Advertisement

Recent Advances in the Development of Coumarin Derivatives as Antifungal Agents

  • Rajesh Kumar Sharma
  • Diksha KatiyarEmail author
Chapter

Abstract

Coumarin is a privileged scaffold found in numerous pharmaceutically important natural products and synthetic molecules. The compounds bearing coumarin moiety exhibit broad spectrum of biological properties such as antibacterial, antiviral, anticancerous, anti-inflammatory, antihyperglycemic, and antipyretic activities. Coumarins are also well-known for their antifungal properties. In recent past, several literature reports have been published which highlight the importance of coumarin motif in the area of antifungal drug development. The present contribution provides an overview of synthetic and natural coumarins which have demonstrated potent antifungal activity, reported during 1992–2017. Structure Activity Relationship (SAR) may help medicinal chemists in the rational design and synthesis of new compounds based on coumarin scaffold for the treatment of fungal infections.

Keywords

Coumarin Antifungal Treatment Fungal infection Structure activity relationship 

References

  1. 1.
    Mora C, Tittensor DP, Adl S et al (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brown GD, Denning DW, Levitz SM (2012) Tackling human fungal infections. Science 336:647CrossRefPubMedGoogle Scholar
  3. 3.
    Brown GD, Denning DW, Gow N et al (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13CrossRefPubMedGoogle Scholar
  4. 4.
    Denning DW, Bromley MJ (2015) How to bloster the antifungal pipeline. Science 347:1414–1416CrossRefPubMedGoogle Scholar
  5. 5.
    Cuenca-Estrella M, Bernal-Martinez L, Buitrago MJ et al (2008) Update on the epidemiology and diagnosis of invasive fungal infection. Int J Antimicrob Agents 32:S143–S147CrossRefPubMedGoogle Scholar
  6. 6.
    Patterson TF (2005) Advances and challenges in management of invasive mycoses. Lancet 366:1013–1025CrossRefPubMedGoogle Scholar
  7. 7.
    Rodloff C, Koch D, Schaumann R (2011) Epidemiology and antifungal resistance in invasive candidiasis. Eur J Med Res 16:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brandt ME, Park BJ (2013) Think fungus-prevention and control of fungal infections. Emerg Infect Dis 19:1688–1689CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Azie N, Neofytos D, Pfaller M et al (2012) The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis 73:293–300CrossRefPubMedGoogle Scholar
  10. 10.
    Armstrong-James D, Meintjes G, Brown GD (2014) A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 22:120–127CrossRefPubMedGoogle Scholar
  11. 11.
    Park BJ, Wannemuehler KA, Marston BJ et al (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530Google Scholar
  12. 12.
    Jarvis JN, Casazza JP, Stone HH et al (2013) The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J Infect Dis 207:1817–1828CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17:873–881CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    de Pauw BE, Picazo JJ (2008) Present situation in the treatment of invasive fungal infection. Int J Antimicrob Agents 32:S167–S171CrossRefPubMedGoogle Scholar
  15. 15.
    Ellis M (2001) Invasive fungal infections: evolving challenges for diagnosis and therapeutics. Mol Immunol 38:947–957CrossRefGoogle Scholar
  16. 16.
    Lai CC, Tan CK, Huang YT et al (2008) Current challenges in the management of invasive fungal infections. J Infect Chemother 14:77–85CrossRefPubMedGoogle Scholar
  17. 17.
    Chen SCA, Playford EG, Sorrell TC (2010) Antifungal therapy in invasive fungal infections. Curr Opin Pharmacol 10:522–530CrossRefPubMedGoogle Scholar
  18. 18.
    Groll AH, De Lucca AJ, Walsh TW (1998) Emerging targets for the development of novel antifungal therapeutics. Trends Microbiol 6:117–124CrossRefPubMedGoogle Scholar
  19. 19.
    Orme M, Sjöqvist F (2010) Clinical pharmacology in research, teaching and health care. Basic Clin Pharmacol Toxicol 107:531–559CrossRefPubMedGoogle Scholar
  20. 20.
    Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance and disease. Microbiol Mol Biol Rev 75:213–267CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Richardson M, Lass-Florl C (2008) Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 14:5–24CrossRefPubMedGoogle Scholar
  22. 22.
    Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151CrossRefPubMedGoogle Scholar
  23. 23.
    Allen D, Wilson D, Drew R et al (2015) Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti-Infective Ther 13:787–798Google Scholar
  24. 24.
    Sanglard D (2002) Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5:379–385CrossRefPubMedGoogle Scholar
  25. 25.
    Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4:a019703CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pour M, Spulak M, Buchta V et al (2001) 3-Phenyl-5-acyloxymethyl-2H,5H-furan-2-ones: synthesis and biological activity of a novel group of potential antifungal drugs. J Med Chem 44:2701–2706CrossRefPubMedGoogle Scholar
  27. 27.
    Dua R, Shrivastava S, Sonwane SK et al (2011) Pharmacological significance of synthetic heterocycles scaffold: a review. Adv Biol Res 5:120–144Google Scholar
  28. 28.
    Kathiravan MK, Salake AB, Chothe AS et al (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698CrossRefPubMedGoogle Scholar
  29. 29.
    Hault JRS, Paya M (1996) Pharmacological and biochemical actions of simple coumarins: natural products and therapeutic potential. Gen Pharmacol 27:713–722CrossRefGoogle Scholar
  30. 30.
    Murray RDH (1995) Coumarins. Nat Prod Rep 12:477–505CrossRefGoogle Scholar
  31. 31.
    Garazd MM, Garadz YL, Khilya VP (2003) Neoflavones. 1. Natural distribution and spectral and biological properties. Chem Nat Compd 39:54–121CrossRefGoogle Scholar
  32. 32.
    Borges F, Roleira F, Milhazes N et al (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916CrossRefPubMedGoogle Scholar
  33. 33.
    Riveiro ME, Kimpe ND, Moglioni A et al (2010) Coumarins: old compounds with novel promising therapeutic perspectives. Curr Med Chem 17:1325–1338CrossRefPubMedGoogle Scholar
  34. 34.
    Kontogiorgis C, Detsi A, Hadjipavlou-Litina D (2012) Coumarin-based drugs: a patent review (2008 – present). Expert Opin Ther Pat 22:437–454CrossRefPubMedGoogle Scholar
  35. 35.
    Barot KP, Jain SV, Kremer L et al (2015) Recent advances on therapeutic journey of coumarins: current status and perspectives. Med Chem Res 24:2771–2798CrossRefGoogle Scholar
  36. 36.
    Gaudino EC, Tagliapietra S, Martina K et al (2016) Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Adv 6:46394–46405CrossRefGoogle Scholar
  37. 37.
    Huang GJ, Deng JS, Liao JC et al (2012) Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory activity of imperatorin from Glehnia littoralis. J Agric Food Chem 60:1673–1681CrossRefPubMedGoogle Scholar
  38. 38.
    Gomez-Outes A, Suárez-Gea ML, Calvo-Rojas G et al (2012) Discovery of anticoagulant drugs: a historical perspective. Curr Drug Discov Technol 9:83–104CrossRefPubMedGoogle Scholar
  39. 39.
    Wang CM, Zhou W, Li CX et al (2009) Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea. J Asian Nat Prod Res 11:783–791CrossRefPubMedGoogle Scholar
  40. 40.
    Shin E, Choi KM, Yoo HS et al (2010) Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol Pharm Bull 33:1610–1614CrossRefPubMedGoogle Scholar
  41. 41.
    Tinel M, Belghiti J, Descatoire V et al (1987) Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives. Biochem Pharmacol 36:951–955CrossRefPubMedGoogle Scholar
  42. 42.
    Whang WK, Park HS, Ham I et al (2005) Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp Mol Med 37:436–446CrossRefPubMedGoogle Scholar
  43. 43.
    Carotti A, Carrieri A, Chimichi S et al (2002) Natural and synthetic geiparvarins are strong and selective. Bioorg Med Chem Lett 12:3551–3555CrossRefPubMedGoogle Scholar
  44. 44.
    Newman RA, Chen W, Madden TL (1998) Pharmaceutical properties of related calanolide compounds with activity against human immunodeficiency virus. J Pharm Sci 87:1077–1080CrossRefPubMedGoogle Scholar
  45. 45.
    Maxwell A (1997) DNA gyrase as a drug target. Trends Microbiol 5:102–109CrossRefPubMedGoogle Scholar
  46. 46.
    Musa MA, Cooperwood JS, Khan MOF (2008) A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 15:2664–2679CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Thakur A, Singla R, Jaitak V (2015) Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 101:476–495CrossRefPubMedGoogle Scholar
  48. 48.
    Dandriyal J, Singla R, Kumar M et al (2016) Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur J Med Chem 119:141–168CrossRefPubMedGoogle Scholar
  49. 49.
    Hassan MZ, Osman H, Ali MA et al (2016) Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 123:236–255CrossRefPubMedGoogle Scholar
  50. 50.
    Keri RS, Sasidhar BS, Nagaraja BM et al (2015) Recent progress in the drug development of coumarin derivatives as potent anti tuberculosis agents. Eur J Med Chem 100:257–269CrossRefPubMedGoogle Scholar
  51. 51.
    Hu YQ, Xu Z, Zhang S et al (2017) Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur J Med Chem 136:122–130CrossRefPubMedGoogle Scholar
  52. 52.
    Grover J, Jachak SM (2015) Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv 5:38892–38905CrossRefGoogle Scholar
  53. 53.
    Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE et al (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10:3813–3833CrossRefPubMedGoogle Scholar
  54. 54.
    Al-Majedy YK, Kadhum AAH, Al-Amiery AA et al (2017) Coumarins: the antimicrobial agents. Sys Rev Pharm 8:62–70CrossRefGoogle Scholar
  55. 55.
    Patil PO, Bari SB, Firke SD et al (2013) A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer's disease. Bioorg Med Chem 21:2434–2450CrossRefPubMedGoogle Scholar
  56. 56.
    Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer's disease. Bioorg Med Chem 20:1175–1180CrossRefPubMedGoogle Scholar
  57. 57.
    de Souza LG, Renno MN, Figueroa-Villar JD (2016) Coumarins as cholinesterase inhibitors: a review. Chem Biol Interact 254:11–23CrossRefPubMedGoogle Scholar
  58. 58.
    Kofinas C, Chinou I, Loukis A et al (1998) Flavonoids and bioactive coumarins of Tordylium apulum. Phytochemistry 48:637–641CrossRefGoogle Scholar
  59. 59.
    Oliva A, Meepagala KM, Wedge DE et al (2003) Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. J Agric Food Chem 51:890–896CrossRefPubMedGoogle Scholar
  60. 60.
    Carpinella MC, Ferrayoli CG, Palacios SM (2005) Antifungal synergistic effect of scopoletin, a hydroxyl coumarin isolated from Melia azedarach L. fruits. J Agric Food Chem 53:2922–2927CrossRefPubMedGoogle Scholar
  61. 61.
    Stein AC, Alvarez S, Avancini C et al (2006) Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol 107:95–98CrossRefPubMedGoogle Scholar
  62. 62.
    El-Seedi HR (2007) Antimicrobial arylcoumarins from Asphodelus microcarpus. J Nat Prod 70:118–120CrossRefPubMedGoogle Scholar
  63. 63.
    Kurdelas RR, Lima B, Tapia A et al (2010) Antifungal activity of extracts and prenylated coumarins isolated from Baccharis darwinii Hook and Arn. (Asteraceae). Molecules 15:4898–4907CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Céspedes CL, Avila JG, Martínez A et al (2006) Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem 54:3521–3527CrossRefPubMedGoogle Scholar
  65. 65.
    Navarro-García VM, Rojas G, Avilés M et al (2011) In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand. Mycoses 54:e569–e571CrossRefPubMedGoogle Scholar
  66. 66.
    Curir P, Galeotti F, Dolci M et al (2007) Pavietin, a coumarin from Aesculus pavia with antifungal activity. J Nat Prod 70:1668–1671CrossRefPubMedGoogle Scholar
  67. 67.
    Kumar R, Saha A, Saha D (2012) A new antifungal coumarin from Clausena excavata. Fitoterapia 83:230–233CrossRefPubMedGoogle Scholar
  68. 68.
    Montagner C, de Souza SM, Groposoa C et al (2008) Antifungal activity of coumarins. Z Naturforsch C 63:21–28CrossRefPubMedGoogle Scholar
  69. 69.
    Sandjo LP, Foster AJ, Rheinheimer J et al (2012) Coumarin derivatives from Pedilanthus tithymaloides as inhibitors of conidial germination in Magnaportheoryzae. Tetrahedron Lett 53:2153–2156CrossRefGoogle Scholar
  70. 70.
    Marcondes HC, de Oliveira TT, Taylor JG et al (2015) Antifungal activity of coumarin mammeisin isolated from species of the Kielmeyera Genre (Clusiaceae or Guttiferae). J Chem Article ID 241243:1–4Google Scholar
  71. 71.
    Sribuhom T, Sriphana U, Thongsri Y et al (2015) Chemical constituents from the stems of Alyxia schlechteri. Phytochem Lett 11:80–84CrossRefGoogle Scholar
  72. 72.
    Ayine-Tora DM, Kingsford-Adaboh R, Asomaning WA et al (2016) Coumarin antifungal lead compounds from Millettia thonningii and their predicted mechanism of action. Molecules 21:1369–1382CrossRefPubMedCentralGoogle Scholar
  73. 73.
    Shi Y, Zhou CH (2011) Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 21:956–960CrossRefPubMedGoogle Scholar
  74. 74.
    Al-Amiery AA, Kadhum AA, Mohamad AB (2012) Antifungal activities of new coumarins. Molecules 17:5713–5723CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Panda SS, Malik R, Chand M et al (2012) Synthesis and antimicrobial activity of some new 4-triazolylmethoxy-2H-chromen-2-one derivatives. Med Chem Res 21:3750–3756CrossRefGoogle Scholar
  76. 76.
    Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ferreira SZ, Carneiro HC, Lara HA et al (2015) Synthesis of a new peptide–coumarin conjugate: a potential agent against cryptococcosis. ACS Med Chem Lett 6:271–275CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Shaikh MH, Subhedar DD, Khan FA et al (2016) 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents. Chin Chem Lett 27:295–301CrossRefGoogle Scholar
  79. 79.
    Gilbert AM, Failli A, Shumsky J et al (2006) Pyrazolidine-3,5-diones and 5-hydroxy-1H-pyrazol-3(2H)-ones, inhibitors of UDP-N-acetylenolpyruvyl glucosamine reductase. J Med Chem 49:6027–6036CrossRefPubMedGoogle Scholar
  80. 80.
    Magedov IV, Manpadi M, Slambrouck SV et al (2007) Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J Med Chem 50:5183–5192CrossRefPubMedGoogle Scholar
  81. 81.
    Szabo G, Fischer J, Kis-Varga A et al (2008) New celecoxib derivatives as anti-inflammatory agents. J Med Chem 51:142–147CrossRefPubMedGoogle Scholar
  82. 82.
    Sener A, Sener MK, Bildmci I et al (2002) Studies on the reactions of cyclic oxalyl compounds with hydrazines or hydrazones: synthesis and reactions of 4-benzoyl-1- (3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid. J Heterocyclic Chem 39:869–875CrossRefGoogle Scholar
  83. 83.
    Abdelhafez OM, Amin KM, Batran RZ et al (2010) Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg Med Chem 18:3371–3378CrossRefPubMedGoogle Scholar
  84. 84.
    Renuka N, Kumar K (2013) Synthesis and biological evaluation of novel formyl-pyrazoles bearing coumarin moiety as potent antimicrobial and antioxidant agents. Bioorg Med Chem Lett 23:6406–6409CrossRefGoogle Scholar
  85. 85.
    Dongamanti A, Bommidi VL, Sidda R et al (2015) Microwave-assisted synthesis of some new coumarin–pyrazoline hybrids and their antimicrobial activity. J Serb Chem Soc 80:305–313CrossRefGoogle Scholar
  86. 86.
    Kashyap SJ, Garg VK, Sharma PK et al (2012) Thiazoles: having diverse biological activities. Med Chem Res 21:2123–2132CrossRefGoogle Scholar
  87. 87.
    Arshad A, Osman H, Bagley MC et al (2011) Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur J Med Chem 46:3788–3794CrossRefPubMedGoogle Scholar
  88. 88.
    El-Dean AM, Zaki RM, Geies AA et al (2013) Synthesis and antimicrobial activity of new heterocyclic compounds containing thieno [3, 2-c] coumarin and pyrazolo [4, 3-c] coumarin frameworks. Russ J Bioorganic Chem 39:553–564CrossRefGoogle Scholar
  89. 89.
    Chiou BS, Shoen PE (2002) Effect of crosslinking on thermal and mechanical properties of polyurethanes. J Appl Polym Sci 83:212–223CrossRefGoogle Scholar
  90. 90.
    El-Wahab HA, El-Fattah MA, El-Khalik NA et al (2014) Synthesis and characterization of coumarin thiazole derivative 2-(2-amino-1, 3-thiazol-4-yl)-3H-benzo[f] chromen-3-one with anti-microbial activity and its potential application in antimicrobial polyurethane coating. Prog Org Coat 77:1506–1511CrossRefGoogle Scholar
  91. 91.
    Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:4–25CrossRefGoogle Scholar
  92. 92.
    Reddy VN, Yamini L, Rao YJ et al (2017) Synthesis of pyrazole-4-carbaldehyde derivatives for their antifungal activity. Med Chem Res 26:1664–1674CrossRefGoogle Scholar
  93. 93.
    Al-Tel TH, Al-Qawasmeh RA, Zaarour R (2011) Design, synthesis and in vitro antimicrobial evaluation of novel imidazo[1,2-a] pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur J Med Chem 46:1874–1881CrossRefPubMedGoogle Scholar
  94. 94.
    Lad HB, Giri RR, Brahmbhatt DI (2013) An efficient synthesis of some new 3-bipyridinyl substituted coumarins as potent antimicrobial agents. Chin Chem Lett 24:227–229CrossRefGoogle Scholar
  95. 95.
    Chai X, Yu S, Wang X et al (2013) Synthesis and antifungal activity of novel 7-O-substituted pyridyl-4-methyl coumarin derivatives. Med Chem Res 22:4654–4662CrossRefGoogle Scholar
  96. 96.
    Kenchappa R, Bodke YD, Chandrashekar A et al (2017) Synthesis of some 2,6-bis(1-coumarin-2-yl)-4-(4-substituted phenyl) pyridine derivatives as potent biological agents. Arab J Chem 10:S1336–S1344CrossRefGoogle Scholar
  97. 97.
    Selvam TP, James CR, Dniandev PV et al (2012) A mini review of pyrimidine and fused pyrimidine marketed drugs. Res Pharm 2:1–9Google Scholar
  98. 98.
    Jain KS, Chitre TS, Miniyar PB et al (2006) Biological and medicinal significance of pyrimidines. Curr Sci 90:793–803Google Scholar
  99. 99.
    Sharma V, Chitranshi N, Agarwal AK (2014) Significance and biological importance of pyrimidine in the microbial world. Int J Med Chem 2014:1–31Google Scholar
  100. 100.
    Ghashang M, Mansoor SS, Aswin K (2014) Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno [2, 3-d] pyrimidinone derivatives and their antimicrobial activity. J Adv Res 5:209–218CrossRefPubMedGoogle Scholar
  101. 101.
    Imran M, Khan SA (2015) Synthesis and antimicrobial activity of some 2-amino-4-(7-substituted/unsubstituted coumarin-3-yl)-6-(chlorosubstitutedphenyl) pyrimidines. Trop J Pharm Res 14:1265–1272CrossRefGoogle Scholar
  102. 102.
    Sarkanj B, Molnar M, Cacic M et al (2013) 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem 139:488–495Google Scholar
  103. 103.
    Čačić M, Pavić V, Molnar M et al (2014) Design and synthesis of some new 1, 3, 4-thiadiazines with coumarin moieties and their antioxidative and antifungal activity. Molecules 19:1163–1177CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Patel D, Kumari P, Patel NB (2017) Synthesis and biological evaluation of coumarin based isoxazoles, pyrimidinthiones and pyrimidin-2-ones. Arab J Chem 10:S3990–S4001CrossRefGoogle Scholar
  105. 105.
    Rokosz LL, Huang CY, Reader JC et al (2005) Surfing the piperazine core of tricyclic farnesyltransferase inhibitors. Bioorg Med Chem Lett 15:5537–5543CrossRefPubMedGoogle Scholar
  106. 106.
    Mandala D, Valeru A, Pochampalli J et al (2013) Synthesis, antimicrobial activity and molecular modeling of novel 4-(3-(4-benzylpiperazin-1-yl)propoxy)-7-methoxy-3-substituted phenyl-2H-chromen-2-one. Med Chem Res 22:5481–5489CrossRefGoogle Scholar
  107. 107.
    Ostrowska K, Grzeszczuk D, Maciejewska D et al (2016) Synthesis and biological screening of a new series of 5-[4-(4-aryl-1-piperazinyl) butoxy] coumarins. Monatsh Chem 147:1615–1627CrossRefGoogle Scholar
  108. 108.
    Berthon G (1995) Handbook of metal–ligand interactions in biological fluids, vol 1 and 2. Marcel-Dekker Inc, New YorkGoogle Scholar
  109. 109.
    Nagy L, Csintalan G, Kálmán E et al (2005) Applications of metal ions and their complexes in medicine. Acta Pharm Hung 73:221–236Google Scholar
  110. 110.
    Savić ND, Milivojevic DR, Glišić BĐ et al (2016) A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture. RSC Adv 6:13193–13206CrossRefGoogle Scholar
  111. 111.
    Tweedy BG (1964) Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 55:910–914Google Scholar
  112. 112.
    Ahmad S, Isab AA, Ali S et al (2006) Perspectives in bioinorganic chemistry of some metal based therapeutic agents. Polyhedron 25:1633–1645CrossRefGoogle Scholar
  113. 113.
    Grazul M, Budzisz E (2009) Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev 253:2588–2598CrossRefGoogle Scholar
  114. 114.
    Kioseoglou E, Petanidis S, Gabriel C et al (2015) The chemistry and biology of vanadium compounds in cancer therapeutics. Coord Chem Rev 301–302:87–105CrossRefGoogle Scholar
  115. 115.
    Yang Y, Ouyang R, Xu L et al (2015) Review: bismuth complexes: synthesis and applications in biomedicine. J Coord Chem 68:379–397CrossRefGoogle Scholar
  116. 116.
    Ndagi U, Mhlongo N, Soliman ME (2017) Metal complexes in cancer therapy–an update from drug design perspective. Drug Des Devel Ther 11:599–616CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Creaven BS, Egan DA, Kavanagh K et al (2006) Synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver (I) complexes. Inorg Chim Acta 359:3976–3984CrossRefGoogle Scholar
  118. 118.
    Creaven BS, Egan DA, Karcz D et al (2007) Synthesis, characterization and antimicrobial activity of copper (II) and manganese (II) complexes of coumarin-6, 7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6, 7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu (cdoa)(phen)2] · 8.8H2O and [Cu (4-Mecdoa)(phen)2] · 13H2O (phen=1, 10-phenanthroline). J Inorg Biochem 101:1108–1119CrossRefPubMedGoogle Scholar
  119. 119.
    Creaven BS, Devereux M, Karcz D et al (2009) Copper (II) complexes of coumarin-derived Schiff bases and their anti-Candida activity. J Inorg Biochem 103:1196–1203CrossRefPubMedGoogle Scholar
  120. 120.
    Mosa AI, Emara AAA, Yousef JM et al (2011) Novel transition metal complexes of 4-hydroxy-coumarin-3-thiocarbohydrazone: pharmacodynamic of Co(III) on rats and antimicrobial activity. Spectrochim Acta A 81:35–43CrossRefGoogle Scholar
  121. 121.
    Halli MB, Sumathi RB, Kinni M (2012) Synthesis, spectroscopic characterization and biological evaluation studies of Schiff’s base derived from naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes. Spectrochim Acta A 99:46–56CrossRefGoogle Scholar
  122. 122.
    Raj KM, Mruthyunjayaswamy BHM (2014) Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties. J Mol Struct 1074:572–582CrossRefGoogle Scholar
  123. 123.
    Karataş MO, Olgundeniz B, Günal S et al (2016) Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg Med Chem 24:643–650CrossRefPubMedGoogle Scholar
  124. 124.
    Patil SA, Prabhakara CT, Halasangi BM et al (2015) DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co( II ), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach. Spectrochim Acta A 137:641–651CrossRefGoogle Scholar
  125. 125.
    Abou-hussein AA, Linert W (2015) Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand. Spectrochim Acta A 141:223–232CrossRefGoogle Scholar
  126. 126.
    Mujahid M, Trendafilova N, Arfa-Kia AF et al (2016) Novel silver (I) complexes of coumarin oxyacetate ligands and their phenanthroline adducts: biological activity, structural and spectroscopic characterisation. J Inorg Biochem 163:53–67CrossRefPubMedGoogle Scholar
  127. 127.
    Vukovic N, Sukdolak S, Solujic S et al (2010) Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: synthesis and in vitro assessments. Food Chem 120:1011–1018CrossRefGoogle Scholar
  128. 128.
    Sandhya B, Giles D, Mathew V et al (2011) Synthesis, pharmacological evaluation and docking studies of coumarin derivatives. Eur J Med Chem 46:4696–4701CrossRefPubMedGoogle Scholar
  129. 129.
    Damu GL, Cui SF, Peng XM et al (2014) Synthesis and bioactive evaluation of a novel series of coumarin azoles. Bioorg Med Chem Lett 24:3605–3608CrossRefPubMedGoogle Scholar
  130. 130.
    Molnar M, Šarkanj B, Cacic M et al (2014) Antioxidant properties and growth-inhibitory activity of coumarin Schiff bases against common foodborne fungi. Der Pharma Chemia 6:313–320Google Scholar
  131. 131.
    Gupta S, Singh S, Kathuria A et al (2012) Ammonium derivatives of chromenones and quinolinones as lead antimicrobial agents. J Chem Sci 124:437–449CrossRefGoogle Scholar
  132. 132.
    Singh S, Gupta S, Singh B et al (2012) Proteomic characterization of Aspergillus fumigatus treated with an antifungal coumarins for identification of novel target molecules of key pathways. J Proteome Res 11:3259–3268CrossRefPubMedGoogle Scholar
  133. 133.
    Singh S, Dabur R, Gatne MM et al (2014) In vivo efficacy of a synthetic coumarin derivative in a murine model of aspergillosis. PLoS One 9:e103039CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Nagamallu R, Srinivasan B, Ningappa MB et al (2016) Synthesis of novel coumarin appended bis (formylpyrazole) derivatives: studies on their antimicrobial and antioxidant activities. Bioorg Med Chem Lett 26:690–694CrossRefPubMedGoogle Scholar
  135. 135.
    Yeagera AR, Finney NS (2004) Second-generation dimeric inhibitors of chitin synthase. Bioorg Med Chem 12:6451–6460CrossRefGoogle Scholar
  136. 136.
    Magellan H, Boccara M, Drujon T et al (2013) Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening. Bioorg Med Chem 21:4997–5003CrossRefPubMedGoogle Scholar
  137. 137.
    Lenardon MD, Munr CA, Gow NAR (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Jackson KE, Pogula PK, Patterson SE (2013) Polyoxin and nikkomycin analogs: recent design and synthesis of novel peptidyl nucleosides. Heterocycl Commun 19:375–386CrossRefGoogle Scholar
  139. 139.
    Disney MD, Matray T, Gryaznov SM et al (2001) Binding enhancement by tertiary interactions and suicide inhibition of a Candida albicans group I intron by phosphoramidate and 2’-O-methyl hexanucleotides. Biochemistry 40:6520–6526CrossRefPubMedGoogle Scholar
  140. 140.
    Subramanyam C, Ramana KV, Rasheed S et al (2013) Synthesis and biological activity of novel diphenyl N-substituted carbamimidoyl phosphoramidate derivatives. Phosphorus Sulfur Silicon 188:1228–1235CrossRefGoogle Scholar
  141. 141.
    Ji Q, Ge Z, Ge Z et al (2016) Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 108:166–176CrossRefPubMedGoogle Scholar
  142. 142.
    Sahoo J, Kumar PS (2015) Biological evaluation and spectral characterization of 4-hydroxy coumarin analogues. J Taibah Univ Med Sci 10:306–319Google Scholar
  143. 143.
    Medimagh-Saidana S, Romdhane A, Daami-Remadi M et al (2015) Synthesis and antimicrobial activity of novel coumarin derivatives from 4-methylumbelliferone. Med Chem Res 24:3247–3257CrossRefGoogle Scholar
  144. 144.
    Yang G, Xu C, Zhao M et al (2016) Microwave assisted one-pot synthesis of novel trifluoromethyl coumarin thiosemicarbazones and their antifungal activities. Curr Microwave Chem 3:60–67CrossRefGoogle Scholar
  145. 145.
    Dongamanti A, Bommidi VL, Madderla S (2016) An efficient microwave-assisted Suzuki Cross-Coupling on coumarin derivatives in water and evaluation of antimicrobial activity. Lett Org Chem 13:76–84Google Scholar
  146. 146.
    Guerraa FQS, Araújob RSA, Sousaa JP et al (2017) A new coumarin derivative, 4-acetatecoumarin, with antifungal activity and association study against Aspergillus spp. Braz J Microbiol 311:1–7Google Scholar
  147. 147.
    Pang GX, Niu C, Mamat N et al (2017) Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria. Bioorg Med Chem Lett 27:2674–2677CrossRefPubMedGoogle Scholar
  148. 148.
    Khajuria R, Mahajan S, Ambica (2017) Expeditious synthesis of coumarin-pyridone conjugates molecules and their anti-microbial evaluation. J Chem Sci 129:1549–1557Google Scholar
  149. 149.
    Tiwari SV, Seijas JA, Vazquez-Tato MP et al (2017) Facile synthesis of novel coumarin derivatives, antimicrobial analysis, enzyme assay, docking study, ADMET prediction and toxicity study. Molecules 22:1172–1190CrossRefPubMedCentralGoogle Scholar
  150. 150.
    Pratap R, Ram VJ (2014) Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[H]chromenes in organic synthesis. Chem Rev 114:10476–10526CrossRefPubMedGoogle Scholar
  151. 151.
    Dongamanti A, Bommidi VL, Sidda R et al (2015) Microwave-assisted synthesis of substituted 4-chloro-8-methyl-2- phenyl-1,5-dioxa-2H-phenanthren-6-ones and their antimicrobial activity. Med Chem Res 24:1487–1495CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, MMVBanaras Hindu UniversityVaranasiIndia

Personalised recommendations