Advertisement

Bioprospecting of Fungal Entomo- and Myco-Pathogens

  • E. K. Pathan
  • A. V. Patil
  • M. V. DeshpandeEmail author
Chapter

Abstract

The pest and pathogen control in the field using fungi and their metabolites has indeed gone beyond ‘proof of concept’. However, in view of the performances of these biocontrol fungi in the fields, moreover, acceptability by the end users regarding cost-effectiveness, shelf life, intellectual property rights (IPR), the additional roles, and possible applications are being explored. Dual pathogenicity, viz. entomopathogenesis and mycoparasitism, has added the advantage of wide-spectrum biocontrol in single-crop system. In addition to plant protection, these fungi can promote plant growth. Further, in integrated pest management, the bioremediation of pesticide residues, if any, can also be achieved by these organisms. For value addition, use of cuticle-degrading and mycolytic enzymes produced as killing components can be explored in food, detergent, organic synthesis, and pharmaceutical industries. While exploring the additional applications, the safety to beneficial insects and fungi, biodiversity, and humans, in general, is also addressed.

Keywords

Biocontrol Bioremediation Biotransformation Entomopathogens Healthcare Industrial enzymes Mycopathogens Plant growth promotion 

Notes

Acknowledgements

MVD is grateful to CSIR, New Delhi for Emeritus Scientist Scheme [21(0962)/13/EMR2] and Department of Biotechnology (DBT-BIRAC), New Delhi for financial support. We wish to thank Rajiv Gandhi Science and Technology Commission (RGSTC, Mumbai), Government of Maharashtra, for funding the project.

References

  1. Abd El-Ghany TM, Masmali IA (2016) Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. J Plant Pathol Microbiol 7:349Google Scholar
  2. Abedinzadeh M, Gaeini M, Sardari S (2015) Natural antimicrobial peptides against Mycobacterium tuberculosis. J Antimicrob Chemother 70:1285–1289PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aranda-Martinez A, Ortiz MAN, García ISA, Zavala-Gonzalez EA, Lopez-Llorca LV (2017) Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiol Res 204:30–39PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aranda-Martinez A, Grifoll-Romero L, Aragunde H, Sancho-Vaello E, Biarnés X, Lopez-Llorca LV, Planas A (2018) Expression and specificity of a chitin deacetylase from the nematophagous fungus Pochonia chlamydosporia potentially involved in pathogenicity. Sci Rep 8:2170PubMedPubMedCentralCrossRefGoogle Scholar
  5. Askary H, Carrière Y, Bélange RR, Brodeur J (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontr Sci Technol 8:23–32CrossRefGoogle Scholar
  6. Behie SW, Bidochka MJ (2014) Nutrient transfer in plant-fungal symbioses. Trends Plant Sci 19:734–740PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bernabé M, Salvachúa D, Jiménez-Barbero J, Leal JA, Prieto A (2011) Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. Fungal Biol 115:862–870PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beys Silva WO, Mitidieri S, Schrank A, Vainstein MH (2005) Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem 40:321–326CrossRefGoogle Scholar
  9. Bidochka MJ, Kamp AM, Lavender TM, DeKoning J, De Croos JNA (2001) Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl Environ Microbiol 67:1335–1342PubMedPubMedCentralCrossRefGoogle Scholar
  10. Binod P, Palkhiwala P, Gaikaiwari R, Nampoothiri KM, Duggal A, Dey K, Pandey A (2013) Industrial enzymes- present status and future perspectives for India. J Sci Ind Res 72:271–286Google Scholar
  11. Butt TM, Copping LG (2000) Fungal biological agents. Pestic Outlook 11:186–191CrossRefGoogle Scholar
  12. Butt TM, Jackson C, Magan N (2001) Fungal biocontrol agents: progress, problems and potential. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CABI Publishing, Oxon, p 389Google Scholar
  13. Chavan S, Kolomiets E, Kuptsov V, Mandrik M, Kulkarni M, Deshpande MV (2009) Significance of cuticle-degrading enzymes with special reference to lipase in biocontrol of sugarcane woolly aphids. J Mycol Plant Pathol 39:118–123Google Scholar
  14. Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184Google Scholar
  15. Dara SK, Dara SSR, Dara SS (2017) Impact of entomopathogenic fungi on the growth, development, and health of cabbage growing under water stress. Am J Plant Sci 8:1224–1233CrossRefGoogle Scholar
  16. Fang W, Vega RJ, Ghosh AK, Jacobs-LM KA, St. Leger RJ (2011) Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331:1074–1077PubMedPubMedCentralCrossRefGoogle Scholar
  17. Garcia JE, Posadas JB, Perticari A, Lecuona RE (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5:22–27Google Scholar
  18. Garrido-Jurado I, Ruano F, Campos M, Quesada-Moraga E (2011) Effects of soil treatments with entomopathogenic fungi on soil-dwelling non-target arthropods at a commercial olive orchard. Biol Control 59:239–244CrossRefGoogle Scholar
  19. Ghormade V, Kulkarni S, Doiphode N, Rajamohanan PR, Deshpande MV (2010) Chitin deacetylase: a comprehensive account on its role in nature and its biotechnological applications. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex research center, Badajoz, pp 1054–1066Google Scholar
  20. Ginsberg HS, Lebrun RA, Heyer K, Zhioua E (2002) Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae). Environ Entomol 31:1191–1196CrossRefGoogle Scholar
  21. Hajek AE, Goettel MS (2007) Guidelines for evaluating effects of entomopathogens on non-target organisms. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 816–833CrossRefGoogle Scholar
  22. Harish R, Supreeth M, Chauhan JB (2013) Biodegradation of organophosphate pesticide by soil fungi. Adv BioTech 9:4–8Google Scholar
  23. Harman GE, Bjorkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman G, Kubicek C (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 229–265Google Scholar
  24. Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line M017 and effects of these interactions on disease caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hu X, Xiao G, Zheng P, Shang Y (2014) Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci U S A 111:16796–16801PubMedPubMedCentralCrossRefGoogle Scholar
  26. Isaka M, Kittakoop P, Kirtikara K, Hywel-jones NL, Thebtaranonth Y (2005a) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823PubMedCrossRefPubMedCentralGoogle Scholar
  27. Isaka M, Palasarn S, Sriklung K, Kocharin K (2005b) Cyclohexadepsipeptides from the insect pathogenic fungus Hirsutella nivea BCC 2594. J Nat Prod 68:1680–1682PubMedCrossRefPubMedCentralGoogle Scholar
  28. Isaka M, Palasarn S, Rachtawee P, Vimuttipong S, Kongsaeree P (2005c) Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org Lett 7:2257–2260PubMedCrossRefPubMedCentralGoogle Scholar
  29. Isaka M, Prathumpai W, Wongsa P, Tanticharoen M (2006) Hirsutellone F, a dimer of antitubercular alkaloids from the seed fungus Trichoderma species BCC 7579. Org Lett 8:2815–2817PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jeffries P (1997) In the Mycota IV, environmental and microbial relationships (ed. W. Soderstrom). Springer, Berlin, pp 149–163Google Scholar
  31. Kabaluk JT, Ericsson JD (2007) Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J 99:1377–1381CrossRefGoogle Scholar
  32. Kapoor M, Pawar PV, Joseph M, Sen A, Deshpande MV (2013) Evaluation of biocontrol potential of Metarhizium anisopliae strains against larvae and adults of Aedes aegypti (L.). J Biol Control 27:194–203Google Scholar
  33. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544PubMedCrossRefPubMedCentralGoogle Scholar
  34. Khan AL, Hamayun M, Khan SA, Kang SM, Shinwari ZK, Kamran M, Ur Rehman S, Kim JG, Lee IJ (2012) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696.  https://doi.org/10.4061/2011/280696CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kulkarni SA, Ghormade V, Kulkarni G, Kapoor M, Chavan SB, Rajendran A, Patil SK, Shouche Y, Deshpande MV (2008) Comparison of Metarhizium isolates for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Biocontrol Sci Tech 18:809–828CrossRefGoogle Scholar
  37. Liu SF, Wang GJ, Nong XQ, Liu B, Wang MM, Li SL, Cao GC, Zhang ZH (2017) Entomopathogen Metarhizium anisopliae promotes the early development of peanut root. Plant Protect Sci 53:101–107CrossRefGoogle Scholar
  38. Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mane SR, Ghormad V, Rajamohanan PR, Badiger MV, Deshpande MV (2017) Isolation of low molecular weight chitosan from agriculturally important ascomycetous fungi Metarhizium anisopliae and Myrothecium verrucaria. Asian Chitin J 13:31–38Google Scholar
  40. Miles LA, Lopera CA, Gonzalez S, Cepero de Garcia MC, Franco AE, Restrepo S (2012) Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. Biol Control 57:697–710Google Scholar
  41. Nahar PB, Kulye M, Yadav P, Hassani M, Tuor U, Keller S, Deshpande MV (2003) Comparative evaluation of indigenous fungal isolates, Metarhizium anisopliae M34412, Beauveria bassiana B3301 and Nomuraea rileyi N812 for the control of Helicoverpa armigera (Hub) on Chickpea. J Mycol Plant Pathol. 33:372–377Google Scholar
  42. Nahar PB, Ghormade V, Deshpande MV (2004) The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomo-pathogenic fungi in the bio-control of insect pest. J Invertebr Pathol 85:80–88PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270PubMedCrossRefPubMedCentralGoogle Scholar
  44. Pathan EK, Deshpande MV (2019) The puzzle of highly virulent Metarhizium anisopliae strains from Annona squamosa fields against Helicoverpa armigera. J Basic Microbiol 59:392–401.  https://doi.org/10.1002/jobm.201800631CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pechy-Tarr M, Bruck DJ, Maurhofer M, Fischer E (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386PubMedCrossRefPubMedCentralGoogle Scholar
  46. Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world – pesticides use and management. InTeck, Shangai, pp 407–438Google Scholar
  47. Pruksakorn P, Arai M, Kotoku N, Vilchze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663PubMedCrossRefPubMedCentralGoogle Scholar
  48. Raya-DõÂaz S, SaÂnchez-RodrõÂguez AR, Segura-FernaÂndez JM, del Campillo MC, Quesada-Moraga E (2017) Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PLoS One 12:e0185903CrossRefGoogle Scholar
  49. Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107PubMedCrossRefPubMedCentralGoogle Scholar
  50. Senthil Kumar CM, Jacob TK, Devasahayam S, Thomas S, Geethu C (2018) Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiol Res 207:153–160PubMedCrossRefPubMedCentralGoogle Scholar
  51. Sharma P, Sharma M, Raja M, Singh DV, Srivastava M (2016) Use of Trichoderma spp. in biodegradation of Carbendazim. Indian J Agri Sci 86:891–894Google Scholar
  52. Shrestha B, Sung GH, Sunga JM (2017) Current nomenclatural changes in Cordyceps sensu lato and its multidisciplinary impacts. Mycol 8:293–302CrossRefGoogle Scholar
  53. Silva WOB, Mitidieri S, Schrank A, Vainstein MH (2015) Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem 40:321–326CrossRefGoogle Scholar
  54. Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. New Zeal J Crop Hort 31:281–291CrossRefGoogle Scholar
  55. Sylwia R, Julia P, Marta W, Cezary T, Długoński J (2013) Utilization of 4-n-nonylphenol by Metarhizium sp. isolates. Acta Biochim Pol 60:677–682Google Scholar
  56. Tan NH, Zhou J (2006) Plant cyclopeptides. J Chem Rev 106:840–895CrossRefGoogle Scholar
  57. Tanaka A, Tapper B, Popay A, Parker EJ (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050PubMedCrossRefPubMedCentralGoogle Scholar
  58. Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20:1381–1389PubMedCrossRefPubMedCentralGoogle Scholar
  59. Tupe SG, Pathan EK, Deshpande MV (2017) Development of Metarhizium anisopliae as a mycoinsecticide: from isolation to field performance. J Vis Exp 125:e55272Google Scholar
  60. Usuki F, Narisawa H (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184PubMedCrossRefPubMedCentralGoogle Scholar
  61. Valero-Jiménez CA, Wiegers H, Zwaan BJ, Koenraadt CJ, van Kan JA (2016) Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 133:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  62. Varma A, Verma S, Sudha Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth promoting root endophyte. Appl Environ Microbiol 65:2741–2744PubMedPubMedCentralGoogle Scholar
  63. Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110:4–30PubMedPubMedCentralGoogle Scholar
  64. Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159CrossRefGoogle Scholar
  65. Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB Publishing Co., Oxon, pp 311–346CrossRefGoogle Scholar
  66. Vidhate R, Singh J, Ghormade V, Chavan S, Patil A, Deshpande MV (2015) Use of hydrolytic enzymes of Myrothecium verrucaria and conidia of Metarhizium anisopliae, singly and sequentially to control pest and pathogens in grapes and their compatibility with pesticides used in the field. Biopestic Int 11:48–60Google Scholar
  67. Vimala Devi PS, Prasad YG, Chowdary DA, Rao LM, Balakrishnan K (2003) Identification of virulent isolates of the entomopathogenic fungus Nomuraea rileyi (F) Samson for the management of Helicoverpa armigera and Spodoptera litura (identification of virulent isolates of N. rileyi). Mycopathologia 156:365–373CrossRefGoogle Scholar
  68. Vongvanich N, Kittakoop P, Isaka M, Trakulnaleamsai S, Vimuttipong S, Tanticharoen M, Thebtaranonth Y (2002) Hirsutellide A, a new antimycobacterial cyclohexadepsipeptide from the entomopathogenic fungus Hirsutella kobayasii. J Nat Prod 65:1346–1348PubMedCrossRefPubMedCentralGoogle Scholar
  69. Vyas PR, Deshpande MV (1991) Enzymatic hydrolysis of chitin by Myrothecium verrucaria chitinase complex and its utilization to produce SCP. J Gen Appl Microbiol 37:267–275CrossRefGoogle Scholar
  70. Vyas N, Dua KK, Prakash S (2015) Metabolites of Metarhizium anisopliae against malaria vector and non-target organisms. Entomol Ornithol Herpetol 4:147CrossRefGoogle Scholar
  71. Wang C, St Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456PubMedCrossRefPubMedCentralGoogle Scholar
  72. Wang JB, St Leger RJ, Wang C (2016) Advances in genomics of entomopathogenic Fungi. Adv Genet 94:67–105PubMedCrossRefPubMedCentralGoogle Scholar
  73. Weindling R (1941) Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003Google Scholar
  74. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. The Open Mycol J 8:71–126CrossRefGoogle Scholar
  75. Wu S, Gao Y, Zhang Y, Wang E, Xu X, Lei Z (2014) An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation. PLoS One 9:e84732PubMedPubMedCentralCrossRefGoogle Scholar
  76. Xu Y-J, Luo F, Li B, Shang Y, Wang C (2016) Metabolic conservation and diversification of Metarhizium species correlate with fungal host-specificity. Front Microbiol 7:2020PubMedPubMedCentralGoogle Scholar
  77. Yadav P, Deshpande MV (2010) Fungus- fungus and fungus–insect interactions. Biopestic Int. 6:21–35Google Scholar
  78. Yadav P, Deshpande MV (2012) Control of beet armyworm, Spodoptora litura (Fabricius) by entomopathogenic fungi, Metarhizium anisopliae M34412, Beauveria bassiana B3301 and Nomuraea rileyi N812. Biopestic Int 8:107–114Google Scholar
  79. Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 1:227–234PubMedPubMedCentralGoogle Scholar
  80. Zhao H, Xu C, Lu H-L, Chen X, St. Leger RJ, Fang W (2014) Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLoS Pathog 10(4):e1004009PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Biochemical Sciences DivisionCSIR-National Chemical LaboratoryPuneIndia
  2. 2.Division of Biological SciencesCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations