Fungal Enzymes: Sources and Biotechnological Applications

  • Naveen Kango
  • Uttam Kumar Jana
  • Ritumbhara Choukade


Fungi, being obligate heterotrophs, are natural decomposers and elaborate a number of enzymes. Currently, more than half of the industrial enzymes are of fungal origin and are being used successfully in diverse industrial processes and products. Some of the well-known areas are pulp and paper, textiles, detergents, food, feeds, nutraceuticals, and therapeutics. Production of industrial enzymes utilizes different fungal genera, Aspergillus being the most exploited one. Apart from protease, phytase, L-asparaginase, and few others, most commercial fungal enzymes are glycosyl hydrolases (cellulases, xylanase, mannanase, amylase, pectinase, β-fructofuranosidase, and others).

Cellulase and amylase (including glucoamylase) from Trichoderma sp. and Aspergillus spp., respectively, are exploited for bio-ethanol, textiles, and detergent industries. Fungal proteases, including keratinases, find application in detergent, food, leather, pharmaceutical, and waste management sectors. The role of fungal acidic pectinases in bringing down the cloudiness and bitterness of fruit juices is well recognized, while fungal phytases are being explored in enriching the nutritive value of poultry diets. L-Asparaginases sourced from molds are being examined for cancer therapy and mitigation of acrylamide formation in food. With the advent of biotechnological interventions, heterologous overexpression in suitable hosts, immobilization on novel matrices, and tailoring of fungal enzymes are being pursued. In this chapter, some of the important fungal enzymes are explored from recent perspective of their biotechnological applications.


Fungi Enzymes Cellulases Xylanase Mannanase Amylase Fructosyltransferase Inulinase L-asparaginase 


  1. Abdulaal WH (2018) Purification and characterization of α-amylase from Trichoderma pseudokoningii. BMC Biochem 19:4PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS (2011) Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl Environ Microbiol 77:4859–4866PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agrawal S, Kango N (2019) Development and catalytic characterization of L-asparaginase nano-bioconjugates. Int J Biol Macromol 145:1145–1150Google Scholar
  4. Agrawal S, Sharma I, Prajapati BP, Suryawanshi RK, Kango N (2018) Catalytic characteristics and application of L-asparaginase immobilized on aluminum oxide pellets. Int J Biol Macromol 114:504–511PubMedCrossRefGoogle Scholar
  5. Ahirwar S, Soni H, Rawat HK, Ganaie MA, Pranaw K, Kango N (2016) Production optimization and functional characterization of thermostable β-mannanase from Malbranchea cinnamomea NFCCI 3724 and its applicability in mannotetraose (M4) generation. J Taiwan Inst Chem Eng 63:344–353CrossRefGoogle Scholar
  6. Aiswarya R, Baskar G (2017) Microbial production of L-asparaginase and its immobilization on chitosan for mitigation of acrylamide in heat processed carrot slices. Indian J Exp Biol 56:504–510Google Scholar
  7. AMFEP (2009) List of enzymes. In: Association of Manufacturers and Formulators of enzyme products.
  8. Anitha TS, Palanivelu P (2013) Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 88:214–220PubMedCrossRefGoogle Scholar
  9. Arand M, Golubev AM, Neto JR, Polikarpov I, Wattiez R, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Shishliannikov SM, Chepurnaya OV, Neustroev KN (2002) Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochem J 362:131–135PubMedPubMedCentralCrossRefGoogle Scholar
  10. Archana A, Satyanarayana T (2003) Purification and characterization of a cellulase-free xylanase of a moderate thermophile Bacillus licheniformis A99. World J Microbiol Biotechnol 19:53–57CrossRefGoogle Scholar
  11. Arnesen S, Havn Eriksen S, Olsen JO, Jensen B (1998) Increased production of α-amylase from Thermomyces lanuginosus by the addition of tween 80. Enzym Microb Technol 23:249–252CrossRefGoogle Scholar
  12. Avwioroko OJ, Anigboro AA, Unachukwu NN, Tonukari NJ (2018) Isolation, identification and in silico analysis of alpha-amylase gene of Aspergillus niger strain CSA35 obtained from cassava undergoing spoilage. Biochem Biophys Rep 14:35–42PubMedPubMedCentralGoogle Scholar
  13. Azzopardi E, Lloyd C, Teixeira SR, Conlan RS, Whitaker IS (2016) Clinical applications of amylase: novel perspectives. Surgery 160:26–37PubMedCrossRefGoogle Scholar
  14. Bajpai P (2014) Introduction. In: Xylanolytic enzymes. Academic, Burlington, pp 1–7Google Scholar
  15. Bali V, Panesar PS, Bera MB, Panesar R (2015) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55:1475–1490PubMedCrossRefGoogle Scholar
  16. Banerjee G, Ray AK (2017) Impact of microbial proteases on biotechnological industries. Biotechnol Genet Eng Rev 33:119–143PubMedCrossRefGoogle Scholar
  17. Barrett AJ, Rawlings ND (1991) Types and families of endopeptidases. Biochem Soc Trans 19:707–715PubMedCrossRefGoogle Scholar
  18. Baskar G, Garrick BG, Lalitha K, Chamundeeswari M (2018) Gold nanoparticle mediated delivery of fungal asparaginase against cancer cells. J Drug Delivery Sci Technol 44:498–504CrossRefGoogle Scholar
  19. Berbee M, James TY, Strullu-Derrien C (2017) Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu Rev Microbiol 71:41–60PubMedCrossRefGoogle Scholar
  20. Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15:106CrossRefGoogle Scholar
  21. Blibech M, Ellouz Ghorbel RE, Chaari F, Dammak I, Bhiri F, Neifar M, Ellouz Chaabouni SE (2011) Improved mannanase production from Penicillium occitanis by fed-batch fermentation using acacia seeds. ISRN Microbiol 2011:1–5CrossRefGoogle Scholar
  22. Bohacz J (2016) Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World J Microbiol Biotechnol 33:13PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bonfá EC, de Souza Moretti MM, Gomes E, Bonilla-Rodriguez GO (2018) Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M.7.7. Biocatal Agric Biotechnol 13:311–318CrossRefGoogle Scholar
  24. Budak SO, Zhou M, Brouwer C, Wiebenga A, Benoit I, Di Falco M, Tsang A, de Vries RP (2014) A genomic survey of proteases in aspergilli. BMC Genomics 15:523PubMedPubMedCentralCrossRefGoogle Scholar
  25. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112PubMedCrossRefGoogle Scholar
  26. Cao L, Tan H, Liu Y, Xue X, Zhou S (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394PubMedCrossRefGoogle Scholar
  27. Carrasco M, Alcaíno J, Cifuentes V, Baeza M (2017) Purification and characterization of a novel cold adapted fungal glucoamylase. Microb Cell Factories 16:75CrossRefGoogle Scholar
  28. Cavello IA, Cavalitto SF (2014) Kinetic modelling of thermal inactivation of a keratinase from Purpureocillium lilacinum LPSC # 876 and the influence of some additives on its thermal stability. Appl Biochem Biotechnol 173:1927–1939PubMedCrossRefGoogle Scholar
  29. Cesar T, Mrša V (1996) Purification and properties of the xylanase produced by Thermomyces lanuginosus. Enzym Microb Technol 19:289–296CrossRefGoogle Scholar
  30. Chai SY, Abu Bakar FD, Mahadi NM, Murad AMA (2016) A thermotolerant Endo-1,4-β-mannanase from Trichoderma virens UKM1: cloning, recombinant expression and characterization. J Mol Catal B Enzym 125:49–57CrossRefGoogle Scholar
  31. Chaikumpollert O, Methacanon P, Suchiva K (2004) Structural elucidation of hemicelluloses from Vetiver grass. Carbohydr Polym 57:191–196CrossRefGoogle Scholar
  32. Chen X, Cao Y, Ding Y, Lu W, Li D (2007) Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. J Biotechnol 128:452–461PubMedCrossRefGoogle Scholar
  33. Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y (2010) Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzym Microb Technol 46:444–449CrossRefGoogle Scholar
  34. Chen M, Lei X, Chen C, Zhang S, Xie J, Wei D (2014) Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Appl Biochem Biotechnol 175:1153–1167PubMedCrossRefGoogle Scholar
  35. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443PubMedCrossRefGoogle Scholar
  36. Chesini M, Wagner E, Baruque DJ, Vita CE, Cavalitto SF, Ghiringhelli PD, Rojas NL (2018) High level production of a recombinant acid stable exoinulinase from Aspergillus kawachii. Protein Expr Purif 147:29–37PubMedCrossRefGoogle Scholar
  37. Choukade R, Kango N (2019) Characterization of a mycelial fructosyltransferase from Aspergillus tamarii NKRC 1229 for efficient synthesis of fructooligosaccharides. Food Chem 286:434–440PubMedCrossRefGoogle Scholar
  38. Costa IM, Schultz L, de Araujo Bianchi Pedra B, Leite MSM, Farsky SHP, de Oliveira MA, Pessoa A, Monteiro G (2016) Recombinant L-asparaginase 1 from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Sci Rep 6:36239PubMedPubMedCentralCrossRefGoogle Scholar
  39. de Gouvêa PF, Bernardi AV, Gerolamo LE, de Souza SE, Riaño-Pachón DM, Uyemura SA, Dinamarco TM (2018) Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genomics 19:232PubMedPubMedCentralCrossRefGoogle Scholar
  40. de Paula RG, Antoniêto ACC, Carraro CB, Lopes DCB, Persinoti GF, Peres NTA, Martinez-Rossi NM, Silva-Rocha R, Silva RN (2018) The duality of the MAPK signaling pathway in the control of metabolic processes and cellulase production in Trichoderma reesei. Sci Rep 8:14931PubMedPubMedCentralCrossRefGoogle Scholar
  41. Deng Y, Liu X, Katrolia P, Kopparapu NK, Zheng X (2018) A dual-function chymotrypsin-like serine protease with plasminogen activation and fibrinolytic activities from the GRAS fungus, Neurospora sitophila. Int J Biol Macromol 109:1338–1343PubMedCrossRefGoogle Scholar
  42. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216PubMedCrossRefGoogle Scholar
  43. Diaz AB, Blandino A, Webb C, Caro I (2016) Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues. Appl Microbiol Biotechnol 100:9555–9566PubMedCrossRefGoogle Scholar
  44. Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528PubMedCrossRefGoogle Scholar
  45. Dozie INS, Okeke CN, Unaeze NC (1994) A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporium keratinophilum. World J Microbiol Biotechnol 10:563–567PubMedCrossRefGoogle Scholar
  46. El-Baky HA, Linke D, Nimtz M, Berger RG (2011) PsoP1, a milk-clotting aspartic peptidase from the basidiomycete fungus Piptoporus soloniensis. J Agric Food Chem 59:10311–10316PubMedCrossRefGoogle Scholar
  47. Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzym Microb Technol 34:85–93CrossRefGoogle Scholar
  48. Fitz E, Wanka F, Seiboth B (2018) The promoter toolbox for recombinant gene expression in Trichoderma reesei. Front Bioeng Biotechnol 6:135PubMedPubMedCentralCrossRefGoogle Scholar
  49. Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN (2014) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 36:259–267PubMedCrossRefGoogle Scholar
  50. Futai E, Kubo T, Sorimachi H, Suzuki K, Maeda T (2001) Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim Biophys Acta Gene Struct Expr 1517:316–319CrossRefGoogle Scholar
  51. Ganaie MA, Gupta US, Kango N (2013) Screening microorganisms for fructosyltransferase (FTase) activity for generation of fructo-oligosaccharides (FOS). J Mol Catal B Enzym 97:12–17CrossRefGoogle Scholar
  52. Ganaie MA, Rawat HK, Wani OA, Gupta US, Kango N (2014) Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructo-oligosaccharides. Process Biochem 49:840–844CrossRefGoogle Scholar
  53. Gao L, Gao F, Zhang D, Zhang C, Wu G, Chen S (2013) Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresour Technol 147:658–661PubMedCrossRefGoogle Scholar
  54. Gastelum-Arellanez A, Paredes-López O, Olalde-Portugal V (2014) Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization. World J Microbiol Biotechnol 30:2953–2965PubMedCrossRefGoogle Scholar
  55. Ghosh M, Prajapati BP, Suryawanshi RK, Dey KK, Kango N (2019a) Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chem Phys Lett 727:105–115CrossRefGoogle Scholar
  56. Ghosh M, Prajapati BP, Kango N, Dey KK (2019b) A comprehensive and comparative study of the internal structure and dynamics of natural β-keratin and regenerated β-keratin by solid state NMR spectroscopy. Solid State Nucl Mag 101:1–11PubMedCrossRefGoogle Scholar
  57. Gopinath SCB, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, Ruslinda AR, Arshad MKM (2015) Biotechnological aspects and perspective of microbial keratinase production. Biomed Res Int 2015:1–10CrossRefGoogle Scholar
  58. Gradisar H, Kern S, Friedrich J (2000) Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol 53:196–200PubMedCrossRefGoogle Scholar
  59. Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gurunathan B, Sahadevan R (2011) Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol Bioprocess Eng 16:50–58CrossRefGoogle Scholar
  61. Gusakov AV, Sinitsyn AP, Salanovich TN, Bukhtojarov FE, Markov AV, Ustinov BB, Zeijl CV, Punt P, Burlingame R (2005) Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzym Microb Technol 36:57–69CrossRefGoogle Scholar
  62. Hamin Neto YAA, da Rosa Garzon NG, Pedezzi R, Cabral H (2017a) Specificity of peptidases secreted by filamentous fungi. Bioengineered 9:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hamin Neto YAA, de Oliveira LCG, de Oliveira JR, Juliano MA, Juliano L, Arantes EC, Cabral H (2017b) Analysis of the specificity and biochemical characterization of metalloproteases isolated from Eupenicillium javanicum using fluorescence resonance energy transfer peptides. Front Microbiol 7:2141PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186PubMedCrossRefGoogle Scholar
  65. Hosamani R, Kaliwal BB (2011) L-Asparaginase- an antitumor agent production by Fusarium equiseti under solid state fermentation. Int J Drug Discov 3:88–99CrossRefGoogle Scholar
  66. Hsiao HY, Anderson DM, Dale NM (2006) Levels of β-mannan in soybean meal. Poult Sci 85:1430–1432PubMedCrossRefGoogle Scholar
  67. Hu W, Liu X, Li Y, Liu D, Kuang Z, Qian C, Yao D (2017) Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enzym Microb Technol 97:82–89CrossRefGoogle Scholar
  68. Huang Y, Busk PK, Lange L (2015) Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom Biol 5:119Google Scholar
  69. Huang C, Ragauskas AJ, Wu X, Huang Y, Zhou X, He J, Huang C, Lai C, Li X, Yong Q (2018) Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Bioresour Technol 250:365–373PubMedCrossRefGoogle Scholar
  70. Jain R, Kango N, Jain PC (2010) Proteases: significance and applications. In: Maheshwari DK, Dubey RC, Saravanamuthu R (eds) Industrial exploitation of microorganisms. I.K International Publishers, New Delhi, pp 228–254Google Scholar
  71. Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N (2018) Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. Bioresour Technol 268:308–314PubMedCrossRefGoogle Scholar
  72. Jayaramu M, Hemalatha N, Rajeshwari C, Siddalingeshwara K, Mohsi S (2010) A novel approach for detection, confirmation, and optimization of L-asparaginase from Emericella nidulans. Curr Pharm Res 1:20–24CrossRefGoogle Scholar
  73. Jensen B, Nebelong P, Olsen J, Reeslev M (2002) Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus. Biotechnol Lett 24:41–45CrossRefGoogle Scholar
  74. Jiang H, Ma Y, Chi Z, Liu GL, Chi ZM (2016) Production, purification, and gene cloning of a β-fructofuranosidase with a high inulin-hydrolyzing activity produced by a novel yeast Aureobasidium sp. p6 isolated from a mangrove ecosystem. Mar Biotechnol 18:500–510PubMedCrossRefGoogle Scholar
  75. Juturu V, Wu J (2012) Insight into microbial hemicellulases other than xylanases: a review. J Chem Technol Biotechnol 88:353–363CrossRefGoogle Scholar
  76. Kalyani D, Lee KM, Tiwari MK, Ramachandran P, Kim H, Kim IW, Jeya M, Lee JK (2011) Characterization of a recombinant aryl β-glucosidase from Neosartorya fischeri NRRL181. Appl Microbiol Biotechnol 94:413–423PubMedCrossRefGoogle Scholar
  77. Kammoun R, Naili B, Bejar S (2008) Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour Technol 99:5602–5609PubMedCrossRefGoogle Scholar
  78. Kang S, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156PubMedCrossRefGoogle Scholar
  79. Kango N (2008) Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J Food Eng 85:473–478CrossRefGoogle Scholar
  80. Kango N, Jain PC (2005) Production and application of fungal xylanases. In: Rai MK, Deshmukh SK (eds) Fungi: diversity and biotechnology. Scientific Publishers, New Delhi, pp 251–281Google Scholar
  81. Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25:165–212CrossRefGoogle Scholar
  82. Kango N, Agrawal SC, Jain PC (2003) Production of xylanase by Emericella nidulans NK-62 on low-value lignocellulosic substrates. World J Microbiol Biotechnol 19:691–694CrossRefGoogle Scholar
  83. Kango N, Soni H, Rawat H (2017) Extremophilic xylanases. In: Sani RK, Navanietha R (eds) Extremophilic bioprocessing of lignocellulosic feedstocks to biofuels, value-added products, and usable power. Springer, Cham, pp 73–88Google Scholar
  84. Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P (2013) Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 1:e46PubMedPubMedCentralCrossRefGoogle Scholar
  85. Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJS, Reynolds CD, Sihanonth P (2007) Purification and biochemical characterization of an extracellular beta-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiol Lett 270:162–170PubMedCrossRefGoogle Scholar
  86. Korotkova OG, Semenova MV, Morozova VV, Zorov IN, Sokolova LM, Bubnova TM, Okunev ON, Sinitsyn AP (2009) Isolation and properties of fungal β-glucosidases. Biochemistry 74:569–577PubMedGoogle Scholar
  87. Korver DR (2006) Overview of the immune dynamics of the digestive system. J Appl Poult Res 15:123–135CrossRefGoogle Scholar
  88. Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278PubMedCrossRefGoogle Scholar
  89. Kumar S, Satyanarayana T (2003) Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Biotechnol Prog 19:936–944PubMedCrossRefGoogle Scholar
  90. Kumar P, Satyanarayana T (2007) Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour Technol 98:1252–1259PubMedCrossRefGoogle Scholar
  91. Kumar V, Dangi AK, Shukla P (2018) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60:226–235PubMedCrossRefGoogle Scholar
  92. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:135PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096PubMedPubMedCentralCrossRefGoogle Scholar
  94. Li S, Sing S, Wang Z (2011) Improved expression of Rhizopus oryzae α-amylase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 79:142–148PubMedCrossRefGoogle Scholar
  95. Li Y, Yi P, Yan Q, Qin Z, Liu X, Jiang Z (2017) Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions. Biotechnol Biofuels 10:143PubMedPubMedCentralCrossRefGoogle Scholar
  96. Li X, Zhang X, Xu S, Zhang H, Xu M, Yang T, Wang L, Qian H, Zhang H, Fang H, Osire T, Rao Z, Yang S (2018) Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Sci Rep 8:7915PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lin J, Pillay B, Singh S (1999) Purification and biochemical characteristics of β-D-glucosidase from a thermophilic fungus, Thermomyces lanuginosus–SSBP. Biotechnol Appl Biochem 30:81–87PubMedGoogle Scholar
  98. Machida M, Asai K, Sano M, Tanaka T, Kumagai T et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161PubMedCrossRefGoogle Scholar
  99. Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie van Leeuwenhoek 101:905–917PubMedCrossRefGoogle Scholar
  100. Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49CrossRefGoogle Scholar
  101. Malherbe AR, Rose SH, Viljoen-Bloom M, van Zyl WH (2014) Expression and evaluation of enzymes required for the hydrolysis of galactomannan. J Ind Microbiol Biotechnol 41:1201–1209PubMedCrossRefGoogle Scholar
  102. Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, Mercado-Flores Y (2016) Secreted fungal aspartic proteases: a review. Rev Iberoam Micol 33:76–82PubMedCrossRefGoogle Scholar
  103. Mchunu NP, Permaul K, Abdul Rahman AY, Saito JA, Singh S, Alam M (2013) Xylanase superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc 1(3):pii: e00388-13CrossRefGoogle Scholar
  104. Merz M, Eisele T, Berends P, Appel D, Rabe S, Blank I, Stressler T, Fischer L (2015) Flavourzyme, an enzyme preparation with industrial relevance: automated nine-step purification and partial characterization of eight enzymes. J Agric Food Chem 63:5682–5693PubMedCrossRefGoogle Scholar
  105. Midorikawa GEO, Correa CL, Noronha EF, Filho EXF, Togawa RC, Costa MM d C, Silva-Junior OB, Grynberg P, RNG M (2018) Analysis of the transcriptome in Aspergillus tamarii during enzymatic degradation of sugarcane bagasse. Front Bioeng Biotechnol 6:123PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mignon B, Swinnen M, Bouchara JP, Hofinger M, Nikkels A, Pierard G, Gerday CH, Losson B (1998) Purification and characterization of a 315 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol 36:395–404PubMedCrossRefGoogle Scholar
  107. Mishra A (2006) Production of L-Asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl Biochem Biotechnol 135:33–42PubMedCrossRefGoogle Scholar
  108. Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178PubMedCrossRefGoogle Scholar
  109. Moreira-Gasparin FG, de Souza CGM, Costa AM, Alexandrino AM, Bracht C, Boer CK, Peralta RM (2009) Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegradation 20:727–736PubMedCrossRefGoogle Scholar
  110. Murphy C, Powlowski J, Wu M, Butler G, Tsang A (2011) Curation of characterized glycoside hydrolases of fungal origin. Database 2011:bar020-bar020CrossRefGoogle Scholar
  111. Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani JI, Kawaguchi T, Morikawa Y, Ogasawara W (2011) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 109:92–99PubMedCrossRefGoogle Scholar
  112. Noronha EF, de Lima BD, de Sá CM, Felix CR (2002) Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World J Microbiol Biotechnol 18:563–568CrossRefGoogle Scholar
  113. Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16CrossRefGoogle Scholar
  114. Parashar D, Satyanarayana T (2017) Engineering a chimeric acid-stable α-amylase-glucoamylase (Amy-Glu) for one step starch saccharification. Int J Biol Macromol 99:274–281PubMedCrossRefGoogle Scholar
  115. Pawar VA, Prajapati AS, Akhani RC, Patel DH, Subramanian RB (2018) Molecular and biochemical characterization of a thermostable keratinase from Bacillus altitudinis RBDV1. 3 Biotech 8:107PubMedPubMedCentralCrossRefGoogle Scholar
  116. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448PubMedCrossRefGoogle Scholar
  117. Peciulyte A, Pisano M, de Vries RP, Olsson L (2017) Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett 39:1403–1411PubMedPubMedCentralCrossRefGoogle Scholar
  118. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591PubMedCrossRefGoogle Scholar
  119. Porfirif MC, Milatich EJ, Farruggia BM, Romanini D (2016) Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step. J Chromatogr B 1022:87–92CrossRefGoogle Scholar
  120. Prajapati BP, Suryawanshi RK, Agrawal S, Ghosh M, Kango N (2018) Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol 250:733–740PubMedCrossRefGoogle Scholar
  121. Qin LM, Dekio S, Jidoi J (1992) Some biochemical characteristics of a partially purified extracellular keratinase from Trichophyton schoenleinii. Zentralbl Bakteriol 277:236–244PubMedCrossRefGoogle Scholar
  122. Raba’atun Adawiyah S, Shuhaimi M, Mohd Yazid AM, Abdul Manaf A, Rosli N, Sreeramanan S (2011) Molecular cloning and sequence analysis of an inulinase gene from an Aspergillus sp. World J Microbiol Biotechnol 27:2173–2185CrossRefGoogle Scholar
  123. Rajasree KP, Mathew GM, Pandey A, Sukumaran RK (2013) Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J Ind Microbiol Biotechnol 40:967–975PubMedCrossRefGoogle Scholar
  124. Rawat HK, Ganaie MA, Kango N (2015a) Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructooligosaccharides. Antonie Van Leeuwenhoek 107:799–811PubMedCrossRefGoogle Scholar
  125. Rawat HK, Jain SC, Kango N (2015b) Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin containing vegetal infusions. Biocatal Biotransformation 33:61–68CrossRefGoogle Scholar
  126. Rawat HK, Soni H, Treichel H, Kango N (2016) Biotechnological potential of microbial inulinases: recent perspective. Crit Rev Food Sci Nutr 57:3818–3829CrossRefGoogle Scholar
  127. Rawat H, Soni H, Kango N (2017) In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Fungal Inulinolytic enzymes: a current appraisal in developments in fungal biology and applied mycology. Springer, Singapore, pp 279–293CrossRefGoogle Scholar
  128. Saeed H, Ali H, Soudan H, Embaby A, El-Sharkawy A, Farag A, Hussein A, Ataya F (2018) Molecular cloning, structural modeling and production of recombinant Aspergillus terreus L-asparaginase in Escherichia coli. Int J Biol Macromol 106:1041–1051PubMedCrossRefGoogle Scholar
  129. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  130. Salamin K, Eugster PJ, Jousson O, Waridel P, Grouzmann E, Monod M (2017) AoS28D, a proline-Xaa carboxypeptidase secreted by Aspergillus oryzae. Appl Microbiol Biotechnol 101:4129–4137PubMedCrossRefGoogle Scholar
  131. Salgaonkar M, Nadar SS, Rathod VK (2018) Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int J Biol Macromol 113:464–475PubMedCrossRefGoogle Scholar
  132. Sarquis MI d M, EMM O, Santos AA, da Costa GL (2004) Production of L-asparaginase by filamentous fungi. Mem Inst Oswaldo Cruz 99:489–492PubMedCrossRefGoogle Scholar
  133. Sawant S, Birhade S, Anil A, Gilbert H, Lali A (2016) Two-way dynamics in β-glucosidase catalysis. J Mol Catal B Enzym 133:161–166CrossRefGoogle Scholar
  134. Saxena A, Upadhyay R, Kango N (2015) Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase. Indian J Exp Biol 53:786–793PubMedGoogle Scholar
  135. Schmoll M (2018) Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biol Biotechnol 5:10PubMedPubMedCentralCrossRefGoogle Scholar
  136. Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Nat Biotechnol 1:691–696CrossRefGoogle Scholar
  137. Shrivastava A, Khan AA, Shrivastav A, Jain SK, Singhal PK (2012) Kinetic studies of l-asparaginase from Penicillium digitatum. Prep Biochem Biotechnol 42:574–581PubMedCrossRefGoogle Scholar
  138. Sjostrom E (1993) Wood chemistry, fundamentals and application. Academic, San Diego, pp 12–23Google Scholar
  139. Soni H, Kango N (2013) Microbial mannanases: properties and applications. In: Shukla P, Pletscke BI (eds) Advances in enzyme biotechnology. Springer, New Delhi, pp 41–56CrossRefGoogle Scholar
  140. Soni H, Rawat HK, Pletschke BI, Kango N (2016) Purification and characterization of β-mannanase from Aspergillus terreus and its applicability in depolymerization of mannans and saccharification of lignocellulosic biomass. 3 Biotech 6:136PubMedPubMedCentralCrossRefGoogle Scholar
  141. Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278CrossRefGoogle Scholar
  142. Spohner SC, Czermak P (2016) Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis. New Biotechnol 33:473–479CrossRefGoogle Scholar
  143. Suárez MB, Vizcaíno JA, Llobell A, Monte E (2007) Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr Genet 51:331–342PubMedCrossRefGoogle Scholar
  144. Suryawanshi RK, Jana UK, Prajapati BP, Kango N (2019) Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem 289:95–102PubMedCrossRefGoogle Scholar
  145. Tanriseven A, Aslan Y (2005) Immobilization of pectinex ultra SP-L to produce fructooligosaccharides. Enzym Microb Technol 36:550–554CrossRefGoogle Scholar
  146. Trivedi S, Divecha J, Shah A (2012) Optimization of inulinase production by a newly isolated Aspergillus tubingensis CR16 using low cost substrates. Carbohydr Polym 90:483–490PubMedCrossRefGoogle Scholar
  147. Tsukada T, Igarashi K, Yoshida M, Samejima M (2006) Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 73:807–814PubMedCrossRefGoogle Scholar
  148. Vaidya S, Srivastava PK, Rathore P, Pandey AK (2015) Amylases: a prospective enzyme in the field of biotechnology. J Appl Biosci 41:1–18Google Scholar
  149. Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R, Dave BP (2018) Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol 108:41–46PubMedCrossRefGoogle Scholar
  150. van Zyl WH, Rose SH, Trollope K, Görgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45:1203–1213Google Scholar
  151. Varalakshmi V, Raju KJ (2013) Optimization of L-asparaginase production by Aspergillus terrus MTCC1782 using bajra seed flour under solid state fermentation. Int J Res Eng Technol 2:121–129CrossRefGoogle Scholar
  152. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350CrossRefGoogle Scholar
  153. Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:11PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wang X, Liu ZL, Weber SA, Zhang X (2016a) Two new native β-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast. PLoS One 11:e0151293PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang P, Ma J, Zhang Y, Zhang M, Wu M, Dai Z, Jiang M (2016b) Efficient secretory overexpression of endoinulinase in Escherichia coli and the production of inulooligosaccharides. Appl Biochem Biotechnol 179:880–894PubMedCrossRefGoogle Scholar
  156. Wang S, Duan M, Liu Y, Fan S, Lin X, Zhang Y (2016c) Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. Biotechnol Lett 39:391–396PubMedCrossRefGoogle Scholar
  157. Wang D, Li FL, Wang SA (2016d) A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydr Polym 151:1220–1226PubMedCrossRefGoogle Scholar
  158. Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X (2017) Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnol Biofuels 10:99PubMedPubMedCentralCrossRefGoogle Scholar
  159. Xu L, Wang D, Lu L, Jin L, Liu J, Song D, Guo Z, Xiao M (2014) Purification, cloning, characterization and n-glycosylation analysis of a novel β-fructosidase from Aspergillus oryzae FS4 synthesizing levan- and neolevan-type fructooligosaccharides. PLoS One 9:e114793PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yang S, Wang L, Yan Q, Jiang Z, Li L (2009) Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem 115:1247–1252CrossRefGoogle Scholar
  161. Yavuz S, Kocabay S, Çetinkaya S, Akkaya B, Akkaya R, Yenidunya AF, Bakıcı MZ (2017) Production, purification, and characterization of metalloprotease from Candida kefyr 41 PSB. Int J Biol Macromol 94:106–113PubMedCrossRefGoogle Scholar
  162. You X, Qin Z, Li YX, Yan QJ, Li B, Jiang ZQ (2018) Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase. Biochim Biophys Acta 1862:1376–1388CrossRefGoogle Scholar
  163. Zhang L, Tizard IR (1996) Activation of a mouse macrophage cell line by acemannan: the major carbohydrate fraction from Aloe vera gel. Immunopharmacology 35:119–128PubMedCrossRefGoogle Scholar
  164. Zhang L, An J, Li L, Wang H, Liu D, Li N, Cheng H, Deng Z (2016) Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. J Agric Food Chem 64:3828–3837PubMedCrossRefGoogle Scholar
  165. Zhang Q, Han Y, Xiao H (2017a) Microbial α-amylase: a biomolecular overview. Process Biochem 53:88–101CrossRefGoogle Scholar
  166. Zhang J, Liu C, Xie Y, Li N, Ning Z, Du N, Huang X, Zhong Y (2017b) Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol 249:25–33PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Naveen Kango
    • 1
  • Uttam Kumar Jana
    • 1
  • Ritumbhara Choukade
    • 1
  1. 1.Department of MicrobiologyDr. Harisingh Gour VishwavidyalayaSagarIndia

Personalised recommendations