Advertisement

Aflatoxin and Ochratoxin A Detection: Traditional and Current Methods

  • Shraddha Rahi
  • Priyanka Choudhari
  • Vandana Ghormade
Chapter

Abstract

Mycotoxins such as aflatoxin and ochratoxin A are secondary metabolites secreted by Aspergillus and Penicillium species. These fungal species flourish in foodstuff and feeds under appropriate temperature and humidity conditions to produce mycotoxins. Aflatoxins are known carcinogens and ochratoxin A causes nephrotoxicity. The contamination of mycotoxins in food and feed, persistence during food processing, and toxicity make them a primary health hazard. Therefore, determination of aflatoxin and ochratoxin A contamination bears a critical importance. Classical methods like chromatographic separation including thin-layer chromatography, high-performance liquid chromatography, and mass spectroscopy are described. Detection of the causal organism by molecular approaches employing PCR and real-time PCR may contribute in early detection. Recently, immunochemical-based methods like enzyme-linked immunosorbent assay and electrical, optical, and piezoelectric immunosensors are being used for the screening purposes. Such detection platforms are portable, reducing the dependence on costly instrumentation. Current strategies to improve the mycotoxin detection involve nanotechnology-enabled sensors. One of the main challenges for the detection of mycotoxin contamination is the co-occurrence of two or more toxins in food and feed samples. The incorporation of novel recognition elements such as antibodies, peptides, or aptamers with nanoparticles for LFA and immunosensors has immense potential for simultaneously sensitive, specific, and cost-effective multitoxin analysis. Such devices will contribute to improved detection of toxic secondary fungal metabolites critical in food safety, human health, and food trade.

Keywords

Aflatoxin Ochratoxin A Chromatographic detection Immunochemical methods PCR Nanotechnology Lateral flow assay Multitoxin detection 

Notes

Acknowledgments

VG and PC thank the Department of Biotechnology and Department of Science and Technology, Government of India for the funding (BT/PR10455/PFN/20/869/2013 & DST/INT/MECICO/P-06/2016). SR thanks the Department of Science and Technology for Junior Research Fellowship under INSPIRE program.

References

  1. Aboul Enein HY, Kutluk OB, Altiokka G, Tuncel M (2002) A modified HPLC method for the determination of ochratoxin A by fluorescence detection. Biomed Chromatogr 16:470–474PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adanyi N, Levkovets IA, Rodriguez-Gil S, Ronald A, Varadi M, Szendro I (2007) Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. Biosens Bioelectron 22:797–802PubMedCrossRefPubMedCentralGoogle Scholar
  3. Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Cotty PJ, Bandyopadhyay R (2018) Prevalence of aflatoxin contamination in maize and groundnut in ghana: population structure, distribution, and toxigenicity of the causal agents. Plant Dis 102:764–772PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alarcon SG, Palleschi G, Compagnonec D, Pascale M, Visconti A, Barna-Vetron I (2006) Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. Talanta 69:1031–1037PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alshannaq A, Yu JH (2017) Occurrence, toxicity and analysis of major mycotoxins in food. Int J Environ Res Public Health 14:632PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anfossi L, D’Arco G, Baggiani C, Giovannoli C, Giraudi G (2011) A lateral flow immunoassay for measuring ochratoxin A: Development of a single system for maize, wheat and durum wheat. Food Cont 22:1965–1970Google Scholar
  7. Anfossi L, Giovannoli C, Giraudi G, Biagioli F, Passini C, Baggiani C (2012) A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must. J Agric Food Chem 60:11491−11497PubMedCrossRefPubMedCentralGoogle Scholar
  8. Antep HM, Merdivan M (2012) Determination of ochratoxin A in grape wines after dispersive liquid–liquid microextraction using high performance thin layer and liquid chromatography–fluorescence detection. J Biol Chem 40:155–163Google Scholar
  9. Atoui A, Mathieu F, Lebrihi A (2007) Targeting a polyketide synthase gene for Aspergillus carbonarius quantification and ochratoxin A assessment in grapes using real-time PCR. Int J Food Microbiol 115:313–318PubMedCrossRefPubMedCentralGoogle Scholar
  10. Azer M, Cooper C (1991) Determination of aflatoxins in foods using HPLC and a commercial ELISA system. J Food Protect 54:291–294CrossRefGoogle Scholar
  11. Badea M, Floroian L, Restani P, Codruta S, Cobzac A, Moga M (2016) Ochratoxin A detection on antibody immobilized on bsa-functionalized gold electrodes. PLoS One 11:e0160021PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baptista P, Doria GA, Henriques D, Pereira E, Franco R (2005) Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 119:111–117PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bazin, I , Andreotti N, IbnHadjHassine A, DeWaard M, Sabatier JM, Gonzalez C (2013) Peptide binding to ochratoxin A mycotoxin: a new approach in conception of biosensors Biosens Bioelectron 40:240–246PubMedCrossRefPubMedCentralGoogle Scholar
  14. Binder EM (2007) Managing the risk of mycotoxins in modern feed. Anim Feed Sci Tech 133:149–166CrossRefGoogle Scholar
  15. Bogs C, Battilani P, Geisen R (2006) Development of a molecular detection and differentiation system for ochratoxin A producing Penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats. Int J Food Microbiol 107:39–47PubMedCrossRefPubMedCentralGoogle Scholar
  16. Boudra H, Le Bars P, Le Bars J (1995) Thermostability of ochratoxin a in wheat under two moisture conditions. Appl Environ Microbiol 61:1156–1158PubMedPubMedCentralGoogle Scholar
  17. Braicu C, Puia E, Bodoki E, Socaciu C (2008) Screening and quantification of aflatoxins and ochratoxin a in different cereals cultivated in Romania using thin-layer chromatography-densitometry. J Food Qual 31:108–120CrossRefGoogle Scholar
  18. Bryden WL (2012) Mycotoxin contamination of the feed supply chain: implications for productivity and feed security. Anim Feed Sci Tech 173:134–158CrossRefGoogle Scholar
  19. Chen Y, Chen Q, Han M, Zhou J, Gong L, Niu Y, Zhang Y, He L, Zhang L (2016) Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem 213: 478–484PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cho YJ, Lee DH, Kim DO, Min WK, Bong KT, Lee GG, Seo JH (2005) Production of a monoclonal antibody against ochratoxin a and its application to immunochromatographic Assay. J Agric Food Chem 53:8447−8451PubMedCrossRefPubMedCentralGoogle Scholar
  21. Criseo G, Bagnara A, Bisignano G (2001) Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Letts Appl Microbiol 33:291–295CrossRefGoogle Scholar
  22. Daly SG, Keating GJ, Dillon PP et al (2000) Development of surface plasmon resonance-based immunoassay for aflatoxin B1. J Agri Food Chem 48:5097–5104PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dao HP, Mathieu F, Lebrihi A (2005) Two primer pairs to detect OTA producers by PCR method. Int J Food Microbiol 104:61–67PubMedCrossRefPubMedCentralGoogle Scholar
  24. Delmulle BS, de Saeger SMDG, Sibanda L, Barna-Vetro I, van Peteghem CH (2005) Development of an immunoassaybased lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. J Agric Food Chem 53:3364–3368PubMedCrossRefPubMedCentralGoogle Scholar
  25. Desalegn B, Nanayakkara S, Harada KH, Hitomi T, Chandrajith R, Karunaratne U, Abeysekera T, Koizumi A (2011) Mycotoxin detection in urine samples of patients with chronic kidney disease of uncertain etiology from Sri Lanka. Bull Environ Contam Toxicol 87:6PubMedCrossRefPubMedCentralGoogle Scholar
  26. Devi KT, Mayo M, Reddy KLN, Delfosse P, Reddy G, Reddy SV, DVR R (1999) Production and characterization of monoclonal antibodies for aflatoxin B1. Lett Appl Microbiol 29:284–288PubMedCrossRefPubMedCentralGoogle Scholar
  27. Devi KT, Mayo M, Hall AJ, Craufurd PQ, Wheeler TR, Waliyar F, Subrahmanyam A, Reddy K (2002) Development and application of an indirect competitive enzymelinked immunoassay for aflatoxin M1 in milk and milk-based confectionery. J Agri Food Chem 50:933–937CrossRefGoogle Scholar
  28. Durguti V, Georgieva A, Angelov A, Bajrami Z (2014) Quantitative determination of ochratoxin A in wine after the clarification and filtration. Croat J Food Sci Technol 6:79–83CrossRefGoogle Scholar
  29. Edwards SG, O’Callaghan J, Dobson ADW (2001) PCR-based detection and quantification of mycotoxigenic fungi. Mycol Res 106:1005–1025CrossRefGoogle Scholar
  30. Ekhtelat M, Badpa F, Khorasgani ZN, Azemi E (2018) High-performance Liquid Chromatography analysis of Ochratoxin A in Zataria multiflora and Foeniculum vulgare in Ahvaz (Iran). Asian J Pharmaceut 12:S523Google Scholar
  31. Eun-mee H, Park HR, Hu SJ, Kwon KS, Lee H, Ha M, Kim K, Ko E, Ha S, Chun H, Chung D, Bae D (2006) Monitoring of Aflatoxin B1 in Livestock Feeds Using ELISA and HPLC. J Microbiol Biotechnol 16:643–646Google Scholar
  32. Fuji S, Ono EYS, Ribeiro RMR, Assunção FGA, Takabayashi CR, Moreira de Oliveir TCR, Itano EN, Ueno Y, Kawamura O, Hirooka EY (2007) A Comparison between enzyme immunoassay and hplc for ochratoxin a detection in green, roasted and instant coffee. Braz Arch Biol Technol 50:349–359CrossRefGoogle Scholar
  33. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis and biomedical applications. Accounts Chem Res 42:1097–1107CrossRefGoogle Scholar
  34. Giraudi G, Anfossi L, Baggiani C, Giovannoli C, Tozzi C (2007) Solid-phase extraction of ochratoxin A from wine based on a binding hexapeptide prepared by combinatorial synthesis. J Chromatogr A 1175:174–180PubMedCrossRefPubMedCentralGoogle Scholar
  35. Guo P, Wei C (2005) Quantum dots for robust and simple assays using single particles in nanodevices. Nanomed Nanotechnol Biol Med 1:122–124CrossRefGoogle Scholar
  36. Ha TH (2015) Recent advances for the detection of ochratoxin A. Toxins 7:5276–5300PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hampikyan H, Bingol EB, Colak H, Cetin O, Bingol B (2015) Determination of ochratoxin a in baby foods by ELISA And HPLC. Acta Aliment 44:578–584CrossRefGoogle Scholar
  38. Harry SR, Hicks DJ, Amiri KI, Wright DW (2010) Hairpin DNA coated gold nanoparticles as intracellular mRNA probes for the detection of tyrosinase gene expression in melanoma cells. Chem Commun 46:5557–5559PubMedCrossRefPubMedCentralGoogle Scholar
  39. Herzallah SM (2009) Determination of aflatoxins in eggs, milk, meat and meat products using HPLC fluorescent and UV detectors. Food Chem 114:1141–1146CrossRefGoogle Scholar
  40. Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors - an alternative to optical biosensors?Angew Chem. Int Ed 39:4004–4032Google Scholar
  41. Javier DJ, Castellanos-Gonzalez A, Weigum SE, White AC, Richards-Kortum R (2009) Oligonucleotide-gold nanoparticle networks for detection of Cryptosporidium parvum heat shock protein 70 mRNA. J Clin Microbiol 47:4060–4066PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jin X, Liu X, Chen L,Jiang J, Shen G, Yu R (2009) Biocatalyzed deposition amplification for detection of aflatoxin B1 based on quartz crystal microbalance Anal Chim Acta 645:92–97PubMedCrossRefGoogle Scholar
  43. Jung S, Choe B, Shin G, Kim J, Chae Y (2012) Analysis of roasted and ground grains on the seoul (korea) market for their contaminants of aflatoxins, ochratoxin A and Fusarium toxins by LC-MS/MS. World Academy Sci Engineer Technol 6:12–23Google Scholar
  44. Kilicel F, Karapinar HS, Cimen A (2017) Quantitation of aflatoxins in food materials using HPLC-FLD method. Sci J Analy Chem 5:90–97CrossRefGoogle Scholar
  45. Kim KS, Park JK (2005) Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5:657–664PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kim NY, Lee I, Ji GE (2014) Reliable and simple detection of ochratoxin and fumonisin production in black Aspergillus. J Food Protect 77:653–658CrossRefGoogle Scholar
  47. Kim HJ, Lee MJ, Kim HJ, Cho SK, Park HJ, Jeong MH (2017) Analytical method development and monitoring of aflatoxin B1, B2, G1, G2 and ochratoxin A in animal feed using HPLC with Fluorescence detector and photochemical reaction device. Cogent Food Agric 3:1419788Google Scholar
  48. Kok WT, van Neer TCH, Traag WA, Tuinstra LGT (1986) Determination of aflatoxins in cattle feed by liquid chromatography and post-column derivatization with electrochemically generated bromine. J Chromat A 367:231–236CrossRefGoogle Scholar
  49. Kolosova AY, Sibanda L, Dumoulin F, Lewis J, Duveiller E, Van Peteghem C, De Saeger S (2008) Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges. Anal Chim Acta 616:235–244PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kong Z, Wang H, Zou L, Ji Z (2018) Enhancement of aflatoxin B1 detection using electrochemical immunoassay method and 2-aminoethanethiol. Mater Res Express 5:066414CrossRefGoogle Scholar
  51. Kotinagu K, Mohanamba T, Rathna Kumari N (2015) Assessment of aflatoxin B1 in livestock feed and feed ingredients by high-performance thin layer chromatography. Veterinary World. EISSN: 2231-0916Google Scholar
  52. Kupski L, Badiale-Furlong E (2015) Principal components analysis: an innovative approach to establish interferences in ochratoxin a detection. Food Chem 177:354–360PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kushiro M, Hatabayashi H, Nakagawa H, Yabe K (2017) Improvement of mobile phase in thin-layer chromatography for aflatoxins and analysis of the effect of dichlorvos in aflatoxigenic fungi. JSM Mycotoxins 67:5–6CrossRefGoogle Scholar
  54. Lai W, Fung DYC, Xu Y, Liu R, Xiong Y (2009) Development of a colloidal gold strip for rapid detection of ochratoxin A with mimotope peptide. Food Control 20:791–795CrossRefGoogle Scholar
  55. Levin RE (2012) PCR detection of aflatoxin producing fungi and its limitations. Int J Food Microbiol 156:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  56. Li P, Zhou Q, Wang T, Zhou H, Zhang W, Ding X, Zhang Z, Chang PK, Zhang Q (2016). Development of an enzyme-linked immunosorbent assay method specific for the detection of g-group aflatoxins. Toxins 8:5.  https://doi.org/10.3390/toxins8010005PubMedCentralCrossRefGoogle Scholar
  57. Linting Z, Ruiyi L, Zaijun L, Qianfang X, Yinjun F, Junkang L (2012) An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sens Actuators B Chem 174:359–365CrossRefGoogle Scholar
  58. Liu X, Yang Z, Zhang Y, Yu R (2013) A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode. Anal Methods 5:1481–1486CrossRefGoogle Scholar
  59. Magan N, Hope R, Colleate A, Baxter ES (2002) Relationship between growth and mycotoxin production by Fusarium species, biocides and environment. Eur J Pl Pathol 108:685–690Google Scholar
  60. Mahmoud MA (2015) Detection of Aspergillus flavus in stored peanuts using real-time pcr and the expression of aflatoxin genes in toxigenic and atoxigenic A. flavus isolates. Foodborne Pathog Dis 12:289–296PubMedCrossRefPubMedCentralGoogle Scholar
  61. Maragos CM, Busman M (2010) Rapid and advanced tools for mycotoxin analysis: a review. Food Addit Contam 27:688–700CrossRefGoogle Scholar
  62. Masoomi L, Sadeghi O, Banitaba MH, Shahrjerdi A, Davarani SSH (2013) A non-enzymatic nanomagnetic electroimmunosensor for determination of Aflatoxin B1 as a model antigen. Sens Actuators B Chem 177:1122–1127CrossRefGoogle Scholar
  63. Meuccia V, Razzuolia E, Soldania G, Massart F (2010) Mycotoxin detection in infant formula milks in Italy. Food Addit Contam 27:64–71CrossRefGoogle Scholar
  64. Mirghani MES, Man YBC, Jinap S, Baharin BS, Bakar J (2001) A new method for determining aflatoxins in groundnut and groundnut cake using Fourier transform infrared spectroscopy with attenuated total reflectance. J Am Oil Chem Soc 78:985–992CrossRefGoogle Scholar
  65. Moon J, Kim G, Lee S (2013) Development of nanogold-based lateral flow immunoassay for the detection of ochratoxin a in buffer systems. J Nanosci Nanotechnol 13: 7245–7249PubMedCrossRefPubMedCentralGoogle Scholar
  66. Muchindu M, Iwuoha E, Pool E, West N, Jahed N, Baker P, Waryo T, Williams A (2011) Electrochemical Ochratoxin A immunosensor system developed on sulfonated polyaniline. Electroanalysis 23:122–128CrossRefGoogle Scholar
  67. Myndrul V, Viter R, Savchuk M, Shpyrka N, Erts D, Jevdokimovs D, Silamiķelis V, Smyntyna V, Ramanavicius A, Iatsunskyi I (2018) Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosens Bioelectron 102:661–667PubMedCrossRefPubMedCentralGoogle Scholar
  68. Nisa A, Zahra N, Hina S (2014) Detection of aflatoxins in rice samples. Bangladesh J Sci Ind Res 49: 189–194CrossRefGoogle Scholar
  69. Olsson J, Börjesson T, Lundstedt T, Schnürer J (2002) Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int J Food Microbiol 72:203–214PubMedCrossRefPubMedCentralGoogle Scholar
  70. Parker CO, Tothill IE (2009) Development of an electrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference. Biosens Bioelectron 24:2452–2457PubMedCrossRefPubMedCentralGoogle Scholar
  71. Pirinçci SS, Ertekin O, Laguna DE,Özen FS, Öztürk ZZ , Öztürk S (2018) Label-free QCM immunosensor for the detection of ochratoxin A. Sensors 18:1161.  https://doi.org/10.3390/s18041161CrossRefGoogle Scholar
  72. Piro B, Shi A, Reisberg S, Noël V, Anquetin G (2016) Comparison of electrochemical immunosensors and aptasensors for detection of small organic molecules in environment, food safety, clinical and public security. Biosensors 6:7PubMedCentralCrossRefGoogle Scholar
  73. Pittet A, Royer D (2002) Rapid, low cost thin-layer chromatographic screening method for the detection of ochratoxin A in green coffee at a control level of 10íg/Kg. J Agric Food Chem 50:243–247PubMedCrossRefPubMedCentralGoogle Scholar
  74. Prestani A, Tabatabaei SN, Fazeli MH, Antikchi M, Baabaei M (2011) Comparison of HPLC and Elisa for determination of aflatoxin concentration in the milk and feeds of dairy cattle. J Res Agri Sci 7:71–78Google Scholar
  75. Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors Biosens Bioelectron. 73:47–63Google Scholar
  76. Radi E, Muñoz-Berbel X, Cortina-Puig M, Marty JL (2009) An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochim Acta 54:2180–2184CrossRefGoogle Scholar
  77. Rahimi E, Shakerian A (2013) Ochratoxin A in dried figs, raisings, apricots, dates on Iranian retail market. Health 5:2077–2080CrossRefGoogle Scholar
  78. Rahmani A, Jinap S, Soleimany F (2009) Qualitative and quantitative analysis of mycotoxins. Comprehen Rev Food Sci Food Saf 8:202–251CrossRefGoogle Scholar
  79. Rauch P, Fukal L, Prosek J, Brezina P, Kas J (1987) Radioimmunoassay of aflatoxin M1. J Radioanaly Nucl Chem 117:163–169CrossRefGoogle Scholar
  80. Ren M, Xu H, Huang X, Kuang M, Xiong Y, Xu H, Xu Y, Chen H, Wang A (2014) Immunochromatographic assay for ultrasensitive detection of aflatoxin b1 in maize by highly luminescent quantum dot beads. ACS Appl Mater Interfaces 6:14215−14222CrossRefGoogle Scholar
  81. Rivas L, Mayorga-Martinez CC, Quesada-Gonzalez D, Zamora-Galvez A, Escosura-Muñiz A, Merkociṃ A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 87:5167–5172PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rodriguez A, Rodriguez M, Luque MI, Martin A, Cordoba JJ (2012) Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods. Food Microbiol 31:89e99CrossRefGoogle Scholar
  83. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562PubMedCrossRefPubMedCentralGoogle Scholar
  84. Sadhasivam S, Britzi M, Zakin V, Kostyukovsky M, Trostanetsky A, Quinn E, Ionov E (2017) Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins 9:302PubMedCentralCrossRefGoogle Scholar
  85. Santos VO, Pelegrini PB, Mulinari F, Lacerda AF, Moura, RS, Cardoso LPV, Bührer-Sékula S, Miller RNG, Grossi-de-Sa MF (2017) Development and validation of a novel lateral flow immunoassay device for detection of aflatoxins in soy-based foods. Anal Methods 9:2715–2722CrossRefGoogle Scholar
  86. Sartori D, Furlaneto MC, Martins MK, de Paula MRF, Pizzirani-Kleiner AA, Taniwaki MH, Fungaro MHP (2006) PCR method for the detection of potential ochratoxin-producing Aspergillus species in coffee beans. Res Microbiol 157:350–354PubMedCrossRefPubMedCentralGoogle Scholar
  87. Schmidt-Heydt M, Parra R, Geisen R, Magan N (2011) Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species. J. R. Soc Interf 8:117–126Google Scholar
  88. Schneider E, Curtui V, Seidler C, Dietrich R, Usleber E, Märtlbauer E (2004) Rapid methods for deoxynivalenol and other tricothecenes. Toxicol Lett 153:113–121PubMedCrossRefPubMedCentralGoogle Scholar
  89. Scott P (1995) Mycotoxin methodology. Food Addit Contam 12:395–403PubMedCrossRefPubMedCentralGoogle Scholar
  90. Selvan ST, Tan TY, Yi DK, Jana NR (2009) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26:11631–11641CrossRefGoogle Scholar
  91. Shapira R, Paster N, Eyal O, Menasherov M, Mett A, Salomon R (1996) Detection of aflatoxinogenic molds in grains by PCR. Appl Environ Microbiol 62:3270–3273. PMid:8795215PubMedPubMedCentralGoogle Scholar
  92. Sharma A, Kumar A, Khan R (2017) Electrochemical immunosensor based on poly (3,4-ethylenedioxythiophene) modified with gold nanoparticle to detect aflatoxin B1. Mater Sci Engineer C, Mater Biol Appl 76:802–809CrossRefGoogle Scholar
  93. Shephard GS (2008) Determination of mycotoxins in human food. Chem Soc Rev 37:2468–2477PubMedCrossRefPubMedCentralGoogle Scholar
  94. Skarkova J, Ostry V (2000) An HPTLC method for confirmation of the presence of ultra, trace amounts of aflatoxin M1 in human urine. J Planar Chromat 13:42–49Google Scholar
  95. Smith MC, Madec S, Coton E, Hymery N (2016) Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8:94.  https://doi.org/10.3390/toxins8040094PubMedPubMedCentralCrossRefGoogle Scholar
  96. Soh JH, Lin Y, Rana S, Ying JY, Stevens MM (2015) Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal Chem 87:7644–7652PubMedCrossRefPubMedCentralGoogle Scholar
  97. Song S, Liu N, Zhao Z, Ediage EN, Wu S, Sun C, Saeger SD, Wu A (2014) Multiplex lateral flow immunoassay for mycotoxin determination. Anal Chem 86:4995−5001PubMedCrossRefPubMedCentralGoogle Scholar
  98. Spinella K, Mosiello L, Palleschi G, Vitali F (2013) Development of a qcm (quartz crystal microbalance) biosensor to the detection of Aflatoxin B1. Open J Appl Biosensor 2:112–119CrossRefGoogle Scholar
  99. Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G (2013) Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 5:504–523PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/ tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2659PubMedCrossRefPubMedCentralGoogle Scholar
  101. Sun D, Gu X, Li JG, Yao T, Dong YC (2015) Quality evaluation of five commercial enzyme linked immunosorbent assay kits for detecting Aflatoxin B1 in Feedstuffs. Asian Australas J Anim Sci 28:691–696Google Scholar
  102. van der Gaag B, Spath S, Dietrich H et al (2003) Biosensors and multiple mycotoxin analysis. Food Cont 14:251–254CrossRefGoogle Scholar
  103. Velu R, DeRosa MC (2018) Lateral flow assays for Ochratoxin A using metal nanoparticles: comparison of “adsorption–desorption” approach to linkage inversion assembled nano-aptasensors LIANA. Analyst 143:4566–4574PubMedCrossRefPubMedCentralGoogle Scholar
  104. Venkataramana M, Rashmi R, Uppalapati SR, Chandranayaka S, Balakrishna K, Radhika M, Gupta VK, Batra HV (2015) Development of sandwich dot-ELISA for specific detection of OchratoxinA and its application on to contaminated cerealgrains originating from India. Front Microbiol 6:article 511Google Scholar
  105. Vidal JC, DuatoP BL, Castillo JR (2009) Use of polyclonal antibodies to ochratoxin a with a quartz – crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal Bioanal Chem 394:575–582PubMedCrossRefPubMedCentralGoogle Scholar
  106. Vitera R, Savchuk M, Iatsunskyic I, Pietralik Z, Starodub N, Shpyrka N, Ramanaviciene A, Ramanavicius A (2018) Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosens Bioelectron 99:237–243CrossRefGoogle Scholar
  107. Vo-Dinh T (2007). Nanotechnology for application in biology and medicine. CRC Press, Boca RatonGoogle Scholar
  108. Wang XH, Liu T, Xu N, Zhang Y, Wang S (2007) Enzyme-linked immunosorbent assay and colloidal gold immunoassay for ochratoxin a: investigation of analytical conditions and sample matrix on assay performance. Anal Bioanal Chem 389:903–911PubMedCrossRefPubMedCentralGoogle Scholar
  109. Won-bo S, Yang Z, Kim J, Kim JY, Kang SJ, Woo GJ, Chung YC, Eremin S, Chung DH (2007) Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin b1 in grain and feed samples. J Microbiol Biotechnol 17: 1629–1637Google Scholar
  110. Wacoo AP, Wendiro D, Vuzi PC, Hawumba JF (2014) Methods for detection of aflatoxins in agricultural food crops. J Appl Chem 2014:Article ID 706291CrossRefGoogle Scholar
  111. Welke JE, Hoeltz M, Dottori HA, Noll IB (2010) Determination of ochratoxin A in wine by high-performance thin-layer chromatography using charged coupled device. J Braz Chem Soc 21:441–446CrossRefGoogle Scholar
  112. Xiao H, Marquardt RR, Abramson D, Frohlich AA (1996) Metabolites of Ochratoxins in rat urine and in a culture of Aspergillus ochraceus. Appl Environ Microbiol 62:648–655PubMedPubMedCentralGoogle Scholar
  113. Yazdanpanah H, Zarghi A, Shafaati AR, Foroutan SM, Aboul-Fathi F, Khoddam A, Nazari F, Shaki F (2013) Analysis of aflatoxin B1 in Iranian foods using hplc and a monolithic column and estimation of its dietary intake. Iranian J Pharmaceut Res 12:83–89Google Scholar
  114. Yoon BR, Hong SY, Cho SM, Lee KR, Kim M, Chung SH (2016) Aflatoxin M1 levels in dairy products from South Korea determined by high performance liquid chromatography with fluorescence detection. J Food Nutrit Res 55:171–180Google Scholar
  115. Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples. Molecules 23:291.  https://doi.org/10.3390/molecules23020291CrossRefPubMedCentralGoogle Scholar
  116. Zhao SP, Zhang D, Tan LH, Yu B, Cao WG (2016) Analysis of aflatoxins in traditional Chinese medicines: classification of analytical method on the basis of matrix variations. Sci Reports 6:30822CrossRefGoogle Scholar
  117. Zhou W, Kong W, Dou X, Zhao M, Ouyang Z, Yang M (2016) An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J Chromatogr B 1022:102–108CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shraddha Rahi
    • 1
    • 2
  • Priyanka Choudhari
    • 1
  • Vandana Ghormade
    • 1
  1. 1.NanobioscienceAgharkar Research InstitutePuneIndia
  2. 2.Savitribai Phule Pune UniversityPuneIndia

Personalised recommendations