Advertisement

Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects

  • Manuel G. VelardeEmail author
  • Yuri S. Ryazantsev
  • Ramon G. Rubio
  • Eduardo Guzman
  • Francisco Ortega
  • Antonio Fernandez-Barbero
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 228)

Abstract

Provided here is a succinct survey of significant features of theory and experiments dealing with drops or bubbles which may act as traveling reactors or mere carriers of appropriate payloads in microfluidic flows and devices. The units could be the seat of inner or surface reactions, internal heat generation, phase transformations or the like that provoke interfacial tension inhomogeneity and eventually controlled, directed or self-propelled motion (Marangoni effect).

Keywords

Creeping flows Active drops Control of drop motions Micro reactors Micro carriers Drop self-propulsion Microfluidics 

Notes

Acknowledgements

This work was funded in part by EU under Marie Curie ITN CoWet (Grant Number 607861) and by MINECO under grants FIS-2014-62005-EXP and CTQ-2016-78895-R.

References

  1. 1.
    J.-P. Abid, M. Figoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, S. Brasselet, Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueos medium. Langmuir 27, 7967–7971 (2011)CrossRefGoogle Scholar
  2. 2.
    S.L. Anna, Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285–309 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Baigl, Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12, 3637–3653 (2012)CrossRefGoogle Scholar
  4. 4.
    T. Ban, T. Yamagami, H. Nakata, Y. Okano, pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH. Langmuir 29, 2554–2561 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Björnmalm, Y. Yan, F. Caruso, Engineering and evaluating drug delivery particles in microfluidic devices. J. Controlled Release 190, 139–149 (2014)CrossRefGoogle Scholar
  6. 6.
    R. Chattaraj, N.T. Blum, A. Goodwin, Design and application of stimulus-responsive droplets and bubbles stabilized by phospholipid monolayers, Current Opinion Coll. Interface Sci. 40, 14–24 (2019)Google Scholar
  7. 7.
    A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, D. Baigl, Photomanipulation of a droplet by the chromocapillary effect. Angew. Chem. Int. Ed. 48, 9281–9284 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Egatz-Gomez, S. Melle, A.A. Garcia, S.A. Lindsay, M. Marquez, P. Dominguez-Garcia, M.A. Rubio, S.T. Picraux, J.L. Taraci, T. Clement, D. Yang, M.A. Hayes, D. Gust, Discrete magnetic microfluidics. Appl. Phys. Lett. 89, 034106 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    L. Florea, K. Wagner, P. Wagner, G.G. Wallace, F. Benito-López, D.L. Officer, D. Diamond, Photo-chemopropulsion-Light-stimulated movement of microdroplets. Adv. Mater. 26, 7339–7345 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Fontana, M.P.A. Ferreira, A. Correia, J. Hirvonen, H.A. Santos, Microfluidics as cutting-edge technique for drug delivery. J. Drug Deliv. Sci. Technol. 34, 76–87 (2016)CrossRefGoogle Scholar
  11. 11.
    B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott, Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–60 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Y.P. Gupalo, A.Y. Rednikov, Y.S. Ryazantsev, Thermocapillary drift of a drop with nonlinear surface tension dependence on temperature. Izv Akad Nauk SSSR Mekh Zhidk Gaza 53, 433–442 (1989). (in Russian)zbMATHGoogle Scholar
  13. 13.
    M.M. Hanczyc, T. Toyota, T. Ikegami, N. Packard, T. Sugawara, Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. J. Am. Chem. Soc. 129, 9386–9391 (2007)CrossRefGoogle Scholar
  14. 14.
    M. He, J.S. Edgar, D.M. Jeffries, R.M. Lorenz, J.P. Shelby, D.T. Chiu, Selective encapsulation of single cells and subcellular organelles into picoliter and femtoliter droplets. Anal. Chem. 77, 1539–1544 (2005)CrossRefGoogle Scholar
  15. 15.
    S.K. Ichimura, M. Nakagawa, Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Ito, M. Heydari, A. Hashimoto, T. Konno, A. Hirasawa, S. Hori, K. Kurita, A. Nakajima, The movement of a water droplet on a gradient surface prepared by photodegradation. Langmuir 23, 1845–1850 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Koster et al., Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8, 1110–1115 (2008)CrossRefGoogle Scholar
  18. 18.
    L.G. Leal, Advanced Transport Phenomena. Fluid Mechanics and Convective Transport Processes (Cambridge University Press, Cambridge, 2007)CrossRefGoogle Scholar
  19. 19.
    C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Swimming droplets. Annu. Rev. Condens. Matter Phys. 7, 171–193 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M. Morozov, S. Michelin, Self-propulsion near the onset of Marangoni instability of deformable active droplets (2018). arXiv:1810.03983v1[physics.flu-dyn]
  21. 21.
    M. Muto, M. Yamamoto, M. Motosuke, A noncontact picoliter droplet handling by photothermal control of interfacial flow. Anal. Sci. (Japan) 32, 49–55 (2016)CrossRefGoogle Scholar
  22. 22.
    A.A. Nepomnyashchy, M.G. Velarde, P. Colinet, Interfacial Phenomena and Convection (Chapman & Hall/CRC, Boca Raton, 2002)zbMATHGoogle Scholar
  23. 23.
    T. Ohta, T. Ohkuma, K. Shitara, Deformation of a self-propelled domain in an excitable reaction-diffusion system. Phys. Rev. E 80, 056203 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    L.M. Pismen, U. Thiele, Asymptotic theory for a moving droplet driven by a wettability gradient. Phys. Fluids 18, 042104 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A.Y. Rednikov, Y.S. Ryanzatsev, Thermocapillary motion of a droplet heated by radiation. Int. J. Heat Mass Transf. 35, 255–261 (1992)CrossRefGoogle Scholar
  26. 26.
    A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids 6(4), 51–468 (1994)MathSciNetzbMATHGoogle Scholar
  27. 27.
    A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, On the development of translational subcritical Marangoni instability for a drop with uniform internal heat generation. J. Colloid Interface Sci. 164, 168–180 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, Active drops and drop motions due to nonequilibrium phenomena. J. Non-Equilib. Thermodyn. 19, 95–113 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    A.Y. Rednikov, V. Kurdyumov, Y.S. Ryanzatsev, M.G. Velarde, The role of time-varying gravity on the motion of a drop induced by Marangoni instability. Phys. Fluids 7, 2670–2678 (1995)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    R. Riahi, A. Tamayol, S.A.M. Shaegh, A.M. Ghaemmaghami, M.R. Dokmeci, A. Khademhosseini, Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101–112 (2015)CrossRefGoogle Scholar
  31. 31.
    Y.S Ryazantsev, M.G. Velarde, R.G. Rubio, F. Ortega, P. Lopez, Thermo- and soluto-capillarity: passive and active drops. Adv. Colloid Interface Sci. 247, 52–80 (2017). (and references therein)CrossRefGoogle Scholar
  32. 32.
    Y.S. Ryazantsev, M.G. Velarde, R.G. Rubio, E. Guzman, F. Ortega, J.J. Montoya, On the autonomous motion of active drops or bubbles. J. Coll. Interface Sci. 527, 180–186 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    S. Rybalko, N. Magome, K. Yoshikawa, Forward and backward laser-guided motion of an oil droplet. Phys. Rev. E 70, 046301 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    M. Schmitt, H. Stark, Marangoni flow at droplet interfaces: three-dimensional solution and applications. Phys. Fluids 28, 012106 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017)CrossRefGoogle Scholar
  37. 37.
    V. Sharma, A. Sundaramurthy, Reusable hollow polymer microreactors incorporated with anisotropic nanoparticles for catalysis application. ACS Omega 4, 628–636 (2019)CrossRefGoogle Scholar
  38. 38.
    V.M. Starov, M.G. Velarde, Surface forces and wetting phenomena. J Phys Cond. Matter 21, 464121 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    V.M. Starov, M.G. Velarde, C.J. Radke, Wetting and Spreading Dynamics (CRC Press/Taylor & Francis, Boca Raton, 2007)CrossRefGoogle Scholar
  40. 40.
    Y. Sun, T.A. Haglund, A.J. Rogers, A.S. Ghanim, P. Sethu, Microfluidics technologies for blood-based cancer liquid biopsies. Anal. Chim. Acta 1012, 1–20 (2018)CrossRefGoogle Scholar
  41. 41.
    H. Takeuchi, M. Motosuke, S. Honami, Noncontact bubble manipulation in microchannel by using photothermal Marangoni effect. Heat Transfer Engng 333, 234–244 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, Self-propelled oil droplets consuming “fuel” surfactant. J. Am. Chem. Soc. 131, 5012–5013 (2009)CrossRefGoogle Scholar
  43. 43.
    D. Tsemakh, O.M. Lavrenteva, A. Nir, On the locomotion of a drop, induced by the internal secretion of surfactant. Int. J. Multiph. Flow 30, 1337–1367 (2004)CrossRefGoogle Scholar
  44. 44.
    M.G. Velarde, A.Y. Rednikov, Y.S. Ryazantsev, Drop motions and interfacial instability J Phys: Condens. Matter 8, 9233–9247 (1996)Google Scholar
  45. 45.
    M.G. Velarde, Drops, liquid layers and the Marangoni effect. Philos. Trans. R. Soc. A 356, 829–844 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    E. Verneuil, M.L. Cordero, F. Gallaire, C.N. Baroud, Laser-induced force on a microfluidic drop: Origin and magnitude. Langmuir 25, 5127–5134 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Yabunaka, T. Ohta, N. Yoshinaga, Self-propelled motion of a fluid droplet under chemical reaction. J. Chem. Phys 136, 074904 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    K.G. Yager, C.J. Barrett, Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A Chem. 182, 250–261 (2006)CrossRefGoogle Scholar
  49. 49.
    N. Yoshinaga, Spotaneous motion and deformation of a self-propelled droplet. Phys. Rev. E 80, 012913 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    N.O. Young, J.S. Goldstein, M.J. Block, The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Manuel G. Velarde
    • 1
    Email author
  • Yuri S. Ryazantsev
    • 1
  • Ramon G. Rubio
    • 1
    • 2
  • Eduardo Guzman
    • 1
    • 2
  • Francisco Ortega
    • 1
    • 2
  • Antonio Fernandez-Barbero
    • 3
  1. 1.Instituto Pluridisciplinar, UCMMadridSpain
  2. 2.Departamento de Quimica FisicaUCMMadridSpain
  3. 3.Departamento de Quimica y FisicaUniversidad de AlmeriaAlmeriaSpain

Personalised recommendations