Advertisement

Fungal Bioremediation: A Step Towards Cleaner Environment

  • Darshan M. Rudakiya
  • Archana Tripathi
  • Shilpa Gupte
  • Akshaya Gupte
Chapter

Abstract

Mycoremediation is a technique wherein various fungi are used in the remediation of hazardous contaminants like polycyclic aromatic hydrocarbons, dyes, hazardous phenolics, heavy metals, and several others. Fungi are the ubiquitous and diverse group of organisms that produce a wide array of enzymes and metabolites (organic acids, exopolysaccharides, etc.). By synergic action of these metabolites, fungi can efficiently degrade or transform the hazardous contaminants. Additionally, live or dead fungal biomass has the higher sorption capability of contaminants as compared to the other microorganisms. In this chapter, application of fungi in degrading dyes and polycyclic aromatic hydrocarbons, remediation of heavy metals, and other contaminants is discussed, wherein fungi degrade the organics and aid in remediation of metals using a variety of strategies.

Keywords

Bioremediation Dyes Pesticides Polycyclic aromatic hydrocarbons White rot fungi 

References

  1. Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahalya N, Kanamadi RD, Ramachandra TV (2005) Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron J Biotechnol 8:258–264CrossRefGoogle Scholar
  3. Aksu Z, Balibek E (2007) Chromium (VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145:210–220PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alhuwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257CrossRefGoogle Scholar
  5. Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, Steffen KT, Tuomela M (2014) Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 110:85–90PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anderson JPE, Lichtenstein EP (1971) Effect of nutritional factors on DDT-degradation by. Can J Microbiol 17(10):1291–1298PubMedCrossRefPubMedCentralGoogle Scholar
  7. Badia-Fabregat M, Lucas D, Gros M, Rodríguez-Mozaz S, Barceló D, Caminal G, Vicent T (2015) Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater.Case study of fungal treatment of reverse osmosis concentrate. J Hazard Mater 283:663–671PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bakkaloglu I, Butter TJ, Evison LM, Holland FS, Hancock IC (1998) Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Sci Technol 38:269–277CrossRefGoogle Scholar
  9. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:78–91CrossRefGoogle Scholar
  10. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dyecontaining effluents: a review. Bioresour Technol 58(3):217–227CrossRefGoogle Scholar
  11. Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegradation 59(4):315–321CrossRefGoogle Scholar
  12. Bharath Y, Singh SN, Keerthiga G, Prabhakar R (2019) Mycoremediation of contaminated soil in MSW sites. In: Waste management and resource efficiency. Springer, Singapore, pp 321–329CrossRefGoogle Scholar
  13. Bishnoi NR, Bajaj M, Sharma N, Gupta A (2004) Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour Technol 91:305–307PubMedCrossRefPubMedCentralGoogle Scholar
  14. Böhmer S, Messner K, Srebotnik E (1998) Oxidation of Phenanthrene by a fungal laccase in the presence of 1-Hydroxybenzotriazole and unsaturated lipids. Biochem Biophys Res Commun 244(1):233–238PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bollag JM (1974) Microbial transformation of pesticides. Adv Appl Microbiol 18:75–130PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bouwer EJ (2017) Bioremediation of chlorinated solvents using alternate electron acceptors. In: Handbook of bioremediation (1993). CRC Press, Boca Raton, pp 149–176Google Scholar
  17. Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gubitz GM (2001) Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J Biotechnol 89:131–139PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Handbook of hydrocarbon and lipid microbiology, pp 2079–2110CrossRefGoogle Scholar
  19. Chairin T, Nitheranont T, Watanabe A, Asada Y, Khanongnuch C, Lumyong S (2013) Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl Biochem Biotechnol 169:539–545PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chakraborty V, Sengupta S, Chaudhuri P, Das P (2018) Assessment on removal efficiency of chromium by the isolated manglicolous fungi from Indian Sundarban mangrove forest: Removal and optimization using response surface methodology. Environ Technol Innov 10:335–344CrossRefGoogle Scholar
  21. Chander M, Arora DS (2007) Evaluation of some white-rot fungi for their potential to decolourise industrial dyes. Dyes Pigments 72(2):192–198CrossRefGoogle Scholar
  22. Chen SH, Cheow YL, Ng SL, Ting ASY (2019) Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J Hazard Mater 362:394–402PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y (2018) Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 38(1):17–30PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chhaya U, Gupte A (2013) Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system. J Hazard Mater 254:149–156PubMedCrossRefPubMedCentralGoogle Scholar
  25. Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 45:301–312Google Scholar
  26. Collins PJ, Kotterman M, Field JA, Dobson A (1996) Oxidation of anthracene and benzo [a] pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62(12):4563–4567PubMedPubMedCentralGoogle Scholar
  27. Couto SR, Sanroman MA, Hoefer D, Gubitz GM (2004) Stainless steel: A novel career for the immobilization of the white rot fungus Trametes hirsute for decolorization of textile dyes. Bioresour Technol 95:67–72CrossRefGoogle Scholar
  28. de Lorenzo V (2018) Biodegradation and bioremediation: an introduction: consequences of microbial interactions with hydrocarbons, oils, and lipids. Biodegr Bioremed:1–21Google Scholar
  29. Denizli A, Cihangir N, Tüzmen N, Alsancak G (2005) Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajorcaju. Bioresour Technol 96:59–62PubMedCrossRefPubMedCentralGoogle Scholar
  30. Desai SS, Nityanand C (2011) Microbial laccases and their applications: a review. Asian J Biotechnol 3(2):98–124CrossRefGoogle Scholar
  31. Engst R, Kujawa M (1968) Enzymatischer Abbau des DDT durch Schimmelpilze. 3. Mitt. Darstellung des 2,2-Bis(p-chlorphenyl)acetaldehyds (DDHO) und seine Bedeutung im Abbaucyclus. Food Nahrung 12(8):783–785CrossRefGoogle Scholar
  32. Erkurt EA, Ünyayar A, Kumbur H (2007) Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 42(10):1429–1435CrossRefGoogle Scholar
  33. Faraco V, Pezzella C, Miele A, Giardina P, Sannia G (2009) Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 20(2):209–220PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fu Y, Viraraghavan T (2002) Removal of Congo red from an aqueous solution by fungus Aspergillus Niger. Adv Environ Res 7(1):239–247CrossRefGoogle Scholar
  35. Gadd GM (1987) Fungal response towards heavy metals. In: Hebert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 84–109Google Scholar
  36. Gadd GM (2010) Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156:609–643PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gahlout M, Rudakiya DM, Gupte S, Gupte A (2017) Laccase-conjugated amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 dye. Int Nano Lett 7(3):195–208CrossRefGoogle Scholar
  38. Gaitan IJ, Medina SC, González JC, Rodríguez A, Espejo ÁJ, Osma JF, Sarria V, Alméciga-Díaz CJ, Sánchez OF (2011) Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour Technol 102(3):3632–3635PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveriabassiana. Bioresour Technol 218:388–396PubMedCrossRefPubMedCentralGoogle Scholar
  40. Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59:629–638PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gutnick DL, Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulation. Appl Microbiol Biotechnol 54:451–460PubMedCrossRefPubMedCentralGoogle Scholar
  42. Guzzella L, Pozzoni F, Giuliano G (2006) Herbicide contamination of surficial groundwater in Northern Italy. Environ Pollut 142(2):344–353PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hai FI, Yamamoto K, Nakajima F, Fukushi K, Nghiem LD, Price WE, Jin B (2013) Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolusversicolour. Bioresour Technol 141:29–34PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952PubMedPubMedCentralGoogle Scholar
  45. Hammer E, Schauer F (1997) Fungal hydroxylation of dibenzofuran. Mycol Res 101:433–436CrossRefGoogle Scholar
  46. Hammer E, Krowas D, Schafer A, Specht M, Francke W, Schauer F (1998) Isolation and characterization of dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products. Appl Environ Microbiol 64:2215–2219PubMedPubMedCentralGoogle Scholar
  47. Hamamura N, Ward DM, Inskeep WP (2013) Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiol Ecol 85(1):168–178PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hernández-Romero AH, Tovilla-Hernández C, Malo EA, Bello-Mendoza R (2004) Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Marine Pollut Bull 48:1130–1141CrossRefGoogle Scholar
  49. Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962PubMedCrossRefPubMedCentralGoogle Scholar
  50. Huang C, Huang CP, Morehart AL, Westman DC (1989) Removal of toxic heavy metals from contaminated groundwater by a fungal adsorption process, Final Technical Report. Contract 14-08-0001-G1292, U.S. Geological Survey, Washington, DC. 121 ppGoogle Scholar
  51. Javaid A, Bajwa R, Javaid A (2010) Biosorption of heavy metals using a dead macro fungus Schizophyllum commune fries: evaluation of equilibrium and kinetic models. Pak J Bot 42(3):2105–2118Google Scholar
  52. Johanne C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528CrossRefGoogle Scholar
  53. Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74CrossRefGoogle Scholar
  54. Kamei I, Kondo R (2005) Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 68:560–566PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kapoor A, Viraraghavan T (1995) Fungal biosorption — an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53(3):195–206Google Scholar
  56. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104CrossRefGoogle Scholar
  57. Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere 56(1):23–30PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kotterman MJ, Vis EH, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenousmicroflora. Appl Environ Microbiol 64:2853–2858PubMedPubMedCentralGoogle Scholar
  59. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600PubMedPubMedCentralGoogle Scholar
  60. Kumar MN, Ravikumar R, Sankar MK, Thenmozhi S (2018) New insight into the effect of fungal mycelia present in the bio-pretreated paddy straw on their enzymatic saccharification and optimization of process parameters. Bioresour Technol 267:291–302CrossRefGoogle Scholar
  61. Lacina C, Germain G, Spiros AN (2003) Utilization of fungi for biotreatment of raw wastewater. Afr J Biotechnol 2:620–630CrossRefGoogle Scholar
  62. Levin L, Melignani E, Ramos AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101(12):4554–4563PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lewis DL, Paris DF, Baughman GL (1975) Transformation of malathion by fungus, Aspergillus oryzae isolated from a freshwater pond. Bull Environ Contam Toxicol 13:596–601PubMedCrossRefPubMedCentralGoogle Scholar
  64. Liu Y, Chen X, Li J, Burda C (2005) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61(1):11–18PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lun JH, Hewitt J, Sitabkhan A, Eden JS, Tuipulotu DE, Netzler NE et al (2018) Emerging recombinant noroviruses identified by clinical and waste water screening. Emerg Microbes Infect 7:50PubMedPubMedCentralCrossRefGoogle Scholar
  66. Maceiras R, Rodriguez-Couto S, Sanroman A (2001) Influence of several activators on the extracellular laccase activity and in vivo decolourization of poly R-478 by semi-solid-state cultures of Trametes versicolor. Acta Biotechnol 21:255–264CrossRefGoogle Scholar
  67. Manilla-Pérez E, Lange AB, Luftmann H, Robenek H, Steinbüchel A (2011) Neutral lipid production in Alcanivorax borkumensis SK2 and other marine hydrocarbonoclastic bacteria. Eur J Lipid Sci Technol 113:8–17CrossRefGoogle Scholar
  68. Martens R (1976) Degradation of [8,9-14C]endosulfan by soil microorganisms. Appl Environ Microbiol 31:853–858PubMedPubMedCentralGoogle Scholar
  69. Matsumura F, Boush GM (1968) Degradation of insecticides by a soil fungus Trichoderma viride. J Econ Entomol 61:610–612PubMedCrossRefPubMedCentralGoogle Scholar
  70. Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61(3):261–267PubMedCrossRefPubMedCentralGoogle Scholar
  71. Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Yasuhara A, Morita M (2005) Degradation of dioxins by cyclic ether degrading fungus, Cordyceps sinensis. FEMS Microbiol Lett 248:17–22PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nemec P, Prochazka H, Stamberg K, Katzer J, Stamberg J, Jilek R, Hulak P (1977) U.S. Patent No. 4,021,368. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  73. Nyanhongo GS, Gomes J, Gubitz GM, Zvauya R, Read J, Steiner W (2002) Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res 6:1449–1456CrossRefGoogle Scholar
  74. Pandey AK, Jamalludin A, Pandey AK (2013) Biosorption characteristics of Aspergillus flavusin removal of Nickel from an aqueous solution. Int J Green Herb Chem 2:47–51Google Scholar
  75. Patel H, Gupte A, Gupte S (2009) Biodegradation of Fluoranthene by Basidiomycetes fungal isolate Pleurotus Ostreatus HP-1. Appl Biochem Biotechnol 157(3):367–376PubMedCrossRefPubMedCentralGoogle Scholar
  76. Patel H, Gupte A, Gupte S (2010) Biodegradation of pyrene by Pleurotus ostreatus HP-1 and its correlation with extracellular ligninolytic enzyme production. Int J Agric Environ Biotechnol 3:313–319Google Scholar
  77. Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1992) Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl Environ Microbiol 58:3654–3659PubMedPubMedCentralGoogle Scholar
  78. Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. Br Mycol Soc Symp Ser 23:52–78Google Scholar
  79. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24(5):219–226PubMedCrossRefPubMedCentralGoogle Scholar
  80. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rudakiya DM, Gupte A (2017) Degradation of hardwoods by treatment of white rot fungi and its pyrolysis kinetics studies. Int Biodeterior Biodegradation 120:21–35CrossRefGoogle Scholar
  82. Rudakiya DM, Gupte A (2019) Assessment of white rot fungus mediated hardwood degradation by FTIR spectroscopy and multivariate analysis. J Microbiol Methods 157:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  83. Rudakiya DM, Pawar K (2013) Evaluation of remediation in heavy metal tolerance and removal by Comamonas acidovorans MTCC 3364. IOSR J Environ Sci Toxicol Food Technol 5(5):26–32CrossRefGoogle Scholar
  84. Rudakiya DM, Iyer V, Shah D, Gupte A, Nath K (2018) Biosorption potential of phanerochaete chrysosporium for arsenic, cadmium, and chromium removal from aqueous solutions. Global Chall.  https://doi.org/10.1002/gch2.201800064PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sack U, Günther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol 33:269–277PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sarioglu M, Bali U, Bisgin T (2007) The removal of C.I. basic red 46 in a mixed methanogenic anaerobic culture. Dyes Pigments 74(1):223–229CrossRefGoogle Scholar
  87. Say R, Denizli A, Arica MY (2001) Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76:67–70PubMedCrossRefPubMedCentralGoogle Scholar
  88. Shah D, Rudakiya DM, Iyer V, Gupte A (2018) Simultaneous removal of hazardous contaminants using polyvinyl alcohol coated Phanerochaete chrysosporium. Int J Agric Environ Biotechnol 11:235–241Google Scholar
  89. Sharaf EF, Alharbi E (2013) Removal of heavy metals from waste water of tanning leather industry by fungal species isolated from polluted soil. Afr J Biotechnol 12:4351–4355CrossRefGoogle Scholar
  90. Shin E, Choi HT, Song H (2007) Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus. J Microbiol Biotechnol 17:1147PubMedPubMedCentralGoogle Scholar
  91. Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22:823–831PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sumathi S, Manju BS (2000) Uptake of reactive textile dyes by Aspergillus foetidus. Enzym Microb Technol 27(6):347–355CrossRefGoogle Scholar
  93. Sutherland JB, Rafii F, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 269–306Google Scholar
  94. Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enzym Microb Technol 24(3–4):130–137CrossRefGoogle Scholar
  95. Thakur S, Gupte A (2015) Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes. Ann Microbiol 65:185–196CrossRefGoogle Scholar
  96. Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegradation 64:447–451CrossRefGoogle Scholar
  97. Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA, Allinor JI (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5(4)Google Scholar
  98. van der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res 39(8):1425–1440PubMedCrossRefPubMedCentralGoogle Scholar
  99. Vargas JM (1975) Pesticide degradation. J Arboricult 1:232–233Google Scholar
  100. Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13:429–466CrossRefGoogle Scholar
  101. Wunder T, Kremer S, Sterner O, Anke H (1994) Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus Niger SK 9317. Appl Microbiol Biotechnol 42(4):636–641PubMedCrossRefPubMedCentralGoogle Scholar
  102. Xuejiang W, Ling C, Siqing Z, Jianfu JM, Chovelon R, N.J. (2006) Biosorption of Cu (II) and Pb (II) from aqueous solutions by dried activated sludge. Min Eng 19:968–971CrossRefGoogle Scholar
  103. Yang SK, Deutsch JOSEPH, Gelboin HV (1978) Benzo (a) pyrene metabolism: activation and detoxification. In: Polycyclic Hydrocarbons and Cancer, vol 1, pp 205–231Google Scholar
  104. Yin H, He B, Peng H, Ye J, Yang F, Zhang N (2008) Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: study of cations release and biosorption mechanism. J Hazard Mater 158:568–576PubMedCrossRefPubMedCentralGoogle Scholar
  105. Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820CrossRefGoogle Scholar
  106. Zhao C, Li X, Ding C, Liao J, Du L, Yang J, Yang Y, Zhang D, Tang J, Liu N, Sun Q (2016) Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS. J Radioanal Nucl Chem 310(1):165–175CrossRefGoogle Scholar
  107. Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ (2010) Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int J Environ Sci Technol 7(2):359–366CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Darshan M. Rudakiya
    • 1
  • Archana Tripathi
    • 1
  • Shilpa Gupte
    • 2
  • Akshaya Gupte
    • 1
  1. 1.Department of MicrobiologyN V Patel College of Pure & Applied SciencesAnandIndia
  2. 2.Department of MicrobiologyAshok & Rita Patel Institute of Integrated Study & Research in Biotechnology and Allied SciencesAnandIndia

Personalised recommendations