Advertisement

Convection in a Horizontal Porous Annulus with Quasi-Periodic Gravitational Modulation

  • Jabrane BelabidEmail author
  • Karam Allali
  • Mohamed Belhaq
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 228)

Abstract

This chapter investigates the convective instability in a horizontal porous annulus subjected to quasi-periodic (QP) gravitational modulation having two incommensurate frequencies. The porous matrix is supposed to be filled by an incompressible fluid. The model we consider includes the heat equation and the hydrodynamic equations under Darcy law and Boussinesq approximation. The derived model with the temperature-stream function is solved numerically using the alternate direction implicit method. The main objective is to examine the influence of the QP modulation on the transition from unicellular to bicellular flow regime, corresponding to a substantial change in the thermo-convective regime flow. Numerical simulations are conducted for some values of the amplitudes and frequencies of the modulation and the radius ratio of the annulus. Results showed that the thermo-convective instability in the QP regime is greatly influenced by radius ratio and the amplitudes of the QP gravitational modulation. The effect of the frequencies ratio on the critical Rayleigh number is also examined showing that for certain values of parameters, the maximum critical Rayleigh number is reached when the frequency ratio is equal to \(\sqrt{3}\) (QP gravitational modulation) and the minimum is obtained when the frequency ratio is equal to 3 (periodic gravitational modulation).

Keywords

Gravitational modulation Free convection Quasi-periodic Heat transfer Porous annulus 

References

  1. 1.
    K. Vafai, Handbook of Porous Media (Crc Press, 2015)Google Scholar
  2. 2.
    D.A. Nield, A. Bejan, Convection in Porous Media (Springer, 2017)Google Scholar
  3. 3.
    J.P. Caltagirone, Thermoconvective instabilities in a porous medium bounded by two concentric horizontal cylinders. J. Fluid Mech. 76(2), 337–362 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Mota, E. Saatdjian, Natural convection in a porous, horizontal cylindrical annulus. J. Heat Transf. 116(3), 621–626 (1994)CrossRefGoogle Scholar
  5. 5.
    K. Khanafer, A.J. Chamkha, Mixed convection within a porous heat generating horizontal annulus. Int. J. Heat Mass Transf. 46(10), 1725–1735 (2003)CrossRefGoogle Scholar
  6. 6.
    J. Belabid, A. Cheddadi, Comparative numerical simulation of natural convection in a porous horizontal cylindrical annulus. Appl. Mech. Mater. 670, 613–616 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Belabid, A. Cheddadi, Natural convection in an annular porous medium: effect of brinkman correction on the bifurcation point. Appl. Mech. Mater. 789, 403–406 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Belabid, K. Allali, M. Belhaq, Natural convection in a horizontal porous annulus under quasi-periodic gravitational modulation, in MATEC Web of Conferences, vol. 241 (2018), p. 01005CrossRefGoogle Scholar
  9. 9.
    Y.F. Rao, K. Fukuda, S. Hasegawa, Steady and transient analyses of natural convection in a horizontal porous annulus with the Galerkin method. J. Heat Transf. 109, 919–927 (1987)CrossRefGoogle Scholar
  10. 10.
    K. Himasekhar, H.H. Bau, Two-dimensional bifurcation phenomena in thermal convection in horizontal, concentric annuli containing saturated porous media. J. Fluid Mech. 187, 267–300 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    M.C. Charrier-Mojtabi, A. Mojtabi, M. Azaiez, G. Labrosse, Numerical and experimental study of multicellular free convection flows in an annular porous layer. Int. J. Heat Mass Transf. 34, 3061–3074 (1991)CrossRefGoogle Scholar
  12. 12.
    K. Khanafer, A. Al-Amiri, I. Pop, Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porous substrate. Int. J. Heat Mass Transf. 51, 1613–1627 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Belabid, K. Allali, Influence of gravitational modulation on natural convection in a horizontal porous annulus. J. Heat Transf. 139, 022502 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Allali, M. Belhaq, K. El Karouni, Influence of quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media. Commun. Nonlinear Sci. Numer. Simul. 17, 1588–1596 (2012)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K. Allali, S. Assiyad, M. Belhaq, Convection of polymerization front with solid product under quasi-periodic gravitational modulation. Nonlinear Dyn. Syst. Theory 14, 323–334 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    T. Boulal, S. Aniss, M. Belhaq, R. Rand, Effect of quasiperiodic gravitational modulation on the stability of a heated fluid layer. Phys. Rev. E 76, 056320 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    T. Boulal, S. Aniss, M. Belhaq, A. Azouani, Effect of quasi-periodic gravitational modulation on the convective instability in Hele-Shaw cell. Int. J. Non-Linear Mech. 43, 852–857 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    G.N. Facas, B. Farouk, Transient and steady-state natural convection in a porous medium between two concentric cylinders. J. Heat Transf. 105, 660–663 (1983)CrossRefGoogle Scholar
  19. 19.
    G.N. Facas, Natural convection from a buried pipe with external baffles. Numer. Heat Transf. Part A Appl. 27, 595–609 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    M.C. Charrier-Mojtabi, Numerical simulation of two-and threedimensional free convection flows in a horizontal porous annulus using a pressure and temperature formulation. Int. J. Heat Mass Transf. 40, 1521–1533 (1997)CrossRefGoogle Scholar
  21. 21.
    J.P.B. Mota, I.A.A.C. Esteves, C.A.M. Portugal, J.M.S.S. Esperana, E. Saatdjian, Natural convection heat transfer in horizontal eccentric elliptic annuli containing saturated porous media. Int. J. Heat Mass Transf. 43, 4367–4379 (2000)CrossRefGoogle Scholar
  22. 22.
    A.F. Alfahaid, R.Y. Sakr, M.I. Ahmed, Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi. IIUM Eng. J. 6 (2005)Google Scholar
  23. 23.
    Z. Alloui, P. Vasseur, Natural convection in a horizontal annular porous cavity saturated by a binary mixture. Comput. Therm. Sci. Int. J. 3 (2011)CrossRefGoogle Scholar
  24. 24.
    H.H. Bau, Thermal convection in a horizontal, eccentric annulus containing a saturated porous medium -an extended perturbation expansion. Int. J. Heat Mass Transf. 27, 2277–2287 (1984)CrossRefGoogle Scholar
  25. 25.
    M.A. Sheremet, I. Pop, Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiornos model. Comput. Fluids 118, 182–190 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Sciences and TechnologiesUniversity Hassan II CasablancaMohammediaMorocco
  2. 2.Faculty of Sciences Ain ChockUniversity Hassan II CasablancaCasablancaMorocco

Personalised recommendations