooi, K. Kim, S. Nahar, S. Klippel, D. Cholujova, M. Leiba, J.F. Daley, J. Delmore, J. Negri, S. Blotta, D. McMillin, T. Hideshima, P. Richardson, J. Sedlak, K. Anderson, C. Mitsiades, Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and PEITC in multiple myeloma. Haematologica 96(8), 1170–1179 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    M. Jang, L. Cai, G.O. Udeani, K.V. Slowing, C.F. Thomas, C.W. Beecher, H.H. Fong, N.R. Farnsworth, A.D. Kinghorn, R.G. Mehta, R.C. Moon, J.M. Pezzuto, Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297), 218–220 (1997)PubMedCrossRefGoogle Scholar
  52. 52.
    M.A. Jayasri, L. Mathew, A. Radha, A report on the antioxidant activities of leaves and rhizomes of Costus pictus D. Don. Int. J. Int. Bio. 5(1), 20–26 (2009)Google Scholar
  53. 53.
    W.S. Jeong, Y.S. Keum, C. Chen, M.R. Jain, G. Shen, J.H. Kim, W. Li, A.N. Kong, Di_erential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J. Biochem. Mol. Biol. 38(2), 167–176 (2005 Mar 31)PubMedGoogle Scholar
  54. 54.
    M.P. Kahkonen, A.I. Hopia, H.J. Vuorela, J.P. Rauha, K. Pihlaja, T.S. Kujala, M. Heinonen, Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47, 3954–3962 (1999)PubMedCrossRefGoogle Scholar
  55. 55.
    A. Kar, Pharmacognosy and Pharmacobiotechnology. New Age International. pp. 44–. ISBN 978-81-224-1501-8. Archived from the original on 2 June 2013. Retrieved 31 Jan 2011 (2003)Google Scholar
  56. 56.
    N. Khan, F. Afaq, F.H. Khusro, V.M. Adhami, Y. Suh, H. Mukhtar, Dual inhibition of PI3K/AKT and mTOR signaling in human non-small cell lung cancer cells by a dietary flavonoid fisetin. Int. J. Cancer 130(7), 1695–1705 (2012)PubMedCrossRefGoogle Scholar
  57. 57.
    H.E. Khoo, A. Azlan, S.T. Tang, S.M. Lim, Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61(1), 1361779 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    J.E. Kim, J.Y. Kwon, S.K. Seo, J.E. Son, S.K. Jung, S.Y. Min, M.K. Hwang, Y.S. Heo, K.W. Lee, H.J. Lee, Cyanidin suppresses ultraviolet B-induced COX-2 expression in epidermal cells by targeting MKK4, MEK1, and Raf-1. Biochem. Pharmacol. 79(10), 1473–1482 (2010)PubMedCrossRefGoogle Scholar
  59. 59.
    L.M. Knowles, J.A. Milner, Possible mechanism by which allyl sulfides suppress neoplastic cell proliferation. J. Nutr. 131, 1061S–1066S (2001)PubMedCrossRefGoogle Scholar
  60. 60.
    M. Kumara, M.R. Shylajab, P.A. Nazeemc, T. Babu, 6-Gingerol is the most potent Anticancerous compound in ginger (Zingiber officinale Rosc.). J. Dev. Drugs 6, 1 (2017)Google Scholar
  61. 61.
    J.L. Lamaison, C. Petitjeanfreytet, Medicinal Lamiaceae with antioxidant activity, potential sources of rosmarinic acid. Pharm. Acta Helvetiae 66, 185 (1996)Google Scholar
  62. 62.
    J.D. Lambert, C.S. Yang, Mechanisms of cancer prevention by tea constituents. J. Nutr. 133(10), 3262S–3267S (2003)PubMedCrossRefGoogle Scholar
  63. 63.
    M. Leone, D. Zhai, S. Sareth, S. Kitada, J.C. Reed, M. Pellecchia, Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res. 63(23), 8118–8121 (2003)PubMedGoogle Scholar
  64. 64.
    Y.C. Liao, Y.W. Shih, C.H. Chao, X.Y. Lee, T.A. Chiang, Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. J. Agric. Food Chem. 57(19), 8933–8941 (2009)PubMedCrossRefGoogle Scholar
  65. 65.
    S.S. Lim, T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. Amann, H.R. Anderson, K.G. Andrews, M. Aryee, C. Atkinson, L.J. Bacchus, A.N. Bahalim, K. Balakrishnan, J. Balmes, S. Barker-Collo, A. Baxter, M.L. Bell, J.D. Blore, F. Blyth, C. Bonner, G. Borges, R. Bourne, M. Boussinesq, M. Brauer, P. Brooks, N.G. Bruce, B. Brunekreef, C. Bryan-Hancock, C. Bucello, R. Buchbinder, F. Bull, R.T. Burnett, T.E. Byers, B. Calabria, J. Carapetis, E. Carnahan, Z. Chafe, F. Charlson, H. Chen, J.S. Chen, A.T. Cheng, J.C. Child, A. Cohen, K.E. Colson, B.C. Cowie, S. Darby, S. Darling, A. Davis, L. Degenhardt, F. Dentener, D.C. Des Jarlais, K. Devries, M. Dherani, E.L. Ding, E.R. Dorsey, T. Driscoll, K. Edmond, S.E. Ali, R.E. Engell, P.J. Erwin, S. Fahimi, G. Falder, F. Farzadfar, A. Ferrari, M.M. Finucane, S. Flaxman, F.G. Fowkes, G. Freedman, M.K. Freeman, E. Gakidou, S. Ghosh, E. Giovannucci, G. Gmel, K. Graham, R. Grainger, B. Grant, D. Gunnell, H.R. Gutierrez, W. Hall, H.W. Hoek, A. Hogan, H.D. Hosgood 3rd, D. Hoy, H. Hu, B.J. Hubbell, S.J. Hutchings, S.E. Ibeanusi, G.L. Jacklyn, R. Jasrasaria, J.B. Jonas, H. Kan, J.A. Kanis, N. Kassebaum, N. Kawakami, Y.H. Khang, S. Khatibzadeh, J.P. Khoo, C. Kok, F. Laden, R. Lalloo, Q. Lan, T. Lathlean, J.L. Leasher, J. Leigh, Y. Li, J.K. Lin, S.E. Lipshultz, S. London, R. Lozano, Y. Lu, J. Mak, R. Malekzadeh, L. Mallinger, W. Marcenes, L. March, R. Marks, R. Martin, P. McGale, J. McGrath, S. Mehta, G.A. Mensah, T.R. Merriman, R. Micha, C. Michaud, V. Mishra, K. Mohd Hanafiah, A.A. Mokdad, L. Morawska, D. Mozaffarian, T. Murphy, M. Naghavi, B. Neal, P.K. Nelson, J.M. Nolla, R. Norman, C. Olives, S.B. Omer, J. Orchard, R. Osborne, B. Ostro, A. Page, K.D. Pandey, C.D. Parry, E. Passmore, J. Patra, N. Pearce, P.M. Pelizzari, M. Petzold, M.R. Phillips, D. Pope, C.A. Pope 3rd, J. Powles, M. Rao, H. Razavi, E.A. Rehfuess, J.T. Rehm, B. Ritz, F.P. Rivara, T. Roberts, C. Robinson, J.A. Rodriguez-Portales, I. Romieu, R. Room, L.C. Rosenfeld, A. Roy, L. Rushton, J.A. Salomon, U. Sampson, L. Sanchez-Riera, E. Sanman, A. Sapkota, S. Seedat, P. Shi, K. Shield, R. Shivakoti, G.M. Singh, D.A. Sleet, E. Smith, K.R. Smith, N.J. Stapelberg, K. Steenland, H. Stöckl, L.J. Stovner, K. Straif, L. Straney, G.D. Thurston, J.H. Tran, R. Van Dingenen, A. van Donkelaar, J.L. Veerman, L. Vijayakumar, R. Weintraub, M.M. Weissman, R.A. White, H. Whiteford, S.T. Wiersma, J.D. Wilkinson, H.C. Williams, W. Williams, N. Wilson, A.D. Woolf, P. Yip, J.M. Zielinski, A.D. Lopez, C.J. Murray, M. Ezzati, M.A. AlMazroa, Z.A. Memish, A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2224–2260 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    J.C. Lin, S. Yang, T. Hong, S. Yu, Q. Shi, L. Wei, H.-Y. Chen, P.-C. Yang, K.-H. Lee, Phenanthrene-based Tylophorine-1 (PBT-1) inhibits lung Cancer cell growth through the Akt and NF-κB pathways. J. Med. Chem. 52(7), 1903–1911 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    M. Lopez-Lazaro, E. Willmore, C.A. Austin, Cells lacking DNA topoisomerase II beta are resistant to genistein. J. Nat. Prod. 70(5), 763–767 (2007)PubMedCrossRefGoogle Scholar
  68. 68.
    M.J. Magbanua, R. Roy, E.V. Sosa, V. Weinberg, S. Federman, M.D. Mattie, M. Hughes-Fulford, J. Simko, K. Shinohara, C.M. Haqq, P.R. Carroll, J.M. Chan, Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation. PLoS One 6(9), e24004 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    J. Markovits, C. Linassier, P. Fosse, J. Couprie, J. Pierre, A. Jacquemin-Sablon, J.M. Saucier, J.B. Le Pecq, A.K. Larsen, Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. 49(18), 5111–5117 (1989)PubMedGoogle Scholar
  70. 70.
    M.P. Mattson, A. Cheng, Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci. 29, 632–639 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Y.J. Moon, D.A. Brazeau, M.E. Morris, Dietary phenethyl isothiocyanate alters gene expression in human breast cancer cells. Evid. Based Complement Alternat. Med. 2011, pii 462525 (2011)Google Scholar
  72. 72.
    N. Mulinacci, D. Prucher, M. Peruzzi, A. Romani, P. Pinelli, C. Giaccherini, F.F. Vincieri, Commercial and laboratory extracts from artichoke leaves: Estimation of caffeoyl esters and flavonoidic compounds content. J. Pharm. Biomed. Anal. 34, 349–357 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    R. Munday, C.M. Munday, Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: Comparison of allyl isothiocyanate with sulforaphane and related compounds. J. Agric. Food Chem. 52(7), 1867–1871 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    M.C. Navarro, M.P. Montilla, M.M. Cabo, M. Galisteo, A. Caceres, C. Morales, I. Berger, Antibacterial, antiprotozoal and antioxidant activity of five plants used in izabal for infectious diseases. J. Phytother. Res. 17, 325–329 (2003)CrossRefGoogle Scholar
  75. 75.
    N.S. Ncube, A.J. Afolayan, A.I. Okoh, Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. Afr. J. Biotechnol. 7(12), 1797–1806 (2008)CrossRefGoogle Scholar
  76. 76.
    S.N. Ngoci, C.M. Mwendia, C.G. Mwaniki, Phytochemical and cytotoxicity testing of Indigofera lupatana baker F. J. Anim. Plant Sci. 11(1), 1364–1373 (2011)Google Scholar
  77. 77.
    H.L. Nicastro, S.A. Ross, J.A. Milner, Garlic and onions: Their cancer prevention properties. Cancer Prev. Res. (Phila.) 8(3), 181–189 (2015)CrossRefGoogle Scholar
  78. 78.
    S. Njeru, J. Matasyoh, G.M. Charles, M. Mwendia, G. Kobia, A review of some phytochemicals commonly found in medicinal plants. Int J Med. Plants. Photon 105, 135–140 (2013)Google Scholar
  79. 79.
    K.O. Ogunwenmo, O.A. Idowu, C. Innocent, E.B. Esan, O.A. Oyelana, Cultivars of Codiaeum variegatum (L.) Blume (Euphorbiaceae) show variability in phytochemical and cytological characteristics. J. Biotechnol. 20, 2400–2405 (2007)Google Scholar
  80. 80.
    M.R. Olthof, P.C.H. Hollman, M.B. Katan, Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 131, 66 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    S.N. Ononye, M.D. VanHeyst, E.Z. Oblak, W. Zhou, M. Ammar, A.C. Anderson, D.L. Wright, Tropolones as lead-like natural products: The development of potent and selective histone deacetylase inhibitors. ACS Med. Chem. Lett. 4(8), 757–761 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    A.A. Oyagbemi, A.B. Saba, O.I. Azeez, Molecular targets of [6]-gingerol: Its potential roles in cancer chemoprevention. Biofactors 36(3), 169–178 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    V. Paritala, K.K. Chiruvella, I.H.A. Ripain, A. Mohammed, A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pac. J. Trop. Biomed. 4(6), 430–435 (2014)CrossRefGoogle Scholar
  84. 84.
    V. Pasricha, G. Satpathy, R.K. Gupta, Phytochemical & Antioxidant activity of underutilized legume Vicia faba seeds and formulation of its fortified biscuits. J. Pharmacogn. Phytochem. 3(2), 75–80 (2014)Google Scholar
  85. 85.
    I.E. Popova, C. Hall, A. Kubátová, Determination of lignans in flaxseed using liquid chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 1216, 217–229 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    M. Porrini, P. Riso, A. Brusamolino, C. Berti, S. Guarnieri, F. Visioli, Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br. J. Nutr. 93(1), 93–99 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    A.F. Pozharskii, A.T. Soldatenkov, A.R. Katritzky, Heterocycles in Life and Society, 1st edn. (Wiley, Chichester/New York/Weinheim/Brisbane/Singapore/Toronto, 1997)., 301 pGoogle Scholar
  88. 88.
    X. Qian, T. Melkamu, P. Upadhyaya, F. Kassie, Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the postinitiation or progression phase of lung tumorigenesis. Cancer Lett. 311(1), 57–65 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    M.C. Qian, X. Fan, K. Mahattanatawee, eds. Volatile sulfur compounds in food. ACS symposium series 1068. American Chemical Society (2011)Google Scholar
  90. 90.
    A. Rahman, S.M. Shahabuddin Hadi, J.H. Parish, Complexes involving quercetin, DNA and Cu(II). Carcinogenesis 11, 2001–2003 (1990)PubMedCrossRefGoogle Scholar
  91. 91.
    J. Ravindran, S. Prasad, B.B. Aggarwal, 2009. Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? AAPS J. 11(3), 495–510 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    J.P. Remington, The Science and Practice of Pharmacy, 21st edn. (Lippincott Williams & Wilkins, Philadelphia, 2005), pp. 773–774Google Scholar
  93. 93.
    J.K. Ritter, F. Chen, Y.Y. Sheen, H.M. Tran, S. Kimura, M.T. Yeatman, I.S. Owens, A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J. Biol. Chem. 267(5), 3257–3261 (1992)PubMedGoogle Scholar
  94. 94.
    M. Roy, S. Mukherjee, Black tea extract prevents 4-nitroquinoline 1-oxide induced oral tumorigenesis in mice by targeting protein tyrosine kinases and associated biological response. Clin. Oncol. Res. 2(1), 2–7 (2019)., available online at Google Scholar
  95. 95.
    M. Roy, S. Chakraborty, M. Siddiqi, R.K. Bhattacharya, Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pac. J. Cancer Prev. 3(1), 61–67 (2002)Google Scholar
  96. 96.
    M. Roy, S. Chakraborty, D. Sinha, R.K. Bhattacharya, M. Siddiqi, Anticlastogenic, antigenotoxic and apoptotic activity of epigallocatechin gallate, a green tea polyphenol. Mutat. Res. 523–524, 33–41 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    M. Roy, S. Chakraborty, D. Sinha, T. Kundu, R.K. Bhattacharya, Polyphenol and cancer. Sci. Cult. 70(3–4), 136–141 (2004)Google Scholar
  98. 98.
    M. Roy, A. Mukherjee, S. Mukherjee, J. Biswas, Phytonutrients from fruits and vegetables in breast Cancer control, in Anticancer Properties of Fruits and Vegetables: A Scientific Review, ed. by D. A. B. Kunnumakkara, (World Scientific Publishing, Singapore, 2014), pp. 75–101, Chapter 3Google Scholar
  99. 99.
    M. Roy, A. Mukherjee, S. Mukherjee, J. Biswas, Phytonutrients from fruits and vegetables in breast cancer control. Ind. Perfumer 60(3) (2016)Google Scholar
  100. 100.
    M. Roy, A. Mukherjee, S. Mukherjee, J. Biswas, Nutraceuticals in leukemia. J. Ayurvedic Herbal Med. 3(1), 41–47 (2017)Google Scholar
  101. 101.
    M. Roy, M. Siddiqi, R.K. Bhattacharya, Cellular and molecular response to tea polyphenols characteristic of cancer chemoprevention. Asian Pacific J. Cancer Prev. 2, 109–116 (2001)Google Scholar
  102. 102.
    F. Ruebsam, D. Murphy, C.V. Tran, L.-S. Li, J. Zhao, P. Dragovich, H. McGuire, A.X. Xiang, S. Zhongxiang, B.K. Ayida, K.J. Blazel, H.K. Sun, Y. Zhou, H. Qing, C.R. Kissinger, S.E. Webber, R.E. Showalter, A.M. Shah, M. Tsan, L. Kirkovsky, Discovery of tricyclic 5,6-dihydro-1H-pyridin-2-ones as novel, potent, and orally bioavailable inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. Lett. 19, 6404–6412 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    M. Saxena, J. Saxena, R. Nema, D. Singh, A. Gupta, Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. 1(6), 168–182 (2013)Google Scholar
  104. 104.
    A. Senning, Elsevier’s Dictionary of Chemoetymology (Elsevier, Amsterdam, 2006). ISBN 0-444-52239-5Google Scholar
  105. 105.
    G. Shen, T.O. Khor, R. Hu, S. Yu, S. Nair, C.T. Ho, B.S. Reddy, M.T. Huang, H.L. Newmark, A.N. Kong, Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse. Cancer Res. 67(20), 9937–9944 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    G. Shen, C. Xu, R. Hu, M.R. Jain, S. Nair, W. Lin, C.S. Yang, J.Y. Chan, A.N. Kong, Comparison of (-)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Pharm. Res. 22(11), 1805–1820 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    D. Sinha, M. Roy, Antagonistic role of tea against sodium arsenite induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice. J. Environ. Pathol. Toxicol. Oncol. 30(4), 1–11 (2011)CrossRefGoogle Scholar
  108. 108.
    D. Sinha, S. Roy, M. Roy, Antioxidant potential of tea reduces arsenite induced oxidative stress in Swiss albino mice. J. Food Chem. Toxicol. 48(4), 1032–1039 (2010)CrossRefGoogle Scholar
  109. 109.
    V.S. Sobolev, B.W. Horn, T.L. Potter, S.T. Deyrup, G.B. Gloer, Production of Stilbenoids and phenolic acids by the peanut plant at Early Stages of growth. J. Agric. Food Chem. 54(10), 3505–3511 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    S. Suzara, D.A. Costa, Y. Gariepyb, S.C.S. Rochaa, V. Raghavanb, Spilanthol extraction using microwave: Calibration curve for gas chromatography. Chem. Eng. Trans. 32, 1783–1788 (2013)Google Scholar
  111. 111.
    R.J. Thoppil, A. Bishayee, Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J. Hepatol. 3(9), 228–249 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    P. Tiwari, B. Kumar, M. Kaur, G. Kaur, H. Kaur, Phytochemical screening and extraction: A review. Internationale Pharmaceutica Sciencia 1(1), 98–106 (2011). Jan–March 2011 | Vol. 1 | Issue 1 Available online ©2011 IPS]Google Scholar
  113. 113.
    S.N. Uddin, M.A. Akond, S. Mubassara, M.N. Yesmin, Antioxidant and antibacterial activities of Trema Cannabina. Middle East J. Sci. Res. 3, 105–108 (2008)Google Scholar
  114. 114.
    R.J.S. Vega, N.C. Xolalpa, A.J.A. Castro, C.P. González, J.P. Ramos, S.P. Gutiérrez, Terpenes from natural products with potential anti-inflammatory activity, in Terpenes and Terpenoids, ed. by S. Perveen, A. A. Taweel, (Intech Open, 2018). Google Scholar
  115. 115.
    K. Vit, K. Katerina, R. Zuzana, K. Kamil, J. Daniel, J. Ludek, O. Lubomir, Mini review: Condensed and hydrolysable tannins as antioxidants influencing the health. J. Med. Chem. 8, 436–447 (2008)Google Scholar
  116. 116.
    A. Wadood, M. Ghufran, S. Jamal, M. Naeem, A. Khan, R. Ghaffar, Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem Anal. Biochem. 2(144), 2–4 (2013)Google Scholar
  117. 117.
    L.S. Wang, G. Zhou, B. Zhu, J. Wu, J.G. Wang, A.M. Abd El-Aty, T. Li, J. Liu, T.L. Yang, D. Wang, X.Y. Zhong, H.H. Zhou, St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin. Pharmacol. Ther. 75(3), 191–197 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    M. Wang, K. Li, Z. Zou, L. Li, L. Zhu, Q. Wang, W. Gao, Y. Wang, W. Huang, R. Liu, K. Yao, Q. Liu, Piperidine nitroxide Tempol enhances cisplatin-induced apoptosis in ovarian cancer cells. Oncol. Lett. 16(4), 4847–4854 (2018)PubMedPubMedCentralGoogle Scholar
  119. 119.
    X. Wang, S. Govind, S.P. Sajankila, L. Mi, R. Roy, F.L. Chung, Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Mol. Nutr. Food Res. 55(10), 1572–1581 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    C. Wiart, Lead Compounds from Medicinal Plants for the Treatment of Cancer (Elsevier, Boston, 2013)Google Scholar
  121. 121.
    R.J. Williams, J.P. Spencer, C. Rice-Evans, Flavonoids: Antioxidants or signaling molecules? Free Radic. Biol. Med. 36(7), 838–849 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    C.L. Wu, A.C. Huang, J.S. Yang, C.L. Liao, H.F. Lu, S.T. Chou, C.Y. Ma, T.C. Hsia, Y.C. Ko, J.G. Chung, Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J. Orthop. Res. 29(8), 1199–1209 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    H. Wu, X. Liang, Y. Fang, X. Qin, Y. Zhang, J. Liu, Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1 alpha expression in colon carcinoma cells. Biomed. Pharmacother. 62(9), 613–621 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    D. Xiao, A.A. Powolny, M.B. Moura, E.E. Kelley, A. Bommareddy, S.H. Kim, E.R. Hahm, D. Normolle, B. Van Houten, S.V. Singh, Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J. Biol. Chem. 285(34), 26558–26569 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    K. Xu, P. Liu, W. Wei, mTOR signaling in tumorigenesis. Biochim. Biophys. Acta 1846(2), 638–654 (2014)PubMedPubMedCentralGoogle Scholar
  126. 126.
    H. Yan, Y. Zhu, B. Liu, H. Wu, Y. Li, X. Wu, Q. Zhou, K. Xu, Mitogen-activated protein kinase mediates the apoptosis of highly metastatic human non-small cell lung cancer cells induced by isothiocyanates. Br. J. Nutr. 106(12), 1779–1791 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    N. Yanishlieva, M. Gordon, Antioxidants in food. J. Agric. Food Chem. 52, 2391 (2001)Google Scholar
  128. 128.
    Y. Zeng, R. Cao, T. Zhang, S. Li, W. Zhong, Design and synthesis of piperidine derivatives as novel human heat shock protein 70 inhibitors for the treatment of drug-resistant tumors. Eur. J. Med. Chem. 97, 19–31 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Y. Zhao, X. Hu, X. Zuo, M. Wang, Chemopreventive effects of some popular phytochemicals on human colon cancer: A review. Food Funct. 9, 4548–4568 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    L. Ziberna, M. Lunder, M. Spela, V. Andreja, T. Federica, P. Sabina, D. Gorazd, Acute cardioprotective and cardiotoxic effects of bilberry anthocyanins in ischemia–reperfusion injury: Beyond concentration-dependent antioxidant activity. Cardiovasc. Toxicol. 10, 283–294 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    C.J. Weng, C.F. Fu, H.W. Huang, C.T. Ho, G.C. Yen, Anti-invasion e_ects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol. Nutr. Food Res. 54(11), 1618–1627 (2010 Nov). CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Madhumita Roy
    • 1
  • Amitava Datta
    • 2
  1. 1.Environmental Carcinogenesis and ToxicologyChittaranjan National Cancer InstituteKolkataIndia
  2. 2.Department of Computer Science and Software EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations