Advertisement

The Developmental History of Ustilago maydis: A Saprophytic Yeast, a Mycelial Fungus, Mushroom-Like, and a Smut

  • José Ruiz-HerreraEmail author
  • José L. Cabrera-Ponce
  • Claudia León-Ramírez
  • Fernando Pérez-Rodríguez
  • Mayela Salazar-Chávez
  • Alejandro Sánchez-Arreguín
  • John Vélez-Haro
Chapter

Abstract

Ustilago maydis is a basidiomycete fungus of the subphylum Ustilaginomycotina. U. maydis is a biotrophic phytopathogen that causes common smut in maize (Zea mays L) and its ancestor teozintle (Zea mays ssp. parviglumis and ssp. mexicana). The economical importance of U. maydis is not as significant as other smuts because it does not cause heavy losses in agriculture but is considered a classic fungal model for studying the mechanism of DNA recombination and mating, other important aspects of fungal development, and the molecular mechanisms of fungal pathogenesis. The life cycle of U. maydis involves one saprophytic phase of haploid yeast form (sporidia) and a hyphal virulent dikaryon formed by mating of two sexually compatible sporidia. This invades the host growing in the hyphal form and finally forms tumors full of diploid teliospores that germinate with the formation of a phragmobasidium and four basidiospores. This cycle has been analyzed at the molecular level. Importantly, it was found that U. maydis may be pathogenic under axenic conditions for plants unrelated to maize, but does not complete the sexual cycle. The dimorphic yeast-to-hypha transition occurs also in vitro induced by growth with fatty acids or acetate and at acidic pH, developing into multicellular individuals, and unexpectedly forms basidiocarps in vitro completing the sexual cycle with the formation of holobasidia instead of phragmobasidia, septal pores, and fibulae. Interestingly, laboratory and natural strains of U. maydis harbor a bacterial symbiont that fixes N2.

Keywords

Ustilago maydis Fungal virulence Fungal development Dimorphism Basidiocarps Fungal evolution 

Notes

Acknowledgments

The experimental work of the authors described in the text was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) México.

References

  1. Alexopoulos CJ, Mims CW (1962) Introductory mycology. Wiley, New York, p 613Google Scholar
  2. Bakkeren G, Kruzel EK, Hull CM (2012) Sex and virulence in basidiomycete pathogens. In: Sibley LD, Howlett BJ, Heitman J (eds) Evolution of virulence in eukaryotic microbes. Wiley-Blackwell & Sons Inc., Hoboken, pp 437–460Google Scholar
  3. Banuett F (1995) Genetics of Ustilago maydis a fungal pathogen that induces tumors in maize. Genetics 29:179–208CrossRefGoogle Scholar
  4. Banuett F (2002) Pathogenic development in Ustilago maydis. In: Osiewacz HD (ed) Molecular biology of fungal development. CRC Press, Boca Raton, pp 349–398Google Scholar
  5. Banuett F, Herskowitz I (1994a) Morphological transition in the life cycle of Ustilagomaydis and their genetic control by the a and bloci. Exp Mycol 18:247–266CrossRefGoogle Scholar
  6. Banuett F, Herskowitz I (1994b) Identification of Fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev 8:1367–1378PubMedCrossRefGoogle Scholar
  7. Banuett F, Herskowitz I (1996) Discrete developmental stages during teliospore formation in the corn smut fungus Ustilago maydis. Development 122:2965–2976PubMedGoogle Scholar
  8. Banuett F, Quintanilla RH Jr, Reynaga-Peña CG (2008) The machinery for cell polarity, cell morphogenesis, and the cytoskeleton in the Basidiomycete fungus Ustilago maydis-a survey of the genome sequence. Fungal Genet Biol 45:3–14CrossRefGoogle Scholar
  9. Basse CW, Steinberg G (2004) Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5:83–92PubMedCrossRefGoogle Scholar
  10. Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916PubMedCrossRefGoogle Scholar
  11. Benevenuto J, Teixeira-Silva NS, Kuramae EE, Croll D, Monteiro-Vitorello CB (2018) Comparative genomics of smut pathogens: insights from orphans and positively selected genes into host specialization. Front Microbiol 9:660–677PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bölker M, Urban M, Kahmann R (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441–450PubMedCrossRefGoogle Scholar
  13. Brachmann A, Weinzierl G, Kamper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063PubMedCrossRefGoogle Scholar
  14. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445PubMedCrossRefGoogle Scholar
  15. Cabrera-Ponce JL, León-Ramírez CG, Verver-Vargas A, Palma-Tirado L, Ruiz-Herrera J (2012) Metamorphosis of the BasidiomycotaUstilago maydis: transformation of yeast-like cells into basidiocarps. Fungal Genet Biol 10:765–771CrossRefGoogle Scholar
  16. Calvo-Méndez C, Martínez-Pacheco M, Ruiz-Herrera J (1987) Regulation of ornithine decarboxylase activity in Mucor bacilliformis and Mucor rouxii. Exp Mycol 11:270–277CrossRefGoogle Scholar
  17. Chavan S, Smith SM (2014) A rapid and efficient method for assessing pathogenicity of Ustilago maydis on maize and teosinte lines. J Vis Exp 83:1–7Google Scholar
  18. Cheng CK et al (2013) 5′-Serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in Copriniopsis cinerea. BMC Genomics 14:1–17CrossRefGoogle Scholar
  19. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807PubMedCrossRefGoogle Scholar
  20. Christenssen JJ (1963) Corn smut caused by Ustilago maydis. Am Phytopathol Soc Monogr 2:1–41Google Scholar
  21. Conrath U, Beckers GJ, Flors V et al (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071PubMedCrossRefGoogle Scholar
  22. Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119PubMedCrossRefGoogle Scholar
  23. Cristancho M, Giraldo W, Botero D, Tabima J, Ortiz D, Peralta A, Gaitán A, Restrepo S, Riaño D (2014) Application of Genome Studies of Coffee Rust. In: Castillo LF, Gustavo-Isaza MC, Andrés Pinzón JM, Corchado R (eds) Advances in Intelligent Systems and Computing volume 232, Advances in Computational Biology Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). Springer, New York, pp 133–139Google Scholar
  24. Flor-Parra I, Vranes M, Kämper J, Pérez-Martin J (2006) Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18:2369–2387PubMedPubMedCentralCrossRefGoogle Scholar
  25. Froeliger EH, Leong SA (1991) The a mating type genes of Ustilago maydis are idiomorphs. Gene 100:113–122PubMedCrossRefGoogle Scholar
  26. Garcia-Pedrajas MD, Steven JK, Andrews DL, Gold SE (2004) The Ustilago maydis–maize interaction. In: Talbot NJ (ed) Plant-pathogen interactions. Blackwell Publishing Ltd, Oxford, pp 166–201Google Scholar
  27. Garrido E, Voss U, Müller P, Castillo-Lluva S, Kahmann R, Pérez-Martín J (2004) The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev 18:3117–3130PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gillissen B, Bergmann J, Sandman C, Schoeer M, Bölker M, Kahmann R (1992) A two component regulatory system for self nonself recognition in U. maydis. Cell 68:647–657PubMedCrossRefGoogle Scholar
  29. Gold S, Duncan G, Barrett K, Kronstad J (1994) cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 8:2805–2816PubMedCrossRefGoogle Scholar
  30. Guevara-Olvera L, Calvo-Méndez C, Ruiz-Herrera J (1993) The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J Gen Microbiol 139:485–493PubMedCrossRefGoogle Scholar
  31. Guevara-Olvera L, Xoconostle-Cázares B, Ruiz-Herrera J (1997) Cloning and disruption of the ornithine decarboxylase gene of Ustilago maydis: evidence for a role of polyamines in its dimorphic transition. Microbiology 143:2237–2245PubMedCrossRefGoogle Scholar
  32. Inada K, Morimoto Y, Arina T, Murata Y, Kamada T (2001) The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157:133–140PubMedPubMedCentralGoogle Scholar
  33. Juárez-Montiel M, Ruiloba de León S, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011) Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Rev Iberoam Micol 28:69–73PubMedCrossRefGoogle Scholar
  34. Kahmann R, Schirawski J (2007) Mating in the smut fungi: from a to b to the downstream cascades. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC, pp 377–387Google Scholar
  35. Kämper J, Reichman M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: Nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:73–83PubMedCrossRefGoogle Scholar
  36. Kämper J, Kahmann R et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101PubMedCrossRefGoogle Scholar
  37. Klose J, Moniz de Sá MM, Kronstad JW (2004) Lipid-induced filamentous growth in Ustilagomaydis. Mol Microbiol 52:823–835PubMedCrossRefGoogle Scholar
  38. Kretschmer M, Lambie S, Croll D, Kronstad JW (2018) Acetate provokes mitochondrial stress and cell death in Ustilago maydis. Mol Microbiol 107:488–507PubMedCrossRefGoogle Scholar
  39. Kües U, Timothy YJ, Heitman J (2011) Mating type in basidiomycetes: unipolar, bipolar, and tetrapolar patterns of sexuality. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms, The mycota XIV. Springer, Berlin Heidelberg, pp 97–160CrossRefGoogle Scholar
  40. Lanver D, Müller AN, Happe P, Schweizer G, Haas FB, Franitza M, Pellegrin C, Reissmann S, Altmüller J, Rensing SA, Kahmann R (2018) The biotrophic development of Ustilago maydis studied by RNA-Seq Analysis. Plant Cell 30:300–323PubMedPubMedCentralCrossRefGoogle Scholar
  41. León-Ramírez CG, Cabrera-Ponce JL, Martínez-Espinoza AD, Herrera-Estrella L, Méndez L, Reynaga-Peña CG, Ruiz-Herrera J (2004) Infection of alternative host plant species by Ustilago maydis. New Phytol 164:337–346CrossRefGoogle Scholar
  42. León-Ramírez CG, Sánchez-Arreguín JA, Ruiz-Herrera J (2014) Ustilago maydis, a delicacy of the aztec cuisine and a model for research. Nat Resour 5:256–267Google Scholar
  43. Leung GSW, Zhang M, Xie WJ, Kwan HS (2000) Identification by RNA fingerprinting of genes differentially expressed during the development of the basidiomycete Lentinula edodes. Mol Gen Genet 262:977–990PubMedCrossRefGoogle Scholar
  44. Liu Y, Srivilai P, Loos S, Aebi M, Kües U (2006) An essential gene for fruiting body initiation in the basidiomycete Coprinopsis cinerea is homologous to bacterial cyclopropane fatty acid synthase genes. Genetics 172:873–884PubMedPubMedCentralCrossRefGoogle Scholar
  45. Martínez-Espinosa AD, Ruiz-Herrera J, Gold SE (2000) Las vías de transducción de señales en la patogénesis y la morfogénesis de hongos: los casos de Ustilago maydis y Magnaporthe grisea. Rev Mex Fitopatol 18:55–60Google Scholar
  46. Martínez-Espinoza AD, León C, Elizarraraz G, Ruiz-Herrera J (1997) Monomorphic nonpathogenic mutants of Ustilago maydis. Phytopathology 87:259–265PubMedCrossRefGoogle Scholar
  47. Martínez-Espinoza AD, García-Pedrajas MD, Gold SE (2002) The Ustilaginales as plant pests and model systems. Fungal Genet Biol 35:1–20PubMedCrossRefGoogle Scholar
  48. Martínez-Espinoza AD, Ruiz-Herrera J, León-Ramírez CG, Gold SE (2004) MAP Kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol 49:274–281PubMedCrossRefGoogle Scholar
  49. Martínez-Pacheco M, Rodríguez G, Reyna G, Calvo-Méndez C, Ruiz-Herrera J (1988) Inhibition of the yeast-mycelial transition and the phorogenesis of Mucorales by diaminobutanone. Arch Microbiol 151:10–14CrossRefGoogle Scholar
  50. Martínez-Soto D, Ruiz-Herrera J (2013) Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH. Fungal Genet Biol 58:116–125PubMedCrossRefGoogle Scholar
  51. Martínez-Soto D, Ruiz-Herrera J (2016) Induced resistance to Ustilago maydis in Zea mays inoculated in non-sterile conditions. Int J Biotech Well Ind 5:51–59CrossRefGoogle Scholar
  52. Martínez-Soto D, Ruiz-Herrera J (2017) Functional analysis of the MAPK pathways in fungi. Rev Iberoam Micol 34:192–202PubMedCrossRefGoogle Scholar
  53. Martínez-Soto D, Robledo-Briones AM, Estrada-Luna A, Ruiz-Herrera J (2013) Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. Plant Signal Behav 8:1–13CrossRefGoogle Scholar
  54. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084PubMedPubMedCentralCrossRefGoogle Scholar
  55. Méndez-Morán L, Reynaga-Peña CG, Springer PS, Ruiz-Herrera J (2005) Ustilagomaydis infection of the non-natural host Arabidopsis thaliana. Phytopathology 95:480–488PubMedCrossRefGoogle Scholar
  56. Müller P, Weinzierl G, Brachmann A, Feldbrügge M, Kahmann R (2003) Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell 2:1187–1199PubMedPubMedCentralCrossRefGoogle Scholar
  57. Muraguchi H, Kamada T (1998) The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting. Development 125:3133–3141PubMedGoogle Scholar
  58. Muraguchi H, Kamada T (2000) A mutation in the eln2 gene encoding a cytochrome P450 of Coprinus cinereus affects mushroom morphogenesis. Fungal Genet Biol 29:49–59PubMedCrossRefGoogle Scholar
  59. Nagy LG, Kovács GM, Krizsán K (2018) Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 93:1778–1794PubMedCrossRefGoogle Scholar
  60. Oberwinkler F (2012) Evolutionary trends in Basidiomycota. Stapfia 96:45–104Google Scholar
  61. Pérez-Nadales E, Almeida-Nogueira MF, Baldin C et al (2014) Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 7:42–67CrossRefGoogle Scholar
  62. Perkins DD (1949) Biochemical mutants in the smut fungus, Ustilago maydis. Genetics 64:607–626Google Scholar
  63. Petersen JH (2013) The kingdom of fungi. Princeton University Press, Princeton, p 282CrossRefGoogle Scholar
  64. Pétriacq P, López A, Luna E (2018) Fruit decay to diseases: can induced resistance and priming help? Plants 7:1–16CrossRefGoogle Scholar
  65. Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci U S A 98:2101–2103PubMedPubMedCentralCrossRefGoogle Scholar
  66. Piperno DR, Moreno JE, Iriarte J, Holst I, Lachniet M, Jones JG, Ranere AJ, Castanzo R (2007) Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico. Proc Natl Acad Sci U S A 104:11874–11881PubMedPubMedCentralCrossRefGoogle Scholar
  67. Puhalla JE (1970) Genetic studies of the b incompatibility locus of Ustilago maydis. Genet Res 16:229–232CrossRefGoogle Scholar
  68. Ratcliff WC, Denison RF, Borrello M, Travisano M (2012) Experimental evolution of multicellularity. Proc Natl Acad Sci U S A 109:1595–1600PubMedPubMedCentralCrossRefGoogle Scholar
  69. Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M, Walbot V, Doehlemann G (2015a) A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors. Plant Cell 27:1332–1351PubMedPubMedCentralCrossRefGoogle Scholar
  70. Redkar A, Villajuana-Bonequi M, Doehlemann G (2015b) Conservation of the Ustilago maydis effector See1 in related smuts. Plant Signal Behav 10:1–5CrossRefGoogle Scholar
  71. Rowell JB (1955a) Functional role of compatibility factors and in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathology 45:370–374Google Scholar
  72. Rowell JB (1955b) Segregation of sex factors in a diploid line of Ustilago zeae induced by alpha radiation. Science 121:304–306PubMedCrossRefGoogle Scholar
  73. Roy A (1972) Some microstructures in relation to Polyporaceae. Mycopathol Appl 48:11–119Google Scholar
  74. Ruiz-Herrera J (1994) Polyamines, DNA methylation, and fungal differentiation. Crit Rev Microbiol 20:143–150PubMedCrossRefGoogle Scholar
  75. Ruiz-Herrera J, León CG, Guevara-Oivera G, Cárabez-Trejo A (1995) Yeast-mycelial dimorphism of haploid and diploid strains of Ustiago maydis. Microbiology 141:695–703CrossRefGoogle Scholar
  76. Ruiz-Herrera J, León-Ramírez CG, Martínez-Espinoza AD (2000) Morphogenesis and pathogenesis in Ustilago maydis. Recent Res Dev Microbiol 4:585–596Google Scholar
  77. Ruiz-Herrera J, León-Ramírez C, Vera-Nuñez A, Sánchez-Arreguín A, Ruiz-Medrano R, Salgado-Lugo H, Sánchez-Segura L, Peña-Cabriales JJ (2015) A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. New Phytol 7:769–777CrossRefGoogle Scholar
  78. Saville BJ, Donaldson ME, Doyle CE (2012) Investigating host induced meiosis in a fungal plant pathogen. In: Swan A (ed) Meiosis-molecular mechanisms and cytogenetic diversity. InTech, Croatia, pp 411–450Google Scholar
  79. Schirawski J, Mannhaupt G, Münch K, Brefort T et al (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548PubMedPubMedCentralCrossRefGoogle Scholar
  80. Seitner D, Uhse S, Gallei M, Djamei A (2018) The core effector Cce1 is required for early infection of maize by Ustilago maydis. Mol Plant Pathol 19(10): 2277–2287PubMedPubMedCentralCrossRefGoogle Scholar
  81. Steinberg G (2007) On the move: endosomes in fungal growth and pathogenicity. Nat Rev Microbiol 5:309–316PubMedCrossRefGoogle Scholar
  82. Stoll M, Piepenbring M, Begerow D, Oberwinkler F (2003) Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Can J Bot 81:976–984CrossRefGoogle Scholar
  83. Taylor JW, Spatafora J, O’Donnell K, Lutzoni F, Hibbet DS, Geiser D, Bruns TD, Blackwell M (2004) The fungi. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 171–194Google Scholar
  84. Trueheart J, Herskowitz I (1992) The a locus governs cytoduction in Ustilago maydis. J Bacteriol 174:7831–7833PubMedPubMedCentralCrossRefGoogle Scholar
  85. Valdés-Santiago L, Ruiz-Herrera J (2015) Polyamines in fungi. Their distribution, metabolism, and role in cell differentiation and morphogenesis. CRC Press, Boca Raton, p 202CrossRefGoogle Scholar
  86. Valdés-Santiago L, Cervantes-Chávez J, Ruiz-Herrera J (2009) Ustilago maydis spermidine synthase is encoded by a chimeric gene, required for morphogenesis, and indispensable for survival in the host. FEMS Yeast Res 9:923–935PubMedCrossRefGoogle Scholar
  87. Valdés-Santiago L, Cervantes-Chávez JA, León-Ramírez CG, Ruiz-Herrera J (2012a) Polyamine metabolism in fungi with emphasis on phytopathogenic species. J Amino Acids 2012:1–13CrossRefGoogle Scholar
  88. Valdés-Santiago L, Cervantes-Chávez JA, Winkler R, León-Ramírez CG, Ruiz-Herrera J (2012b) Phenotypic comparison of samdc and spe mutants reveals complex relationships of polyamine metabolism in Ustilago maydis. Microbiology 158:674–684PubMedCrossRefGoogle Scholar
  89. Wösten HAB, Wessels JGH (2006) The emergence of fruiting bodies in Basidiomycetes. In: Fisher K (ed) The mycota I. Growth, differentiation and sexuality. Springer, Berlin/Heidelberg, pp 393–414CrossRefGoogle Scholar
  90. Zhang J et al (2015) Transcriptome analysis and its applications in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. PLoS One 10:1–21Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • José Ruiz-Herrera
    • 1
    Email author
  • José L. Cabrera-Ponce
    • 1
  • Claudia León-Ramírez
    • 1
  • Fernando Pérez-Rodríguez
    • 1
  • Mayela Salazar-Chávez
    • 1
  • Alejandro Sánchez-Arreguín
    • 1
  • John Vélez-Haro
    • 1
  1. 1.Departamento de Ingeniería Genética, Unidad IrapuatoCentro de Investigación y de Estudios Avanzados del IPNIrapuatoMéxico

Personalised recommendations