Skip to main content

Detection and Separation of Chito/Chitin Oligosaccharides

  • Chapter
  • First Online:
Oligosaccharides of Chitin and Chitosan

Abstract

The bioactivities of chito/chitin oligosaccharides were closely related to their structures, degree of deacetylation (DD) and degree of polymerization (DP). In that case, separation and purification of chito/chitin oligosaccharides is highly beneficial for the further research and application of chito/chitin oligosaccharides, which is essential for the production of high value chito/chitin oligosaccharides in industrial scale. In addition, detection and analysis of chito/chitin oligosaccharides is helps to understand the structure-function relationship more clearly. The chito/chitin oligosaccharides with different degrees of polymerization have different molecular weights, different charge numbers, and different strengths from the separation medium. The separation of chito/chitin oligosaccharides is mainly achieved by combining membrane techniques such as ultrafiltration, nanofiltration and reverse osmosis together to obtain chito oligosaccharides with high purity and narrow interval distribution. For chito/chitin oligosaccharide purification, the most common used methods are absorption chromatography, affinity chromatography, size exclusion chromatography and ion exchange chromatography. For chito/chitin oligosaccharides analysis, TLC, HPLC and electrophoresis were used for qualitative and quantitative analysis of chito/chitin oligosaccharide. MS, IR, NMR and TGA were developed for the structural and sequence analysis according to the sample chemical structure. This chapter mainly reviews recent developments in separation and analysis of chito/chitin oligosaccharides. A variety of separation and analysis methods and examples are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba S-i (1994) Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydr Res 265(2):323–328

    Article  CAS  Google Scholar 

  • Aider M, Arul J, Mateescu A-M, Brunet S, Bazinet L (2006a) Electromigration of chitosan d-glucosamine and oligomers in dilute aqueous solutions. J Agric Food Chem 54(17):6352–6357

    Article  CAS  Google Scholar 

  • Aider M, Arul J, Mateescu M-A, Brunet S, Bazinet L (2006b) Electromigration behavior of a mixture of chitosan oligomers at different concentrations. J Agric Food Chem 54(26):10170–10176

    Article  CAS  Google Scholar 

  • Aider M, Brunet S, Bazinet L (2008a) Effect of pH and cell configuration on the selective and specific electrodialytic separation of chitosan oligomers. Sep Purif Technol 63(3):612–619

    Article  CAS  Google Scholar 

  • Aider M, Brunet S, Bazinet L (2008b) Electroseparation of chitosan oligomers by electrodialysis with ultrafiltration membrane (EDUF) and impact on electrodialytic parameters. J Membr Sci 309(1):222–232

    Article  CAS  Google Scholar 

  • Aider M, Brunet S, Bazinet L (2009) Effect of solution flow velocity and electric field strength on chitosan oligomer electromigration kinetics and their separation in an electrodialysis with ultrafiltration membrane (EDUF) system. Sep Purif Technol 69(1):63–70

    Article  CAS  Google Scholar 

  • Alvarenga ESD (2011) Characterization and properties of chitosan. InTech

    Google Scholar 

  • Amano K-i, Ito E (1978) The action of lysozyme on partially deacetylated chitin. Eur J Biochem 85(1):97–104

    Article  CAS  Google Scholar 

  • Beaudoin ME, Gauthier J, Boucher I, Waldron KC (2005) Capillary electrophoresis separation of a mixture of chitin and chitosan oligosaccharides derivatized using a modified fluorophore conjugation procedure. J Sep Sci 28(12):1390–1398

    Article  CAS  Google Scholar 

  • Blanes L, Saito RM, Genta FA, Donegá J, Terra WR, Ferreira C, do Lago CL (2008) Direct detection of underivatized chitooligosaccharides produced through chitinase action using capillary zone electrophoresis. Anal Biochem 373(1):99–103

    Article  CAS  Google Scholar 

  • Bultel L, Landoni M, Grand E, Couto AS, Kovensky J (2010) UV-MALDI-TOF mass spectrometry analysis of heparin oligosaccharides obtained by nitrous acid controlled degradation and high performance anion exchange chromatography. J Am Soc Mass Spectrom 21(1):178–190

    Article  CAS  Google Scholar 

  • Cao L, Wu J, Li X, Zheng L, Wu M, Liu P, Huang Q (2016) Validated HPAEC-PAD method for the determination of fully deacetylated chitooligosaccharides. Int J Mol Sci 17(10):1699

    Article  Google Scholar 

  • Chambon R, Despras G, Brossay A, Vauzeilles B, Urban D, Beau JM, Armand S, Cottaz S, Fort S (2015) Efficient chemoenzymatic synthesis of lipo-chitin oligosaccharides as plant growth promoters. Green Chem 17(7):3923–3930

    Article  CAS  Google Scholar 

  • Chen JG (2006) Enzymatic preparation of chitosan oligosaccharides and its antimicrobial activity [D]. Zhejiang University (In Chinese)

    Google Scholar 

  • Choi WS, Ahn KJ, Lee DW, Byun MW, Park HJ (2002) Preparation of chitosan oligomers by irradiation. Polym Degrad Stab 78(3):533–538

    Article  CAS  Google Scholar 

  • Chuang W-L, McAllister H, Rabenstein DL (2001) Chromatographic methods for product-profile analysis and isolation of oligosaccharides produced by heparinase-catalyzed depolymerization of heparin. J Chromatogr A 932(1):65–74

    Article  CAS  Google Scholar 

  • Cordlandwehr S, Ihmor P, Niehues A, Luftmann H, Moerschbacher BM, Mormann M (2017) Quantitative mass-spectrometric sequencing of chitosan oligomers revealing cleavage sites of chitosan hydrolases. Anal Chem 89(5):2893–2900

    Article  CAS  Google Scholar 

  • Dong H, Wang Y, Zhao L, Zhou J, Xia Q, Jiang L, Fan L (2014) Purification of DP 6 to 8 chitooligosaccharides by nanofiltration from the prepared chitooligosaccharides syrup. Bioresour Bioprocess 1:20

    Article  Google Scholar 

  • Dong H, Wang Y, Zhao L, Zhou J, Xia Q, Qiu Y (2015) Key technologies of enzymatic preparation for DP 6–8 chitooligosaccharides. J Food Process Eng 38(4):336–344

    Article  CAS  Google Scholar 

  • Einbu A, Grasdalen H, Vårum KM (2007) Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydr Res 342(8):1055

    Article  CAS  Google Scholar 

  • El Rassi ZE (1999) Recent developments in capillary electrophoresis and capillary electrochromatography of carbohydrate species. Electrophoresis 20(15–16):3134–3144

    Article  Google Scholar 

  • Fu Q, Liang T, Zhang X, Du Y, Guo Z, Liang X (2010) Carbohydrate separation by hydrophilic interaction liquid chromatography on a ‘click’ maltose column. Carbohydr Res 345(18):2690–2697

    Article  CAS  Google Scholar 

  • Gao L, Li C, Wang S (2013) Preparation and analysis of chitooligosaccharide monomers with different degree of polymerization. Chin Mar Med 32(3):21–27 (In Chinese)

    Google Scholar 

  • Han YP, Lin Q (2012) Purification of oligochitosan by nanofiltration. Membr Sci Technol 32:75–80. (In Chinese)

    CAS  Google Scholar 

  • Hattori T, Anraku N, Kato R (2010) Capillary electrophoresis of chitooligosaccharides in acidic solution: simple determination using a quaternary-ammonium-modified column and indirect photometric detection with crystal violet. J Chromatogr B 878(3):477–480

    Article  CAS  Google Scholar 

  • Hsiao YC, Lin YW, Su CK, Chiang BH (2008) High degree polymerized chitooligosaccharides synthesis by chitosanase in the bulk aqueous system and reversed micellar microreactors. Process Biochem 43(1):76–82

    Article  CAS  Google Scholar 

  • Hu R (2012) Enzymatic hydrolysis of chitosan with specific average molecular weight and narrow distribution [D]. Wuhan University of Technology (In Chinese)

    Google Scholar 

  • Izume M, Nagae S i, Kawagishi H, Ohtakara A (1992) Preparation of N-acetylchitooligosaccharides from enzymatic hydrolyzates of chitosan. Biosci Biotechnol Biochem 56(8):1327–1328

    Article  CAS  Google Scholar 

  • Jeon Y-J, Kim S-K (2000) Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr Polym 41(2):133–141

    Article  CAS  Google Scholar 

  • Ji Y, Zhao Y, Zhou X, Weng D, Zhao L (2003) The preparation of chitosan oligomer and the components analysis. Chin J Mod Appl Pharm

    Google Scholar 

  • Jiang M, Guo Z, Wang C, Yang Y, Liang X, Ding F (2014) Neural activity analysis of pure chito-oligomer components separated from a mixture of chitooligosaccharides. Neurosci Lett 581(1):32–36

    Article  CAS  Google Scholar 

  • Karagozlu MZ, Kim JA, Karadeniz F, Kong CS, Kim SK (2010) Anti-proliferative effect of aminoderivatized chitooligosaccharides on AGS human gastric cancer cells. Process Biochem 45(9):1523–1528

    Article  CAS  Google Scholar 

  • Kuroiwa T, Izuta H, Nabetani H, Nakajima M, Sato S, Mukataka S, Ichikawa S (2009) Selective and stable production of physiologically active chitosan oligosaccharides using an enzymatic membrane bioreactor. Process Biochem 44(3):283–287

    Article  CAS  Google Scholar 

  • Le Dévédec F, Bazinet L, Furtos A, Venne K, Brunet S, Mateescu MA (2008) Separation of chitosan oligomers by immobilized metal affinity chromatography. J Chromatogr A 1194(2):165–171

    Article  Google Scholar 

  • Li K, Xing R, Liu S, Li R, Qin Y, Meng X, Li P (2012a) Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydr Polym 88(3):896–903

    Article  CAS  Google Scholar 

  • Li K, Xing R, Liu S, Qin Y, Li B, Wang X, Li P (2012b) Separation and scavenging superoxide radical activity of chitooligomers with degree of polymerization 6–16. Int J Biol Macromol 51(5):826–830

    Article  CAS  Google Scholar 

  • Li K, Liu S, Xing R, Qin Y, Li P (2013a) Preparation, characterization and antioxidant activity of two partially N-acetylated chitotrioses. Carbohydr Polym 92(2):1730–1736

    Article  CAS  Google Scholar 

  • Li K, Liu S, Xing R, Yu H, Qin Y, Li R, Li P (2013b) High-resolution separation of homogeneous chitooligomers series from 2-mers to 7-mers by ion-exchange chromatography. J Sep Sci 36(7):1275–1282

    Article  CAS  Google Scholar 

  • Li H, Fei Z, Gong J, Yang T, Xu Z, Shi J (2015) Screening and characterization of a highly active chitosanase based on metagenomic technology. J Mol Catal B Enzym 111:29–35

    Article  CAS  Google Scholar 

  • Li K, Xing R, Liu S, Li P (2016) Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr Polym 139:178–190

    Article  CAS  Google Scholar 

  • Madhuprakash J, El Gueddari NE, Moerschbacher BM, Podile AR (2015) Production of bioactive chitosan oligosaccharides using the hypertransglycosylating chitinase-D from Serratia proteamaculans. Bioresour Technol 198:503–509

    Article  CAS  Google Scholar 

  • Ngo D-N, Lee S-H, Kim M-M, Kim S-K (2009) Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods 1(2):188–198

    Article  CAS  Google Scholar 

  • Ohtakara A, Mitsutomi M (1988) Analysis of chitooligosaccharides and reduced chitooligosaccharides by high-performance liquid chromatography. Methods Enzymol 161:453–457

    Article  CAS  Google Scholar 

  • P S, BT S, A S r, KM V r, SJ H, VG E (2010) Development and application of a model for chitosan hydrolysis by a family 18 chitinase. Biopolymers 77(5):273–285

    Google Scholar 

  • Pechsrichuang P, Yoohat K, Yamabhai M (2013) Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosan-oligosaccharides. Bioresour Technol 127:407–414

    Article  CAS  Google Scholar 

  • Pechsrichuang P, Lorentzen SB, Aam BB, Tuveng TR, Hamre AG, Eijsink VGH, Yamabhai M (2018) Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A). Carbohydr Polym 186:420–428

    Article  CAS  Google Scholar 

  • Purushotham P, Sarma PVSRN, Podile AR (2012) Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers. Bioresour Technol 112:261–269

    Article  CAS  Google Scholar 

  • Qiao X, Li Y, Tang X (2010) Study on the technology of producing chitosan oligosaccharide by enzyme fermentation. J Xiamen Univ (Nat Sci Ed) 49(2):251–255 (In Chinese)

    Google Scholar 

  • Qin Z, Chen Q, Lin S, Luo S, Qiu Y, Zhao L (2018a) Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chem 253:139–147

    Article  CAS  Google Scholar 

  • Qin Z, Luo S, Li Y, Chen Q, Qiu Y, Zhao L, Jiang L, Zhou J (2018b) Biochemical properties of a novel chitosanase from Bacillus amyloliquefaciens and its use in membrane reactor. LWT 97:9–16

    Article  CAS  Google Scholar 

  • Sánchez Á, Mengíbar M, Rivera-Rodríguez G, Moerchbacher B, Acosta N, Heras A (2017) The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides. Carbohydr Polym 157(6):251–257

    Article  Google Scholar 

  • Sang VT, Ngo D-H, Bach LG, Ngo D-N, Kim SJ (2017) The free radical scavenging and anti-inflammatory activities of gallate-chitooligosaccharides in human lung epithelial A549 cells. Process Biochem 54:188–194

    Article  Google Scholar 

  • Semeňuk T, Krist P, Pavlíček J, Bezouška K, Kuzma M, Novák P, Křen V (2001) Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor NKR-P1. Glycoconj J 18(10):817–826

    Article  Google Scholar 

  • Sinha S, Chand S, Tripathi P (2014) Production, purification and characterization of a new chitosanase enzyme and improvement of chitosan pentamer and hexamer yield in an enzyme membrane reactor. Biocatal Biotransformation 32(4):208–213

    Article  CAS  Google Scholar 

  • Songsiriritthigul C, Lapboonrueng S, Pechsrichuang P, Pesatcha P, Yamabhai M (2010) Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour Technol 101(11):4096–4103

    Article  CAS  Google Scholar 

  • Suma K, Podile AR (2013) Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities. Bioresour Technol 133:213–220

    Article  CAS  Google Scholar 

  • Tokuyasu K, Ono H, Hayashi K, Mori Y (1999) Reverse hydrolysis reaction of chitin deacetylase and enzymatic synthesis of β-d-GlcNAc-(1→4)-GlcN from chitobiose. Carbohydr Res 322(1):26–31

    Article  CAS  Google Scholar 

  • Tokuyasu K, Ono H, Mitsutomi M, Hayashi K, Mori Y (2000) Synthesis of a chitosan tetramer derivative, β-d-GlcNAc-(1→4)-β-d-GlcNAc-(1→4)-β-d-GlcNAc-(1→4)-d-GlcN through a partial N-acetylation reaction by chitin deacetylase. Carbohydr Res 325(3):211–215

    Article  CAS  Google Scholar 

  • Wei X, Wang Y, Xiao J, Xia W (2009) Separation of chitooligosaccharides and the potent effects on gene expression of cell surface receptor CR3. Int J Biol Macromol 45(4):432–436

    Article  CAS  Google Scholar 

  • Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y (2009) Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr Res 344(15):1975–1983

    Article  CAS  Google Scholar 

  • Xu Q, Chen LH, Qin Z, Chen QM, Qiu YJ, Zhao LM (2017) Preparation of chitosan and chitosan monomers and their structure analysis. Food Industry Technol 13:13–18. (In Chinese)

    Google Scholar 

  • Yang Z, Yi Y, Gao C, Hou D, Hu J, Zhao M (2010) Isolation of inulin-type oligosaccharides from Chinese traditional medicine: Morinda officinalis how and their characterization using ESI-MS/MS. J Sep Sci 33(1):120–125

    Article  CAS  Google Scholar 

  • Yoon JH (2005) Enzymatic synthesis of chitooligosaccharides in organic cosolvents. Enzym Microb Technol 37(6):663–668

    Article  CAS  Google Scholar 

  • Zhai X, Zhao H, Zhang M, Yang X, Sun J, She Y, Dong A, Zhang H, Yao L, Wang J (2018) New stationary phase for hydrophilic interaction chromatography to separate chito-oligosaccharides with degree of polymerization 2-6. J Chromatogr B 1081–1082:33–40

    Article  Google Scholar 

  • Zhu B-Y, Mant CT, Hodges RS (1991) Hydrophilic-interaction chromatography of peptides on hydrophilic and strong cation-exchange columns. J Chromatogr A 548:13–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, Z., Hou, Y., Ahamed, W., Li, Y., Zhao, L. (2019). Detection and Separation of Chito/Chitin Oligosaccharides. In: Zhao, L. (eds) Oligosaccharides of Chitin and Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-13-9402-7_5

Download citation

Publish with us

Policies and ethics