Saccharomyces cerevisiae: Oscillatory Orchestration of Growth

  • David LloydEmail author


It is important to understand the structure and function of Baker’s yeast as it serves as an excellent model, not only for many other fungi but also for almost all eukaryotic cell systems, including those of humans and hence biomedicine. In 1996, Saccharomyces cerevisiae became the first genetically defined eukaryotic organism to be sequenced: 6604 genes (> 400 orthologous with, and replaceable by human ones). Although its evolution has diverged for approximately 1.5 billion years from that of human cells, yeast research provides basic clues and insights into the molecular deficiencies and disorders of many human conditions: mitochondrial dysfunction, cellular division, apoptosis, diabetes, obesity, the accompaniments of old age, cancers, and “dynamic diseases” (neuropsychiatric conditions, e.g., many sleep disorders, depression). Dynamic maintenance of redox status and balanced energy supply and demand is crucial for optimum function and survival of yeast and of all cells. Recent advances in optoelectronics enable fast and continuous dynamic interrogation of processes in vivo. In this chapter, I outline the exquisite time order of molecular, metabolic, and biosynthetic events and processes that are organized with a precision that is commensurate with both spatial and temporal organization and that finds a coherence and resonance universally in life processes.


Time structure Oscillations Rhythms Ultradian Mitochondria Metabolism Energetics Oxygen 



DL would like to thank all the students and coworkers for permission to summarize their contribution to work on temporal organization of the growth of yeasts.


  1. Achs MJ, Kohn MC, Garfinkel (1979) Computer simulation of metabolism in pyruvate-perfused rat heart. IV. Model behavior. Am J Phys 237:R174–R180Google Scholar
  2. Adams CA, Kuriyama H, Lloyd D, Murray (2003) The Gts1 protein stabilizes the autonomous oscillator in yeast. Yeast 20:463–470PubMedCrossRefGoogle Scholar
  3. Amariei C, Machné R, Stoic V, Soga T, Tomita M, Lloyd D, Murray DB (2013) Time resolved DNA occupancy dynamics during the respiratory oscillation uncover a global reset point in the yeast growth program. Microb Cell 1(9):279–288CrossRefGoogle Scholar
  4. Amariei C, Machné R, Sasidharan K, Gottstein W, Tomita M, Lloyd D, Murray DB (2014a) The dynamics of cellular energetics during continuous yeast culture. Conf Proc IEEE Eng Med Biol Soc 2013:2708–2711Google Scholar
  5. Amariei C, Tomita M, Murray DB (2014b) Quantifying periodicity in omics data. Front Cell Dev Biol 2:40. Scholar
  6. Andersen AZ, Poulsen AK, Brasen JC, Olsen LF (2007) On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae. Yeast 24:731–739PubMedCrossRefGoogle Scholar
  7. Aon MA, Cortassa S (1997) Dynamic biological organization: fundamentals as applied to cellular systems. Springer, New YorkCrossRefGoogle Scholar
  8. Aon MA, Cortassa S, Lemar KM, Hayes A, Lloyd D (2007) Single and cell population respiratory oscillations in yeast: a 2-photon study. FEBS Lett 58:6–14Google Scholar
  9. Aon MA, Roussel MR, Cortassa S, O’Rourke B, Murray DB, Beckmann M, Lloyd D (2008a) The scale-free dynamics of eukaryotic cells. PLoS One 3(11):e3624PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aon MA, Cortassa S, O’Rourke B (2008b) Mitochondrial oscillations in physiology and pathophysiology. Adv Exp Med Biol 641:98–117PubMedPubMedCentralCrossRefGoogle Scholar
  11. Aon MA, Cortassa S, Lloyd D (2011) Chaos in biochemistry and physiology. In: Meyers RA (ed) Encyclopedia of biochemistry and molecular cell biology and molecular medicine: systems biology, 2nd edn. Wiley-VCH Verlag, Weinheim, pp 239–276Google Scholar
  12. Aon MA, Lloyd D, Saks V (2014) From physiology, genomes, systems, self-organization to systems biology: the historical roots of a twenty-first century approach to complexity. In: Aon MA, Saks V, Schlattner U (eds) Systems biology of metabolic and signaling networks: energy, mass and information transfer. Springer, Berlin/Heidelberg, pp 3–17CrossRefGoogle Scholar
  13. Barnett JA (1998–2010). A history of research on yeasts: parts 1–14. Yeast 14:1439–1451 (1998) to 27: 875–904 (2010)Google Scholar
  14. Bashford CL, Poole RK, Lloyd D, Chance B (1980) Oscillations of redox state in synchronized dividing cultures of Acanthamoeba castellanii and Schizosaccharomyces pombe. Biophys J 29:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bohátka S (1985) Quadrupole mass spectrometric measurement of dissolved and free gases. In: Degn H, Cox RP, Toflund H (eds) Gas enzymology. D. Reidel, Dordrecht, pp 1–16Google Scholar
  16. Bohátka S, Langer G, Szilágyi J, Berecz I (1983) Gas concentration determination in fermenters with quadrupole mass spectrometer. Int J Mass Spec Ion Phys 47:277–274CrossRefGoogle Scholar
  17. Boiteux A, Chance B (1970) Eighth Int Con Biochem, Luzern AbsGoogle Scholar
  18. Brodsky VY (1975) Protein synthesis rhythm. J Theor Biol 55:167–200CrossRefGoogle Scholar
  19. Brodsky VY (1992) Rhythms of protein synthesis and other cirahoralian oscilations: the possible involvement of fractals. In: Lloyd D, Rossi EL (eds) Ultradian rhythms in life processes. An inquiry into fundamental principles of chronobiology and psychology. Springer, London, pp 23–40Google Scholar
  20. Brodsky VY (2014) Circahoralian (ultradian) rhythms. Biochemistry (Mosc) 79(6):483–495CrossRefGoogle Scholar
  21. Cartledge TG, Lloyd D, Erecińska M, Chance B (1972) The development of the respiratory chain of Saccharomyces carlbergensis during respiratory adaptation. Biochem J 130:739–747PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carvell J (2011) Creating new opportunities in process control through radio frequency impedence spectroscopy. BMC Proc 5(Suppl 8):P57PubMedPubMedCentralGoogle Scholar
  23. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134Google Scholar
  24. Chance B, Williamson G, Lee IY, Mela L, DeVault D, Ghosh AK, Pye EK (1973) Synchronization phenomena in oscillations in yeast cells and isolated mitochondria. In: Chance B, Pye EK, Ghosh AK, Hess B (eds) Biological and biochemical oscillators. A Colloquium of the Johnson Foundation. Academic, New York/London, pp 285–302CrossRefGoogle Scholar
  25. Chin SL, Marcus IM, Klevecz RR, Li CM (2012) Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators. FEBS J 279:1119–1130PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cortassa S, Aon MA, Marbán E, Winslow RL, O’Rourke (2003) An integrated model of cardiac mitochondrial metabolism. Biophys J 84:2734–2755PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cortassa S, Aon MA, Iglesias AA, Aon JC, Lloyd D (2012) An introduction to metabolic and cellular engineering, 2nd edn. World Scientific, Singapore, pp xiv+ 428Google Scholar
  28. Dalal CK, Cai L, Lin Y, Rahbar K, Elowitz MB (2014) Pulsatile dynamics in the yeast proteome. Curr Biol 24(18):2189–2194PubMedPubMedCentralCrossRefGoogle Scholar
  29. Davey HM, Davey CL, Woodward AM, Edmonds AN, Lee AW, Kell DB (1996) Oscillatory, stochastic and chaotic growth rate fluctuations in permittistatically controlled yeast cultures. Biosystems 39:43–61PubMedCrossRefPubMedCentralGoogle Scholar
  30. Degn H (1972) Oscillating chemical reactions in homogeneous phase. J Chem Educ 49:302–307CrossRefGoogle Scholar
  31. Dharmalingham, Jayaraman (1973) Mitochondriogenesis in synchronous cultures of yeast. I. Oscillatory pattern of respiration. Arch Biochem Biophys 157:197–202CrossRefGoogle Scholar
  32. Dunlap JC, Loros J (2017) Yes, circadian rhythms actually affect everything. Cell Res 26:759–760CrossRefGoogle Scholar
  33. Duysens LNM, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible region. Biochem Biophys Acta 24:19–26PubMedCrossRefGoogle Scholar
  34. Edmunds LN Jr (1980) Blue light photoreception in the inhibition and synchronization of growth and transport the yeast Saccharomyces. In: Senger H (ed) The blue light syndrome. Springer, Berlin, pp 584–596CrossRefGoogle Scholar
  35. Edwards SW, Lloyd D (1977) Mitochondrial adenosine triphosphate of the fission yeast Schizosaccharomyces pombe 972h. Biochem J 162:39–46PubMedPubMedCentralCrossRefGoogle Scholar
  36. Edwards SW, Lloyd D (1978) Oscillations of respiration and adenine nucleotides in synchronous cultures of Acanthamoeba castellanii: mitochondrial respiratory control in vivo. J Gen Microbiol 108:197–204CrossRefGoogle Scholar
  37. Edwards SW, Lloyd D (1980) Oscillations of protein and RNA content during synchronous growth of Acanthamoeba castellanii. FEBS Lett 109:21–26PubMedCrossRefGoogle Scholar
  38. Edwards SW, Lloyd D (1982) The mitochondrial adenosine triphosphatase of Acanthamoeba castellanii: oscillatory accumulation of enzyme activity, enzyme protein and F1-inhibitor during the cell cycle. Biochem J 202:453–458PubMedPubMedCentralCrossRefGoogle Scholar
  39. Edwards SW, Evans JB, Lloyd D (1981) Oscillatory accumulation of catalase during the cell cycle of Acanthamoeba castellanii. J Gen Microbiol 125:459–462Google Scholar
  40. Edwards SW, Evans JB, Williams JL, Lloyd D (1982) The mitochondrial adenosine triphosphatase of Acanthamoeba castellanii: oscillatory accumulation of enzyme activity, enzyme protein and F1-inhibitor during the cell cycle. Biochem J 202:453–458PubMedPubMedCentralCrossRefGoogle Scholar
  41. Eelderink-Chen Z, Mazzotta G, Sturre M, Bosman J, Roenneberg T, Merrow M (2010) A circadian clock in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 107:2043–2047PubMedPubMedCentralCrossRefGoogle Scholar
  42. Eelderink-Chen Z, Olmedo M, Bosman J, Merrow M (2015) Chapter 4 – Using circadian entrainment to find cryptic clocks. Methods Enzymol 551:73–93PubMedCrossRefGoogle Scholar
  43. Engelmann W, Bollig I, Hartmann R (1976) The effects of lithium ions on circadian rhythms. Arznemitteforschung 26(6):1085–1086Google Scholar
  44. Espeso EA (2016) The CRaZy calcium cycle. Adv Exp Med Biol 892:169–186PubMedCrossRefGoogle Scholar
  45. Estabrook RW, Maitra PK (1962) A fluorimetric method for the quantitative analysis of adenine and pyridine nucleotides. Anal Biochem 3:369–382PubMedCrossRefGoogle Scholar
  46. Fricker MD, Tlalka M, Bebber D, Tagaki S, Watkinson SC, Darrah PR (2007) Fourier-based spatial mapping of oscillatory phenomena in fungi. Fungal Genet Biol 44(11):1077–1084PubMedCrossRefGoogle Scholar
  47. Ghosh AK, Chance B (1964) Oscillation of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun 16:174–181PubMedCrossRefGoogle Scholar
  48. Goodwin BC (1963) Analytical physiology of cells and developing organisms: a dynamic theory of cellular control processes. Academic, London/New York, pp x+249Google Scholar
  49. Heimburg T (2017) Linear nonequilibrium thermodynamics of reversible periodic processes and chemical oscillations. Phys Chem Chem Phys 19:17331–19341PubMedCrossRefGoogle Scholar
  50. Hess B, Bioteux A (1971) Oscillatory phenomena in biochemistry. Annu Rev Biochem 53:237–258CrossRefGoogle Scholar
  51. Higgins J, Frenkel R, Hulme E, Lucas A, Rangazas (1973) The control theoretic approach to the analysis of glycolytic oscillators. In: Chance B, Pye EK, Ghosh AK, Hess B (eds) Biological and biochemical oscillators. A Colloquium of the Johnson Foundation. Academic, New York/London, pp 127–175CrossRefGoogle Scholar
  52. Hughes ME, DiTacchio, Hayes KR et al (2009) Harmonics of circadian gene transcripts. PLoS Genet 5(4):e1000442PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hughes ME, Arbruzzi KC, Allada R et al (2017) Guidelines for genome-scale analysis of biological rhythms. J Biol Rhythm 32:380–393CrossRefGoogle Scholar
  54. Jules M, François J, Parrou JL (2005) Autonomous oscillations in Saccharomyces cerevisiae during cultures on trehalose. FEBS J 272:1490–1500PubMedCrossRefGoogle Scholar
  55. Jules M, Beltran G, François J, Parrou JL (2007) New insights into trehalose metabolism by NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol 74(3):605–613PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kader J, Lloyd D (1979) Respiratory oscillations and heat evolution in synchronous cultures of Candida utilis. J Gen Microbiol 114:455–461PubMedCrossRefGoogle Scholar
  57. Keulers M, Kuriyama H (1998) Extracellular signaling in an yeast culture. In: Holcombe WLM, Paton R, Holcombe M (eds) Information processing in cells and tissues. Plenum, New York, pp 85–94CrossRefGoogle Scholar
  58. Keulers M, Satroutdinov AD, Kuriyama H (1996a) Oscillations in ethanol grown Saccharomyces cerevisiae. FEBS Microbiol Lett 142:253–258CrossRefGoogle Scholar
  59. Keulers M, Satroutdinov AD, Suzuki T, Kuriyama H (1996b) Synchronization affector of autonomous short-period-sustained oscillation of Saccharomyces cerevisiae. Yeast 12:673–682PubMedCrossRefGoogle Scholar
  60. Kippert F (1997) Lithium affects the ultradian clock of Schizosaccharomyces pombe by inhibition of inositol monophosphatase. Biochem Soc Trans 25(4):S602PubMedCrossRefGoogle Scholar
  61. Kippert F (2001) Cellular signaling and the complexity of biological timing: insights from the ultradian clock of Schizosaccharomyces pombe. Phil Trans Roy Soc Lond B Biol Sci 356:1725–1733CrossRefGoogle Scholar
  62. Kippert F, Lloyd D (1995) A temperature-compensated clock ticks in Schizosaccharomyces pombe. Microbiology 141:883–890PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kippert F, Engelmann W, Ninnemann H (1990) Blue light synchronizes and inhibits the growth of Schizosaccharomyces pombe. Prog Clin Biol Res 341B:271–280PubMedPubMedCentralGoogle Scholar
  64. Klevecz RR (1976) Quantized generation times in mammalian cells as an expression of the cellular clock. Proc Natl Acad Sci U S A 73:4012–4016PubMedPubMedCentralCrossRefGoogle Scholar
  65. Klevecz RR (1992) A precise circadian clock from chaotic cell cycle oscillations. In: Lloyd D, Rossi EL (eds) Ultradian rhythms in life processes. An inquiry into fundamental principles of chronobiology and psychology. Springer, London, pp 41–69Google Scholar
  66. Klevecz RR, Li CM (2007) Evolution of the clock from yeast to man by period-doubling folds. Cold Spring Harb Symp Quant Biol 72:421–429PubMedPubMedCentralCrossRefGoogle Scholar
  67. Klevecz RR, Murray DB (2001) Genome wide oscillations: wavelet analysis of time series analysis in yeast expression arrays uncovers the dynamic architecture of phenotype. Mol Biol Rep 28:73–82PubMedCrossRefPubMedCentralGoogle Scholar
  68. Klevecz RR, Bolen J, Forest G, Murray DB (2004) A genome-wide oscillation in transcription gates DNA replication and the cell cycle. Proc Natl Acad Sci U S A 101:1200–1205PubMedPubMedCentralCrossRefGoogle Scholar
  69. Klevecz RR, Li CM, Marcus I, Frankel PH (2008) Collective behavior in gene regulation: the cell is an oscillator, the cell cycle a developmental process. FEBS J 275:2372–2384PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kumar N (1996) Deterministic chaos: complex chance out of simple necessity. University Press (India), Jawaharlal Nehru Centre for Advanced Research, Hyderabad, pp xi+96Google Scholar
  71. Kurz FT, Kembro JM, Flesia AG, Armoundas AA, Cortassa S, Aon MA, Lloyd D (2017) Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back. Wiley Interdiscip Rev Syst Biol Med 9(1). Scholar
  72. Kwak WJ, Kwong GS, Jin I, Kuriyama H, Sohn HY (2003) Involvement of oxidative stress in the regulation of H2S production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEBS Microbiol Lett 219:99–104CrossRefGoogle Scholar
  73. Lemar KM (2003) Cell death mechanisms in the human opportunistic pathogen, Candida albicans. J Eukaryot Microbiol 50(Suppl):685–686PubMedCrossRefGoogle Scholar
  74. Lemar KM, Passa O, Aon MA, Cortassa S, Muller CT, Plummer S, O’Rourke B, Lloyd D (2005) Allyl alcohol and garlic (Allium sativum) produce oxidative stress in Candida albicans. Microbiology 151:3257–3265PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lemar KM, Aon MA, Cortassa S, O’Rourke B, Muller CT, Lloyd D (2007) Diallyl disulphide depletes glutathione in Candida albicans : oxidative-stress mediated cell death studied by two-photon microscopy. Yeast 24:695–706PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li LZ (2011) Special section in memory of Professor Britton Chance: celebrating the life and legasy of Britton Chance. J Innov Optical Health Sci 4(2):v–viiCrossRefGoogle Scholar
  77. Li CM, Klevecz RR (2006) A rapid genome-scale response to the transcriptional oscillator to perturbation reveals a period-doubling path to phenotypic change. Proc Natl Acad Sci U S A 103:16254–16259PubMedPubMedCentralCrossRefGoogle Scholar
  78. Li J, Grant GR, Hogenesch JB, Hughes ME (2015) Chapter sixteen-considerations for RNA-seq analysis of circadian rhythms. Methods Enzymol 551:349–367PubMedCrossRefGoogle Scholar
  79. Lloyd D (2003) Effects of uncoupling of mitochondrial energy conservation on thevultradian clock-driven oscillations in Saccharomyces cerevisiae continuous culture. Mitochondrion 3:139–146PubMedCrossRefGoogle Scholar
  80. Lloyd D (2006) The ultradian clock: not to be confused with the cell cycle. Nat Rev Mol Cell Biol 7.
  81. Lloyd D (2009) Oscillations, synchrony and deterministic chaos. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 70. Springer, Berlin, pp 69–92CrossRefGoogle Scholar
  82. Lloyd D (2016) Biological timekeeping: the business of a blind watchmaker. Sci Prog 99(2):113–132CrossRefGoogle Scholar
  83. Lloyd D, Edwards SW (1977) Mitochondrial adenosine triphosphate of the fission yeast Schizosaccharomyces pombe 972h. Biochem J 162:581–590PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lloyd D, Kippert F (1993) Intracellular coordination by the ultradian clock. Cell Biol Int 17:1047–1052PubMedCrossRefGoogle Scholar
  85. Lloyd AL, Lloyd D (1992) Hypothesis: the central oscillator of the circadian clock is a controlled chaotic attractor. Biosystems 29:77–85CrossRefGoogle Scholar
  86. Lloyd AL, Lloyd D (1995) Chaos: its detection and significance in biology. Biol Rhythm Res 26:233–252CrossRefGoogle Scholar
  87. Lloyd D, Murray DB (2000) Redox cycling of intracellular thiols: state variables for ultradian, cell division and circadian cycles. In: Van den Driessche T, Guisset JL, DeVries GP (eds) Redox behaviour of Circadian systems. Kluwer, Amsterdam, pp 85–94CrossRefGoogle Scholar
  88. Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30(7): 373–377PubMedCrossRefGoogle Scholar
  89. Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29:465–473PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lloyd D, Stupfel M (1991) The occurrence and functions of ultradian rhythms. Biol Rev 66:275–299PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lloyd D, John L, Edwards C, Chagla AH (1975) Establishment of large scale synchronous cultures of microorganisms by continuous flow size selection. J Gen Microbiol 88:153–158PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lloyd D, John L, Hamill M, Phillips C, Kader J, Edwards SW (1977) Continuous-flow cell cycle fractionation of eukaryotic microorganisms. J Gen Microbiol 99:223–227CrossRefGoogle Scholar
  93. Lloyd D, Boveris A, Reiter R, Filipkowski M, Chance B (1979) Chemiluminescence of Acanthamoeba castellanii. Biochem J 184:149–156PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lloyd D, Edwards SW, Williams JL (1981) Oscillatory accumulation of total cellular protein in Candida utilis. FEMS Microbiol Lett 12:295–298CrossRefGoogle Scholar
  95. Lloyd D, Poole RK, Edwards SW (1982a) The cell division cycle: temporal organization and control of cellular growth and reproduction. Academic, London, pp xii+513Google Scholar
  96. Lloyd D, Edwards SW, Fry JC (1982b) Temperature-compensated oscillations in respiration and cellular protein in synchronous cultures of Acanthamoeba castellanii. Proc Natl Acad Sci U S A 79:3785–3788PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lloyd D, Kristensen B, Degn H (1983a) Glycolysis and respiration in yeasts: the Pasteur effect studied by mass spectrometry. Biochem J 212:749–754PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lloyd D, Edwards SW, Williams JL, Evans JB (1983b) Mitochondrial cytochromes of Acanthamoeba castellanii: oscillatory accumulation haemoproteins, immunological determinants and activity during the cell cycle. FEMS Microbiol Lett 16:307–312CrossRefGoogle Scholar
  99. Lloyd D, Bohátka S, Szilágyi J (1985) Quadrupole mass spectrometry in the monitoring and control of fermentations. Biosensors 1:179–212CrossRefGoogle Scholar
  100. Lloyd D, Lloyd AL, Olsen LF (1992) The cell division cycle: a physiologically plausible dynamic model can exhibit chaotic solutions. Biosystems 27:17–24PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lloyd D, Thomas K, Price D, O’Neill W, Oliver K, Williams TN (1996) A MIMS miniprobe for the direct simultaneous measurement of multiple gas species. J Microbiol Methods 25:145–151CrossRefGoogle Scholar
  102. Lloyd D, Salgado LE, Turner MP, Murray DB (2002a) Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. FEBS Lett 519:41–44PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lloyd D, Salgado LEJ, Turner MP, Suller MTE, Murray DB (2002b) Cycles of mitochondrial energization driven by the ultradian clock in a culture of Saccharomyces cerevisiae. Microbiology 148:3715–3724PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lloyd D, Murray DB, Klevecz RR, Wolf J, Kuriyama H (2008) The ultradian clock (~ 40 min) in yeast. In: Lloyd D, Rossi EL (eds) Ultradian rhythms from molecules to mind: a new vision of life. London, Springer, pp 11–42Google Scholar
  105. Lloyd D, Cortassa S, O’Rourke B, Aon MA (2012) What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 4:65–74CrossRefGoogle Scholar
  106. Lobo Z, Maitra PK (1983) Genetics of yeast glucokinase. Genetics 105:501–515PubMedPubMedCentralGoogle Scholar
  107. Luzikov VN (1984). Mitochondrial biogenesis and breakdown (trans. Galkin AV, Roodyn DB). Consultants Bureau, New York/LondonGoogle Scholar
  108. Luzikov VN (2009) Principles of control over formation of structures responsible for respiratory functions of mitochondria. Biochem Mosc 74:1443–1456CrossRefGoogle Scholar
  109. Machné R, Murray DB (2012) The yin and yang of yeast transcription : elements of a global feedback system between metabolism and chromatin. PLoS One 7(6):e37906PubMedPubMedCentralCrossRefGoogle Scholar
  110. Machné R, Murray DB, Stadler PF (2017) Similarity-based segmentation of multi-dimensional signals. Sci Rep 7(1):12355PubMedPubMedCentralCrossRefGoogle Scholar
  111. Maitra PK (1966) Pulsating glucose flux in yeast. Biochem Biophys Res Commun 25:462–467PubMedCrossRefGoogle Scholar
  112. Maitra PK (1971) Glucose and fructose metabolism in a phosphoglucoisomeraseless mutant of Saccharomyces cerevisiae. J Bacteriol 107:759–769PubMedPubMedCentralGoogle Scholar
  113. Maitra PK, Estabrook RW (1964) A fluorimetric method for the enzymic determination of glycolytic intermediates. Anal Biochem 7:472–484PubMedCrossRefGoogle Scholar
  114. Male T, Feder J, Giaever GN, Giaever I (1999) Oscillations in yeast observed electrically. Biol Rhythm Res 30(4):361–370CrossRefGoogle Scholar
  115. Merrow M, Raven M (2010) Finding time: a daily clock in yeast. Cell Cycle 9:1671–1672PubMedCrossRefGoogle Scholar
  116. Mochan E, Pye K (1973) Respiratory oscillations in adapting yeast cultures. Nat New Biol 242:177–179PubMedCrossRefGoogle Scholar
  117. Murray DB (2004) On the temporal organization of Saccharomyces cerevisiae. Curr Genom 5:665–671CrossRefGoogle Scholar
  118. Murray DB (2006) The respiratory oscillation in yeast: phase definitions and periodicity. Nature Rev Mol Cell Biol 7.
  119. Murray AW, Kirschner MW (1989) Dominoes and clocks: the union of two views of the cell cycle. Science 246:914–621CrossRefGoogle Scholar
  120. Murray DB, Lloyd D (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30:373–377PubMedCrossRefGoogle Scholar
  121. Murray DB, Lloyd D (2006) A tunable attractor underlies yeast respiratory dynamics. Biosystems 90:287–294PubMedCrossRefGoogle Scholar
  122. Murray DB, Engelen FA, Keulers M, Kuriyama H, Lloyd D (1999a) NO+ but not NO inhibits respiratory oscillations in ethanol-grown chemostat cultures of Saccharomyces cerevisiae. FEBS Lett 431:297–299CrossRefGoogle Scholar
  123. Murray DB, Engelen FA, Keulers M, Kuriyama H, Lloyd D (1999b) NO+ but not NO inhibits respiratory oscillations in ethanol-grown chemostat cultures of Saccharomyces cerevisiae. Biochem Soc Trans 26(4):S339CrossRefGoogle Scholar
  124. Murray DB, Keuler M, Englen F, Lloyd D, Kuriyama H (1999c) Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145:2739–2745PubMedCrossRefGoogle Scholar
  125. Murray DB, Roller S, Kuriyama H, Lloyd D (2001) Clock control of respiratory oscillations found during yeast continuous culture. J Bacteriol 183:7253–7259PubMedPubMedCentralCrossRefGoogle Scholar
  126. Murray DB, Klevecz RR, Lloyd D (2003) Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Exp Cell Res 287:10–15PubMedCrossRefPubMedCentralGoogle Scholar
  127. Murray DB, Beckmann M, Kitano H (2007) Regulation of yeast oscillatory dynamics. Proc Natl Acad Sci U S A 104:2241–2246PubMedPubMedCentralCrossRefGoogle Scholar
  128. Murray DB, Haynes K, Tomita T (2011) Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta 1819:845–958Google Scholar
  129. Murray DB, Amariei C, Sasidharan K, Machne R, Aon MA, Lloyd D (2014) Temporal partitioning of the yeast cellular network. In: Aon MA, Saks V, Schlattner U (eds) Systems biology of metabolic and signaling networks: energy, mass and information transfer, Springer series in biophysics, 16. Springer, Berlin/Heidelberg, pp 323–349CrossRefGoogle Scholar
  130. Ninnemann H (1995) Some aspects of blue light research. Photochem Photobiol 61:22–31PubMedCrossRefPubMedCentralGoogle Scholar
  131. Ninnemann H, Butler WL, Epel BL (1970) Inhibition of respiration in yeast by light. Biochem Biophys Acta 205:499–506PubMedGoogle Scholar
  132. Nosoh Y, Takamiya A (1962) Synchronisation of budding cycle in yeast cells and effect of carbon monoxide and nitrogen deficiency on the synchrony. Plant Cell Physiol 3:59–66Google Scholar
  133. Ohnishi T, Cartledge TG, Lloyd D (1972) The development of mitochondrial iron-sulphur protens during the respiratory adaptation of Saccharomyces carlsbergensis. FEBS Lett 52:90–94CrossRefGoogle Scholar
  134. Olsen LF, Andersen AZ, Lunding A, Brasen JC, Poulsen AK (2009) Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys J 96:3850–3861PubMedPubMedCentralCrossRefGoogle Scholar
  135. Palková Z, Váchová L (2016) Mitochondria in aging cell differentiation. Aging 8(7):1287–1288PubMedPubMedCentralCrossRefGoogle Scholar
  136. Palková Z, Devaux F, Icicová M, Mináriková L, Le Crom S, Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13:3901–3914PubMedPubMedCentralCrossRefGoogle Scholar
  137. Papagiannakis A, Niebel B, Wit EC, Heinemann M (2017) Autonomous metabolic oscillations robustly gate the early and late cell cycle. Mol Cell 65:285–295PubMedCrossRefGoogle Scholar
  138. Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, Kopinski PK, Seifert EL, McEwen BS, Wallace DC (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A 112(48):E6614–E6623PubMedPubMedCentralCrossRefGoogle Scholar
  139. Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116PubMedPubMedCentralCrossRefGoogle Scholar
  140. Plavskii VY, Mikulich AV, Tretyakova AI et al (2018) Porphyrins and flavins are endogenous acceptors of optical radiation determining photoinactivation of microbial cells. J Photochem Photobiol 183:172–183CrossRefGoogle Scholar
  141. Poole RK, Lloyd D (1973) Changes in enzyme activities in synchronously dividing cultures of Schizosaccharomyces pombe h. Biochem J 136:195–207PubMedPubMedCentralCrossRefGoogle Scholar
  142. Poole RK, Lloyd D, Kemp RB (1973) Respiratory oscillations and heat evolution in synchronous cultures of fission yeast, Schizosaccharomyces pombe 972 h. J Gen Microbiol 77:209–290CrossRefGoogle Scholar
  143. Poole RK, Lloyd D, Chance B (1974) The development of the cell division cycle of a glucose-repressed fission yeast, Schizosaccharomyces pombe 972 h. Biochem J 138:201–210PubMedPubMedCentralCrossRefGoogle Scholar
  144. Poulsen AK, Andersen AZ, Brasen JC, Scharff-Poulsen AM, Olsen LF (2008) Probing glycolytic and membrane potential oscillations in Saccharomyces cerevisiae. Biochemistry 47:7477–7484PubMedCrossRefPubMedCentralGoogle Scholar
  145. Rapkine L (1931) Sur les processes chimiques au course de la division cellulaire. Ann Physiol Physicochem 7:382–418Google Scholar
  146. Rensing L, Meyer-Grahl U, Ruoff P (2001) Biological timing and the clock metaphor: oscillatory and hour-glass mechanisms. Chronobiol Int 18:329–369PubMedCrossRefPubMedCentralGoogle Scholar
  147. Roussel MR, Lloyd D (2007) Observation of a chaotic multi-oscillatory metabolic attractor by real-time monitoring of a yeast continuous culture. FEBS J 274:1011–1018PubMedCrossRefGoogle Scholar
  148. Salgado EL, Murray DB, Lloyd D (2002) Some antidepressants (Li+, monoamine oxidase type- A inhibitors) perturb the ultradian clock in Saccharomyces cerevisiae. Biol Rhythm Res 33:351–361CrossRefGoogle Scholar
  149. Sasidharan K, Soga T, Tomita M, Murray DB (2012a) A yeast metabolite extraction protocol optimized for time-series analyses. PLoS One 7:e44283PubMedPubMedCentralCrossRefGoogle Scholar
  150. Sasidharan K, Amariei C, Tomita M, Murray DB (2012b) Rapid DNA, RNA and protein extraction protocols optimized for slow continuously growing yeast cultures. Yeast 29:311–322PubMedCrossRefGoogle Scholar
  151. Sasidharan K, Tomita M, Aon MA, Lloyd D, Murray DB (2012c) The time-structure of yeast metabolism in vivo. In: Goryanin I, Goryachev A (eds) Advances in systems biology. Springer, New YorkGoogle Scholar
  152. Satroutdinov AD, Kuriyama H, Kobayashi H (1992) Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol Lett 98:261–268CrossRefGoogle Scholar
  153. Silverman SJ, Petti AA, Slavov N, Parsond L, Briehof R, Thiberge S, Zenklusen D, Gandhi SJ, Larson DR, Singer RH, Botstein DP (2010) Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proc Natl Acad Sci U S A 107:6946–6951PubMedPubMedCentralCrossRefGoogle Scholar
  154. Slavov N, Botstein D (2011) Coupling among groth rate response, metabolic cycle and cell division cycle in yeast. Mol Biol Cell 22:1997–2009PubMedPubMedCentralCrossRefGoogle Scholar
  155. Slavov N, Macinskas J, Caudy A, Botstein D (2011) Metabolic cycling without cell division in respiring yeast. Proc Natl Acad Sci U S A 108:19090–19095PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sohn HY, Murray DB, Kuriyama H (2000) Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulfide mediates population synchrony. Yeast 16:1185–1190PubMedCrossRefGoogle Scholar
  157. Thoke HS, Tobiesen A, Brewer J, Hansen PL, Stock RP, Olsen LF, Bagatolli LA (2015) Tight coupling of metabolic oscillations and intracellular water dynamics. PLoS One 10:e0117308PubMedPubMedCentralCrossRefGoogle Scholar
  158. Thoke HS, Thorsteinsson S, Stock RP, Bagatolli LA, Olsen LF (2017) The dynamics of intracellular water constrains glycolytic oscillations in Saccharomyces cerevisiae. Sci Rep 7:16250PubMedPubMedCentralCrossRefGoogle Scholar
  159. Thoke HS, Olsen LF, Duelund L, Stock RP, Heimburg T, Bagatolli LA (2018) Is a constant low-entropy process at the root of glycolytic oscillations? J Biol Phys 44:419–431PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tu BP, McKnight SL (2006) Metabolic cycles as an underlying basis of biological oscillations. Nature Rev Mol Cell 7:696–701CrossRefGoogle Scholar
  161. Tu BP, Kudlicki A, Rowika M, McKnight SL (2005) Logic of the cell metabolic cycle: temporal compartmentation of cellular processes. Science 310:1152–1158PubMedCrossRefGoogle Scholar
  162. Ułaszewski S, Mamouneas T, Shen W-K, Rosenthal OJ, Woodward JR, Cirillo VP, Edmunds LN Jr (1979) Light effects in yeast: evidence for participation of cytochromes in photoinhibition of Saccharomyces cerevisiae cultured at low temperatures. J Bacteriol 138:523–529PubMedPubMedCentralGoogle Scholar
  163. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wallace DC (2015) Mitochondrial DNA in human variation and disease. Cell 163:33–38PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wiemken A, von Meyenburg HK, Matile P (1970) Properties of the vacuole in baker’s yeast synchronized with a new method. Acta Fac Med Uni Brunensis 37:47–52Google Scholar
  166. Wille JJ Jr (1974) Light entrained circadian oscillations of growth rate in the yeast Candida utilis. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin, Tokyo, pp 72–77Google Scholar
  167. Woodward JR, Cirillo VP, Edmunds LN Jr (1978) Light effects in yeast: inhibition by visible light of growth and transport in Saccharomyces cerevisiae grown at low temperatures. J Bacteriol 133:692–698PubMedPubMedCentralGoogle Scholar
  168. Xu Z, Tsurugi K (2007a) Role of Gts1 in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae. Yeast 24:161–170PubMedCrossRefGoogle Scholar
  169. Xu Z, Tsurugi K (2007b) De-stabilisation of energy-metabolism oscillation in the absence of trehalose synthesis in the chemostat culture of yeast. Arch Biochem Biophys 464(2):350–358PubMedCrossRefPubMedCentralGoogle Scholar
  170. Xu HN, Tchou J, Feng M, Zhao H, Li LZ (2016) Optical redox imaging indices discriminate human breast cancer from normal tissues. J Biomed Opt 21(11):114003PubMedPubMedCentralCrossRefGoogle Scholar
  171. Yates FE (1982) Outline of a physical theory of physiological systems. Can J Physiol Pharmacol 60:217–248PubMedCrossRefPubMedCentralGoogle Scholar
  172. Yates FE (1992) Fractal applications in biology: scaling time in biochemical networks. In: Brand L, Johnson ML (eds) Numerical methods, methods enzymol, vol 210. Academic, New York, pp 636–676Google Scholar
  173. Yates FE (1993) Self-organizing systems. In: Boyd CAR, Noble D (eds) The logic of life: the challenge of integrative physiology. Oxford University Press, Oxford, pp 189–218Google Scholar
  174. Yates FE, Yates LB (2008) Ultradian rhythms as the signatures of life. In: Lloyd D, Rossi EL (eds) Ultradian rhythms from molecules to mind, a new vision of life. Springer, Dordrecht, pp 249–260CrossRefGoogle Scholar
  175. Zand K, Pham T, Davila A Jr, Wallace DC, Burke PJ (2013) Nanofluidic platform for single mitochondria analysis using fluorescence microscopy. Anal Chem 85(12):6018–6025PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations