Advertisement

A Novel FPEA Model for Medical Resources Allocation in an Epidemic Control

  • Ming LiuEmail author
  • Jie Cao
  • Jing Liang
  • MingJun Chen
Chapter

Abstract

This chapter presents a dynamic logistics model for medical resources allocation that can be used to control an epidemic diffusion. It couples a forecasting mechanism, constructed for the demand of a medicine in the course of such epidemic diffusion, and a logistics planning system to satisfy the forecasted demand and minimize the total cost. The forecasting mechanism is a time discretized version of the SEIR model that is widely employed in predicting the trajectory of an epidemic diffusion. The logistics planning system is formulated as a mixed 0–1 integer programming problem characterizing the decision-making at various levels of hospitals, distribution centers, pharmaceutical plants, and the transportation in between them. The model is built as a closed-loop cycle, comprising forecast phase, planning phase, execution phase, and adjustment phase. The parameters of the forecasting mechanism are adjusted in reflection of the real data collected in the execution phase by solving a quadratic programming problem. A numerical example is presented to verify efficiency of the model.

References

  1. 1.
    WHO. Report on the global HIV/AIDS epidemic. http://www.unaids.org/epidemic_updated/report(2002). Accessed 21 Nov 2006.
  2. 2.
    WHO. HIV/AIDS. http://www.who.int/features/qa/71/en/ (2015). Accessed 8 Oct 2015.
  3. 3.
    Mishra BK, Saini DK. SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl Math Comput. 2007;188(2):1476–82.Google Scholar
  4. 4.
    Sun C, Hsieh YH. Global analysis of an SEIR model with varying population size and vaccination. Appl Math Model. 2010;34(10):2685–97.CrossRefGoogle Scholar
  5. 5.
    Zhang J, Li J, Ma Z. Global Dynamics of an SEIR epidemic model with immigration of different compartments. Acta Math Sci. 2006;26(3):551–67.CrossRefGoogle Scholar
  6. 6.
    Zhang J, Ma Z. Global dynamics of an SEIR epidemic model with saturating contact rate. Math Biosci. 2003;185(1):15–32.CrossRefGoogle Scholar
  7. 7.
    Kim KI, Lin Z, Zhang L. Avian-human influenza epidemic model with diffusion. Nonlinear Anal Real World Appl. 2010;11(1):313–22.CrossRefGoogle Scholar
  8. 8.
    Liu JL, Zhang TL. Epidemic spreading of an SEIRS model in scale-free networks. Commun Nonlinear Sci Numer Simul. 2011;16(8):3375–84.CrossRefGoogle Scholar
  9. 9.
    Samsuzzoha M, Singh M, Lucy D. Numerical study of an influenza epidemic model with diffusion. Appl Math Comput. 2010;217(7):3461–79.Google Scholar
  10. 10.
    Samsuzzoha M, Singh M, Lucy D. A numerical study on an influenza epidemic model with vaccination and diffusion. Appl Math Comput. 2012;219(1):122–41.Google Scholar
  11. 11.
    Zaric GS, Bravata DM, Cleophas Holty JE, et al. Modeling the logistics of response to anthrax bioterrorism. Med Decis Mak. 2008;28(3):332–50.CrossRefGoogle Scholar
  12. 12.
    Qiang P, Nagurney A. A bi-criteria indicator to assess supply chain network performance for critical needs under capacity and demand disruptions. Transp Res Part A (Policy Pract). 2012;46(5):801–12.Google Scholar
  13. 13.
    Rottkemper B, Fischer K, Blecken A. A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations. Socio-Econ Plan Sci. 2012;46(1):98–109.CrossRefGoogle Scholar
  14. 14.
    Yan SY, Lin CK, Chen SY. Logistical support scheduling under stochastic travel times given an emergency repair work schedule. Comput Ind Eng. 2014;67:20–35.CrossRefGoogle Scholar
  15. 15.
    Zaric GS, Brandeau ML. Resource allocation for epidemic control over short time horizons. Math Biosci. 2001;171(1):33–58.CrossRefGoogle Scholar
  16. 16.
    Zaric GS, Brandeau ML. Dynamic resource allocation for epidemic control in multiple populations. IMA J Math Appl Med Biol. 2002;19(4):235–55.CrossRefGoogle Scholar
  17. 17.
    Brandeau ML, Zaric GS, Richter A. Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis. J Health Econ. 2003;22(4):575–98.Google Scholar
  18. 18.
    Brandeau ML. Allocating resources to control infectious diseases. In: Brandeau ML, Sainfort F, Pierskalla WP. Operations research and health care 2004. US: Springer; 2005. pp. 443–64.Google Scholar
  19. 19.
    Tebbens RJD, Pallansch MA, Alexander JP, et al. Optimal vaccine stockpile design for an eradicated disease: application to polio. Vaccine. 2010;28(26):4312–27.CrossRefGoogle Scholar
  20. 20.
    Rachaniotis NP, Dasaklis TK, Pappis CP. A deterministic resource scheduling model in epidemic control: a case study. Eur J Oper Res. 2012;216(1):225–31.CrossRefGoogle Scholar
  21. 21.
    Dasaklis TK, Pappis CP, Rachaniotis NP. Epidemics control and logistics operations: a review. Int J Prod Econ. 2012;139(2):393–410.CrossRefGoogle Scholar
  22. 22.
    Liu M, Zhang Z, Zhang D. A dynamic allocation model for medical resources in the control of influenza diffusion. J Syst Sci Syst Eng. 2015;24(3):276–92.CrossRefGoogle Scholar
  23. 23.
    Hanke JE, Wichern DW. Business forecasting. 9th ed. New Jersey: Pearson/Prentice Hall; 2009.Google Scholar
  24. 24.
    Ekici A, Keskinocak P, Swann JL. Modeling influenza pandemic and planning food distribution. Manuf Serv Oper Manage. 2014;16(1):11–27.CrossRefGoogle Scholar
  25. 25.
    Yi N, Zhang Q, Mao K, et al. Analysis and control of an SEIR epidemic system with nonlinear transmission rate. Math Comput Model. 2009;50(9–10):1498–513.CrossRefGoogle Scholar
  26. 26.
    Arenas AJ, González-Parra G, Chen-Charpentier BM. Dynamical analysis of the transmission of seasonal diseases using the differential transformation method. Math Comput Model. 2009;50(5–6):765–76.CrossRefGoogle Scholar
  27. 27.
    Arenas AJ, González-Parra G, Chen-Charpentier BM. A nonstandard numerical scheme of predictor–corrector type for epidemic models. Comput Math Appl. 2010;59(12):3740–9.CrossRefGoogle Scholar
  28. 28.
    Dimitrov N, Meyers LA. Mathematical approaches to infectious disease prediction and control. Fac Publ. 2010;4:26–7.Google Scholar
  29. 29.
    Aiello OE, Silva MAA. New approach to dynamical Monte Carlo methods. Phys A. 2002;327(3):525–34.Google Scholar
  30. 30.
    Kar TK, Batabyal A. Stability analysis and optimal control of an SIR epidemic model with vaccination. Bio Syst. 2011;104(2):127–35.Google Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Economics and ManagementNanjing University of Science and TechnologyNanjingChina
  2. 2.Xuzhou University of TechnologyXuzhouChina
  3. 3.Nanjing Polytechnic InstituteNanjingChina
  4. 4.Affiliated Hospital of Jiangsu UniversityZhenjiangChina

Personalised recommendations