Business Intelligence Through Big Data Analytics, Data Mining and Machine Learning

  • Wael M. S. YafoozEmail author
  • Zainab Binti Abu Bakar
  • S. K. Ahammad Fahad
  • Ahamed. M Mithun
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1016)


There is a huge amount of data creating during the fourth industry revaluation and the data are generating explosively by various fields of the Internet of Things (IoT). The organizations are producing and storing the huge amount of data into the data servers every moment. This data comes from social media, sensors, tracking, website, and online news articles. The Google, Facebook, Walmart, and Taobao are the most remarkable organizations are generating most of the data in the web servers. Data comes into three forms as structured (text/numeric), semi structured (audio, video, and image) and unstructured (XML and RSS feeds). A business makes revenue from the analysis of 20% of such data, which is a structured form while 80% of data is unstructured. Therefore, unstructured data contains valuable information that can help the organization to improve the business productive, better decision-making, extract the insights, new products and services and understand the market conditions in various fields such as shopping, finance, education, manufacturing, and healthcare. The unstructured data are needed to be analyzed and distribute in a structured manner, that is required information’s are to be gathered through the data mining techniques are used to mining the data. In this paper, expose the importance of data analytics and data management for beneficial usage of business intelligence, big data, data mining and machine and data management. In addition, the different techniques that can be used to discover the knowledge and useful information from such data been analyzed. This can be beneficial for numerous users concern on text mining and convert complex data into meaningful information for researchers, analyst, data scientist, and business decision makers as well.


Data mining Business intelligence Unstructured data Structured information 


  1. 1.
    Yafooz, W. M. S., Abidin, S. Z., & Omar, N. (2011, November). Challenges and issues on online news management. In 2011 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) (pp. 482–487). IEEE.Google Scholar
  2. 2.
    Richards, G., Yeoh, W., Chong, A. Y. L., & Popovič, A. (2017). Business intelligence effectiveness and corporate performance management. An empirical analysis. Journal of Computer Information Systems, 1–9.Google Scholar
  3. 3.
    Balachandran, B. M., & Prasad, S. (2017). Challenges and benefits of deploying big data analytics in the cloud for business intelligence. Procedia Computer Science, 112, 1112–1122.CrossRefGoogle Scholar
  4. 4.
    Yafooz, W. M. S., Abidin, S. Z., Omar, N. & Hilles, S. (2016, September). Interactive big data visualization model based on hot issues (online news articles). In International Conference on Soft Computing in Data Science (pp. 89–99). Singapore: Springer.Google Scholar
  5. 5.
    Siddiqa, A., Hashem, I. A. T., Yaqoob, I., Marjani, M., Shamshirband, S., Gani, A., et al. (2016). A survey of big data management: Taxonomy and state-of-the-art. Journal of Network and Computer Applications, 71, 151–166.CrossRefGoogle Scholar
  6. 6.
    Borodo, S. M., Shamsuddin, S. M., & Hasan, S. (2016). Big data platforms and techniques. Indonesian Journal of Electrical Engineering and Computer Science, 1(1), 191–200.CrossRefGoogle Scholar
  7. 7.
    Sparks, B. H., & McCann, J. T. (2015). Factors influencing business intelligence system use in decision making and organisational performance. International Journal of Sustainable Strategic Management, 5(1), 31–54.CrossRefGoogle Scholar
  8. 8.
    Qureshi, N. A., Khan, B. A., & Saif, J. A. (2017). Business intelligence systems in the holistic infrastructure development supporting decision-making in organisations.Google Scholar
  9. 9.
    Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3–13.CrossRefGoogle Scholar
  10. 10.
    Yafooz, W. M. S., Abidin, S. Z., Omar, N., & Idrus, Z. (2013, December). Managing unstructured data in relational databases. In 2013 IEEE Conference on Systems, Process & Control (ICSPC) (pp. 198–203). IEEE.Google Scholar
  11. 11.
    Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, January). Big data: Issues and challenges moving forward. In 2013 46th Hawaii International Conference on System Sciences (HICSS) (pp. 995–1004). IEEE.Google Scholar
  12. 12.
    Zhou, Z. H., Chawla, N. V., Jin, Y., & Williams, G. J. (2014). Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]. IEEE Computational Intelligence Magazine, 9(4), 62–74.CrossRefGoogle Scholar
  13. 13.
    Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286.CrossRefGoogle Scholar
  14. 14.
    Fahad, S. A., & Alam, M. M. (2016). A modified K-means algorithm for big data clustering. International Journal of Computer Science Engineering and Technology, 6(4), 129–132.Google Scholar
  15. 15.
    Fahad, S. A., & Yafooz, W. M. (2017). Design and develop semantic textual document clustering model. Journal of Computer Science and information technology, 5(2), 26–39. Scholar
  16. 16.
    Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & Rong, X. (2015). Data mining for the internet of things: Literature review and challenges. International Journal of Distributed Sensor Networks, 11(8), 431047.CrossRefGoogle Scholar
  17. 17.
    Birant, D., & Yıldırım, P. (2016). A Framework for data mining and knowledge discovery in cloud computing. In Z. Mahmood (Ed.), Data science and big data computing: frameworks and methodologies (pp. 245–267). Cham: Springer. Scholar
  18. 18.
    Aggarwal, C. C. (2015). Data classification: Algorithms and applications. Boca Raton: CRC Press, Taylor & Francis Group.zbMATHGoogle Scholar
  19. 19.
    Yafooz, W. M. S., Abidin, S. Z., & Omar, N. (2011, November). Towards automatic column-based data object clustering for multilingual databases. In 2011 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) (pp. 415–420). IEEEGoogle Scholar
  20. 20.
    Yafooz, W. M. S., Abidin, S. Z., Omar, N., & Halim, R. A. (2014). Model for automatic textual data clustering in relational databases schema. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013) (pp. 31–40). Singapore: Springer.Google Scholar
  21. 21.
    Ali, S. M., & Tuteja, M. R. (2014). Data mining techniques. International Journal of Computer Science and Mobile Computing, 3(4), 879–883.Google Scholar
  22. 22.
    Kotwal, A., Fulari, P., Jadhav, D., & Kad, R. (2016). Improvement in sentiment analysis of twitter data using hadoop. Imperial Journal of Interdisciplinary Research, 2(7).Google Scholar
  23. 23.
    Bhawnani, D., Sanwlani, A., Ahuja, H., & Bohra, D. (2015). Big Data analytics on cab company’s customer dataset using Hive and Tableau. International Journal of Scientific Engineering and Applied Science (IJSEAS), 1(2), ISSN, 2395-3470.Google Scholar
  24. 24.
    Rangra, K., & Bansal, K. L. (2014). Comparative study of data mining tools. International Journal of Advanced Research in Computer Science and Software Engineering, 4(6).Google Scholar
  25. 25.
    Alton, L. (2017, December 22). The 7 most important data mining techniques. Retrieved October 2, 2018, from
  26. 26.
    Shafique, U., & Qaiser, H. (2014). A comparative study of data mining process models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research, 12(1), 217–222.Google Scholar
  27. 27.
    Thuraisingham, B. (2014). Data mining technologies, techniques, tools, and trends. CRC press.Google Scholar
  28. 28.
    Alhendawi, K. M., & Baharudin, A. S. (2014). A classification model for predicting web users satisfaction with information systems success using data mining techniques. Journal of Software Engineering.Google Scholar
  29. 29.
    Park, D., Wang, J., & Kee, Y. S. (2016). In-storage computing for Hadoop MapReduce framework: Challenges and possibilities. IEEE Transactions on Computers.Google Scholar
  30. 30.
    Pirozzi, D., Scarano, V., Begg, S., De Sercey, G., Fish, A., & Harvey, A. (2016, July). Filter large-scale engine data using apache spark. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (pp. 1300–1305). IEEE.Google Scholar
  31. 31.
    Santos, M. Y., e Sá, J. O., Andrade, C., Lima, F. V., Costa, E., Costa, C., … & Galvão, J. (2017). A Big Data system supporting Bosch Braga Industry 4.0 strategy. International Journal of Information Management, 37(6), 750–760.Google Scholar
  32. 32.
    Minelli, R., & Lanza, M. (2013, September). SAMOA—A visual software analytics platform for mobile applications. In 2013 29th IEEE International Conference on Software Maintenance (ICSM) (pp. 476–479). IEEE.Google Scholar
  33. 33.
    Yep, J., & Shulman, J. (2014). Analyzing the library’s Twitter network: using NodeXL to visualize impact. College & Research Libraries News, 75(4), 177–186.CrossRefGoogle Scholar
  34. 34.
    Raina, I., Gujar, S., Shah, P., Desai, A., & Bodkhe, B. (2014). Twitter sentiment analysis using apache storm. International Journal of Recent Technology and Engineering, 3(5), 23–26.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wael M. S. Yafooz
    • 1
    Email author
  • Zainab Binti Abu Bakar
    • 1
  • S. K. Ahammad Fahad
    • 1
  • Ahamed. M Mithun
    • 1
  1. 1.Faculty of Computer and Information TechnologyAl-Madinah International UniversityKuala LumpurMalaysia

Personalised recommendations