Class B-Trichothecene Profiles of Fusarium Species as Causal Agents of Head Blight

  • Emre Yörük
  • Tapani Yli-MattilaEmail author


Fusarium head blight is a destructive disease of all small grain cereals worldwide. More than ten Fusarium species cause the diseases; F. graminearum and F. culmorum are the major causal agents in European, Asian and American continents. The disease leads to losses in crop quality and quantity including contamination with mycotoxins in particular class B-trichothecenes. Class B-trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated derivatives (15-acetylated deoxynivalenol (15-ADON), 3-acetylated deoxynivalenol (3-ADON) and 4-acetylated nivalenol (4-ANIV). Distributions of these toxin profiles have been detected in many regions around the world. 15-ADON, F. graminearum and wheat seem to have been the major chemotype, causal agent, and host plant, respectively. Moreover, more than five host plants including barley, rice, and maize, which are economically important, have been associated with Fusarium spp. 3-ADON chemotype is predominating Northern Europe, while NIV chemotype has been reported as locally predominating profile in certain geographic regions. Current modern techniques including PCR and chromatographic analysis present reliable, fast, and informative output data worldwide. Since the toxicity of mycotoxins, aggressiveness of species, and scab resistance of host plants vary, chemotyping studies could efficiently contribute to disease management strategies.


Chemotype Detection methods Fusarium culmorum Fusarium graminearum Mycotoxin profiling, Trichothecenes. 



The authors express their thanks to the members of Molecular Biology and Genetics Department of Istanbul University including Dr. Gülruh Albayrak; M.Sc. Aylin Gazdagli; Dr. Berna Tunali, a member of Samsun 19 Mayis University Department of Plant Protection; Drs. Kerry O’Donnell and Todd Ward from USDA-ARS in Peoria; and Dr. Tatiana Gagkaeva from All-Russian Institute of Plant Protection in St. Petersburg for sharing their experience in Fusarium research area. Our research on chemotype distribution in Fusarium species was supported by Research Foundation of Istanbul University, Olvi Foundation, Finnish Cultural Foundation and the Academy of Finland.


  1. Adejumo TO, Hettwer U, Karlovsky P (2007) Occurrence of Fusarium species and trichothecenes in Nigerian maize. Int J Food Microbiol 116(3):350–357PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alexander NJ, Mccormick SP, Waalwijk C, Lee TVD, Proctor RH (2011) The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48:485–495PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alkadri D, Nipoti P, Döll K, Karlovsky P, Prodi A, Pisi A (2013) Study of fungal colonization of wheat kernels in Syria with a focus on Fusarium species. Int J Mol Sci 14:5938–5951PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alvarez CL, Azcarate MP, Pinto VF (2009) Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. Int J Food Microbiol 135:131–135PubMedCrossRefPubMedCentralGoogle Scholar
  5. Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnanl S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Biol 54(384):1101–1111Google Scholar
  6. Aoki T, O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum. Mycologia 91(4):597–609CrossRefGoogle Scholar
  7. Aoki T, Vaughan MM, Mccormick SP, Busman M, Ward TJ, Kelly A, O’Donnell K, Johnston PR, Geiser DM (2015) Fusarium dactylidis sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand. Mycologia 107(2):409–418PubMedCrossRefPubMedCentralGoogle Scholar
  8. Astolfi P, Dos Santos J, Schneider L, Gomes LB, Silva CN, Tessmann DJ, Del Ponte EM (2011) Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in Southern Brazil. Int J Food Microbiol 148:197–201PubMedPubMedCentralGoogle Scholar
  9. Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bakan B, Delville CG, PinsonL R-MD, Fournier E, Brygoo Y (2002) Identification of Fusarium culmorum strains producing large and small amounts of deoxinivalenol. Appl Environ Microbiol 68(11):5472–5479PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baldwin TK, Urban M, Brown N, Hammond-Kosack KE (2010) A role for topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation. Mol Plant Microbe Interact 23:566–577PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P (2007) Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivar. Funct Integr Genomics 7:69–77PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bily AC, Reid LM, Savard E, Reddy R, Blackwell BA, Campbell CM, Krantis A, Durst T, Philogene BJR, Arnason JT, Regnault-Roger C (2004) Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 157:117–126PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108:611–624CrossRefGoogle Scholar
  15. Boutigny AL, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC, O’Donnell K, Viljoen A (2011) Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet Biol 48:914–920PubMedCrossRefPubMedCentralGoogle Scholar
  16. Boutigny AL, Ward TJ, Ballois N, Iancu G, Ioos R (2014) Diversity of the Fusarium graminearum species complex on French cereals. Eur J Plant Pathol 138:133–148CrossRefGoogle Scholar
  17. Bowden RL, Leslie JF (1999) Sexual recombination in Gibberella zeae. Phytopathology 89:182–188PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brown DW, Mccormick SP, Alexander NJ, Proctor RH, Desjardins AE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32(2):121–133PubMedCrossRefPubMedCentralGoogle Scholar
  19. Brown DW, Mccormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233PubMedCrossRefPubMedCentralGoogle Scholar
  20. Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 41:454–462PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carter JP, RezanoorHN HD, Desjardins AE, Plattner RD, Nicholson P (2002) Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur J Plant Pathol 108:573–583CrossRefGoogle Scholar
  22. Castañares E, Albuquerque DR, Dinolfo MI, Pinto VF, Patriarc A, Stenglein SA (2014) Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. Int J Food Microbiol 179:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chandler EA, Simpson DR, Thomsett MA, Nicholson P (2003) Development of PCR assays to tri7 and tri13 trichothecene biosynthetic and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol 62:355–367CrossRefGoogle Scholar
  24. Chehri K, Salleh B, Yli-Mattila T, Reddy KRN, Abbasi S (2011) Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran. Saudi J Biol Sci 18:341–351PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chung WH, Ishii H, Nishimura K, Ohshima M, Iwama T, Yoshimatsu H (2008) Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. J Gen Plant Pathol 10:110–118Google Scholar
  26. Clear RM, Patrick SK, Gaba D, Roscoe M, Turkington TK, Demeke T, Pouleur S, Couture L, Ward TJ, O’Donnell K (2006) Trichothecene and zearalenone production, in culture, by isolates of Fusarium pseudograminearum from western Canada. Can J Plant Pathol 28:131–136CrossRefGoogle Scholar
  27. Cornea C, Israel-Roming F, Ciuca M, Voaides C (2013) Natural occurrence of Fusarium species and corresponding chemotypes in wheat scab complex from Romania. Rom Biotech Lett 18:8787–8795Google Scholar
  28. Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Adam G (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317(5843):1400–1402PubMedCrossRefPubMedCentralGoogle Scholar
  29. Davari M, Wei SH, Babay-Ahari A, Arzanlou M, Waalwijk C, Van Der Lee TAJ, Zare R, Van Den Ende AHGG, De Hoog GS, Van Diepeningen AD (2013) Geographic differences in trichothecene chemotypes of Fusarium graminearum in the Northwest and North of Iran. World Mycotoxin J6:137–150CrossRefGoogle Scholar
  30. Delgado JA, Schwarz PB, Gillespie J, Rivera-Varas V, Secor GA (2010) Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum. Phytopathology 100:290–296PubMedCrossRefPubMedCentralGoogle Scholar
  31. Desjardins AE, Beremand M (1987) A genetic system for trichothecene toxin production in Gibberella pulicaris (Fusarium sambucinum). Phytopathology 77:678–683CrossRefGoogle Scholar
  32. Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50PubMedCrossRefPubMedCentralGoogle Scholar
  33. Desjardins AE, Proctor RH (2011) Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biol 115:38–48PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dinolfo MI, Stenglein SA, Moreno MV, Nicholson P, Jennings P, Salerno GL (2010) ISSR markers detect high genetic variation among Fusarium poae isolates from Argentina and England. Eur J Plant Pathol 127:483–491CrossRefGoogle Scholar
  35. Doohan FM, Weston G, Rezanoor HN, Parry DW, Nicholson P (1999) Development and use of a reverse transcription-PCR assay to study expression of tri5 by Fusarium species in vitro and in planta. Appl Environ Microbiol 65:3850–3854PubMedPubMedCentralGoogle Scholar
  36. Dyakov TY, Dzhavakhlya VG, Korpela T (2007) Comprehensive and Molecular phytopathology. Elsevier, Amsterdam, p 469Google Scholar
  37. Fernández-Ortuño D, Waalwijk C, Van Der Lee T, Fan J, Atkins S, West JS, Fraaije BA (2013) Simultaneous real-time PCR detection of Fusarium asiaticum, F. ussurianum and F. vorosii, representing the Asian clade of the F. graminearum species complex. Int J Food Microbiol 166:148–154PubMedCrossRefPubMedCentralGoogle Scholar
  38. Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gagkaeva TY, Yli-Mattila T (2004) Genetic diversity of Fusarium graminearumin Europe and Asia. Eur J Plant Pathol 110:551–562CrossRefGoogle Scholar
  40. Gale LR, Harrison SA, Ward TJ, O’Donnell K, Milus EA, Gale SW, Kistler HC (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in Southern Louisiana. Phytopathology 101(1):124–134PubMedCrossRefPubMedCentralGoogle Scholar
  41. Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK, Brandt ME et al (2013) One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–408PubMedCrossRefPubMedCentralGoogle Scholar
  42. Generotti S, Cirlini M, Malachova A, Sulyok M, Berthiller F, Dall’asta C, Suman M (2015) Deoxynivalenol and deoxynivalenol-3-glucoside mitigation through bakery production strategies: effective experimental design within industrial rusk-making technology. Toxins 7:2773–2790PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gilbert J, Abramson D, Mccallum B, Clear R (2001) Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins. Mycopathologia 153:209–215CrossRefGoogle Scholar
  44. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crop. Mol Plant Pathol 5(6):515–525PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gürel F, Albayrak G, Diken O, Cepni E, Tunali B (2010) Use of REP-PCR for genetic diversity analyses in Fusarium culmorum. J Phytopathol 158:387–389CrossRefGoogle Scholar
  46. Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assay for mycotoxins produced by Fusarium strains. Environ Toxicol Pharm 11:309–320CrossRefGoogle Scholar
  47. Hammond-Kosack K, UrbanM BT, Daudi A, Rudd J, Keon J, Lucas J, Maguire K, Kornyukhin D, Jing HC, Bass C, Antoniw J (2004) Plant pathogens: how can molecular genetic information on plant pathogens assist in breeding disease resistant crops. New Directions For a Diverse Planet 44:1–18Google Scholar
  48. Haratian M, Sharifnabi B, Alizadeh A, Safaie N (2008) PCR analysis of the tri13 gene to determine the genetic potential of Fusarium graminearum isolates from Iran to produce nivalenol and deoxynivalenol. Mycopathologia 166:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hawksworth DLA (2011) New dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2:155–162PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hestbjerg H, Felding G, Elmholt S (2002) Fusarium culmorum infection of barley seedlings: correlation between aggressiveness and deoxynivalenol content. J Plant Pathol 150:308–312Google Scholar
  51. Hornok L, Waalwijk C, Leslie JL (2007) Genetic factors affecting sexual reproduction in toxigenic Fusarium species. Int J Food Microbiol 119:54–58PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hue FX, Huerre M, Rouffault MA, Bievre CD (1999) Specific detection of Fusarium species in blood and tissues by a PCR technique. J Clin Microbiol 37:2434–2438PubMedPubMedCentralGoogle Scholar
  53. Isebaert S, Saeger SD, Devreese R, Verhoeven R, Maene P, Heremans B, Haesaert G (2009) Mycotoxin-producing Fusarium species occurring in winter wheat in Belgium (Flanders) during 2002–2005. J Phytopathol 157:108–116CrossRefGoogle Scholar
  54. Jennings P, Coates ME, Walsh K, Turner JA, Nicholson P (2004a) Determination of deoxinivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol 53:643–652CrossRefGoogle Scholar
  55. Jennings P, Coates ME, Turner JA, Chandle EA, Nicholson P (2004b) Determination of deoxinivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol 53:182–190CrossRefGoogle Scholar
  56. Ji L, Cao K, Hu T, Wang S (2007) Determination of deoxinivalenol and nivalenol chemotypes of Fusarium graminearum isolates from China by PCR assay. J Phytopathol 155:505–512CrossRefGoogle Scholar
  57. Jurado M, Vázquez C, Patińo B, González-Jaén MT (2005) PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Syst Appl Microbiol 28:562–568PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kammoun LG, Gargouri S, Barreau C, Richard-Forge F, Hajlaoui MR (2010) Trichothecene chemotypes of Fusarium culmorum infecting wheat in Tunisia. Int J Food Microbiol 140:84–89PubMedCrossRefPubMedCentralGoogle Scholar
  59. Karugia GW, Suga H, Gale LR, Nakajima T, Tomimura K, Hyakumachi M (2009) Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Dis 93(2):170–174PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kawakami A, Nakajima T, Hirayae K (2014) Effects of carbon sources and amines on induction of trichothecene production by Fusarium asiaticum in liquid culture. FEMS Microbiol Lett 352:204–212PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kerényi ZA, Moretti C, Waalwijk B, Olah L, Hornok L (2004) Mating type sequences in asexually reproducing Fusarium species. Appl Environ Microbiol 70:4419–4423PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim HS, Lee T, Dawlatana M, Yun SH, Lee YW (2003) Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol Res 107:190–197PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kim JE, Jin J, Kim H, Kim JC, Yun SH, Lee YW (2008) Functional characterization of genes located at the aurofusarin biosynthesis gene cluster in Gibberella zeae. Plant Pathol J 24:8–16CrossRefGoogle Scholar
  64. Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 539:105–110PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, gene and evolution. Biosci Biotech Bioch 71:2105–2123CrossRefGoogle Scholar
  66. Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Holst-Jensen A (2007) DNA microarray to detect and identify trichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol 102(4):1060–1070PubMedPubMedCentralGoogle Scholar
  67. Kulik T, Buśko M, Pszczółkowska A, Perkowski J, Okorski A (2014) Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett Appl Microbiol 59:99–107PubMedCrossRefPubMedCentralGoogle Scholar
  68. Laday M, Juhasz A, Mule G, Moretti A, Szecsi A, Logrieco A (2004) Mitochondrial DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae). Eur J Plant Pathol 110:545–550CrossRefGoogle Scholar
  69. Lancovaa K, Hajslovaa J, Poustkaa J, Krplovaa A, Zachariasovaa M, Dostalekb P, Sachambula L (2008) Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit Contam 25(6):732–744CrossRefGoogle Scholar
  70. Larone DH (2011) Medically important fungi: a guide to identification. ASM Press, Washington, DC, 485 ppCrossRefGoogle Scholar
  71. Lauren DR, Smith WA (2001) Stability of Fusarium mycotoxins nivalenol, deoxynivalenol and zearelenone in ground maize under typical cooking conditions. Food Addit Contam 18:1011–1016PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW (2001) Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67:2966–2972PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lee T, Han YH, Kim KH, Yun SH, Lee YW (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol- producing chemotypes of Gibberella zeae. App Environ Microbiol 68:2148–2154CrossRefGoogle Scholar
  74. Lee J, ChangI Y, Kim H, Yun SH, Leslie JF, Lee YW (2009) Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl Environ Microbiol 75:3289–3295PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lee J, Kim H, Jeon JJ, Kim HS, Zeller KA, Carter LLA, Leslie JF, Lee YW (2012) Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Appl Environ Microbiol 78:2161–2167PubMedPubMedCentralCrossRefGoogle Scholar
  76. Leisova L, Kucera L, Chrpova J, Sykorova S, Sip V, Ovesna J (2006) Quantification of Fusarium culmorum in wheat and barley tissues using Real-Time PCR in comparison with DON content. J Phytopathol 154:603–611CrossRefGoogle Scholar
  77. Leslie JF, Summerell BA (2006) The Fusarium laboratuary manual. Blackwell, Manhattan, 387ppCrossRefGoogle Scholar
  78. Li HP, Wu AB, Zhao CS, Scholten O, Löffler H, Liao YC (2005) Development of a generic PCR detection of deoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum. FEMS Microbiol Lett 243:505–511PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li RQ, He R, Zhang YB, Xu YM, Wang JM (2009) Establishment of ISSR reaction system of Fusarium and its analysis of genetic diversity. Sci Agric Sin 42(9):3139–3146Google Scholar
  80. Llorens A, Hinojo MJ, Mateo R, Medina A, Valle-Algarre FM, Gonzalez-Jaen MT, Jimenez M (2006) Variability and characterization of mycotoxin producing Fusarium spp. isolates by PCR-RFLP analysis of the IGS-rDNA region. Anton Leeuw Int J G 89:465–478CrossRefGoogle Scholar
  81. Lori GA, Sisterna MN, Sarandón SJ, Rizzo I, Chidichimo H (2009) Fusarium head blight in wheat: impact of tillage and other agronomic practices under natural infection. Crop Prot 28:495–502CrossRefGoogle Scholar
  82. Lysøe E, Harris LJ, Walkowiak S, Subramaniam R, Divon HH et al (2016a) The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One 9(11):e112703. Scholar
  83. Lysøe E, Frandsen RJN, Divon HH, Terzi V, Orrù L, Lamontanara A, Kolseth AS-K, Nielsen KF, Thrane U (2016b) Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes. Int J Food Microbiol 221:29–36PubMedCrossRefPubMedCentralGoogle Scholar
  84. Malbran I, Mourelos CA, Girotti JR, Balatti PA, Lori GA (2014) Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. Phytopathology 104:357–364PubMedCrossRefPubMedCentralGoogle Scholar
  85. Malihipour A, Gilbert J, Piercey-Normore M, Cloutier S (2012) Molecular phylogenetic analysis, trichothecene chemotype patterns, and variation in aggressiveness of Fusarium isolates causing head blight in wheat. Plant Dis 96:1016–1025PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mcdonald T, Brown D, Keller NP, Hammond TM (2005) RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant-Microbe Interact 18(6):539–545PubMedCrossRefPubMedCentralGoogle Scholar
  87. Merhej J, Boutigny AL, Pinson-Gadais L, Richard-Forget F, Barreau C (2010) Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Food Addit Contam 27:710–717CrossRefGoogle Scholar
  88. Mert-Türk F, Gencer G (2013) Distribution of the 3-ADON, 15-ADON, and NIV chemotypes of Fusarium culmorum in the North-West of Turkey. Plant Prot Sci 49(2):57–64CrossRefGoogle Scholar
  89. Michlmayr H, AlachováA VE, Kleinová J, Lemmens M, Newmister S, Rayment I, Berthiller F, Adam G (2015) Biochemical characterization of a recombinant UDP-glucosyltransferase from rice and enzymatic production of deoxynivalenol-3-o-β-d-glucoside. Toxins 7:2685–2700PubMedPubMedCentralCrossRefGoogle Scholar
  90. Miedaner T, Schilling AG, Geiger HH (2001) Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. J Phytopathol 149:641–648CrossRefGoogle Scholar
  91. Miedaner T, Cumagun CJR, Chakraborty S (2008) Population genetics of three important head blight pathogens Fusarium graminearum, F pseudograminearum and F culmorum. J Phytopathol 156:129–139CrossRefGoogle Scholar
  92. Miller D, Mackenzie S (2000) Secondary metabolites of Fusarium venenatum strains with deletions in the Tri5 gene encoding trichodiene synthetase. Mycologia 92:764–771CrossRefGoogle Scholar
  93. Miller JD, Greenhalgh R, Wang YZ, Lu M (1991) Trichothecene chemotypes of three Fusarium species. Mycologia 83:121–130CrossRefGoogle Scholar
  94. Mishra PK, Tewari JP, Clear RM, Turkington TK (2004) Molecular genetic variation and geographical structuring in Fusarium graminearum. Ann Appl Biol 145:299–307CrossRefGoogle Scholar
  95. Mishra PK, Tewari JP, Clear RM, Turkington TK (2006) Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada. Int Microbiol 9:65–68PubMedPubMedCentralGoogle Scholar
  96. Naef A, Senatore M, Défago GA (2006) Microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. FEMS Microbiol Lett 655:211–220CrossRefGoogle Scholar
  97. Nagl V, Schatzmayr G (2015) Deoxynivalenol and its masked forms in food and feed. Curr Opin Food Sci 5:43–49CrossRefGoogle Scholar
  98. National Centre for Biotechnology Information (NCBI) (2015).
  99. Ndoye M, Zhang JB, Wang JH, Gong AD, Li HP, Qu B, Li SJ, Liao YC (2012) Nivalenol and 15-acetyldeoxynivalenol chemotypes of Fusarium graminearum clade species are prevalent on maize throughout China. J Phytopathol 160:519–524CrossRefGoogle Scholar
  100. Nielsen LK, Jensen JD, Nielsen GC, Jensen JE, Spliid NH, Thomsen IK, Justesen AF, Collinge DB, Jorgensen LN (2011) Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101:960–969PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nielsen LK, Jensen JD, Rodríguez A, Jørgensen LN, Justesen AF (2012) TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol 157:384–392PubMedCrossRefPubMedCentralGoogle Scholar
  102. Niessen L (2007) PCR-based diagnosis and quantification of mycotoxin producing fungi. Int J Food Microbiol 19:38–46CrossRefGoogle Scholar
  103. O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97(14):7905–7910PubMedPubMedCentralCrossRefGoogle Scholar
  104. O’Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T, Orwig N, Kimura M, Bjørnstad A, Klemsdal SS (2008) Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet Biol 45:1514–1522PubMedCrossRefPubMedCentralGoogle Scholar
  105. Obanor F, Erginbas-Orakci G, Tunali B, Nicol JM, Chakraborty S (2010) Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biol 114:753–765PubMedCrossRefPubMedCentralGoogle Scholar
  106. Obanor F, Neate S, Simpfendorfer S, Sabburg R, Wilson P, Chakraborty S (2013) Fusarium graminearum and Fusarium pseudograminearum caused the 2010 head blight epidemics in Australia. Plant Pathol 62:79–91CrossRefGoogle Scholar
  107. Ohe CVD, Gauthier V, Tamburic-Ilincic L, Brule-Babel A, Fernando WGD, Clear R, Ward TJ, Miedaner T (2010) A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur J Plant Pathol 127:407–417CrossRefGoogle Scholar
  108. Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119:103–108PubMedCrossRefPubMedCentralGoogle Scholar
  109. Pagnussatt FA, Del Ponte EM, Garda-Buffon J, Badiale-Furlong E (2014) Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pestic Biochem Physiol 108:21–26PubMedCrossRefPubMedCentralGoogle Scholar
  110. Pallez M, Pasquali M, Bohn T, Hoffmann L, Beyer M (2014) Validation of a quick PCR method suitable for direct sequencing: identification of Fusarium fungal species and chemotypes for preventive approaches in food safety. Food Technol Biotechnol 52:351–358Google Scholar
  111. Pan D, Calero N, Mionetto A, Bettucci L (2013) Trichothecene genotypes of Fusarium graminearum from wheat in Uruguay. Int J Food Microbiol 162:120–123PubMedCrossRefPubMedCentralGoogle Scholar
  112. Parry DW, Jenkinson P, Mcleod L (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol 44:207–238CrossRefGoogle Scholar
  113. Pasquali M, Migheli Q (2014) Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int J Food Microbiol 189:164–182PubMedCrossRefPubMedCentralGoogle Scholar
  114. Pineiro MS, Scott PM, Kanhere SR (1996) Mycotoxin producing potential of Fusarium graminearum isolates from Uruguayan barley. Mycopathologia 132(3):167–172CrossRefGoogle Scholar
  115. Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F (2009) Fusarium response to oxidative stress by H2O2 is trichothecene chemotype dependent. FEMS Microbiol Lett 293:255–262PubMedCrossRefPubMedCentralGoogle Scholar
  116. Przemieniecki SW, Kurowski TP, Korzekwa K (2014) Chemotypes and geographic distribution of the Fusarium graminearum species complex. Environ Biotechnol 10(2):45–54CrossRefGoogle Scholar
  117. Purahong W, Nipoti P, Pisi A, Lemmens M, Prodi A (2013) Aggressiveness of different Fusarium graminearum chemotypes within a population from Northern-Central Italy. Mycoscience 55(1):63–69CrossRefGoogle Scholar
  118. Puri KD, Zhong S (2010) The 3-ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15-ADON population in spring wheat. Phytopathology 100:1007–1014PubMedCrossRefPubMedCentralGoogle Scholar
  119. Qu B, Li HP, Zhang JB, Xu YB, Huang T, Wu AB, Zhao CS, Carter J, Nicholson P, Liao YC (2008) Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol 57:15–24CrossRefGoogle Scholar
  120. Quellet T, Seifert KA (1993) Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathology 83:1003–1007CrossRefGoogle Scholar
  121. Rahmani A, Jinap S, Soleimany S (2009) Qualitative and quantitative analysis of mycotoxins. Compr Rev Food Sci Food Saf 8:202–251CrossRefGoogle Scholar
  122. Rebib H, Bouraoui H, Rouaissi M, Brygoo Y, Boudabbous A, Hajlaoui MR, Sadfi-Zouaoui N (2014) Genetic diversity assessed by SSR markers and chemotyping of Fusarium culmorum causal agent of foot and root rot of wheat collected from two different fields in Tunisia. Eur J Plant Pathol 139:481–493CrossRefGoogle Scholar
  123. Reynoso MM, Ramirez ML, Torres AM, Chulze SN (2011) Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Int J Food Microbiol 145:444–448PubMedCrossRefPubMedCentralGoogle Scholar
  124. Rotter B, Prelusky DB, Pestka JJ (1996) Toxicology of deoxynivalenol (vomitoxin). J Environ Sci Health 48:1–34Google Scholar
  125. Ryu JC, Ohtsubo K, Izumiyama N, Nakamura K, Tanaka T, Yamamura H, Ueno Y (1988) The acute and chronic toxicities of nivalenol in mice. Fundam Appl Toxicol 11:38–47PubMedCrossRefPubMedCentralGoogle Scholar
  126. Saharan MS, Kumar J, Nagarajan S (2004) Fusarium head blight (FHB) or head scab of wheat – a review. Proc Indian Natl Sci Acad 3:255–268Google Scholar
  127. Salas B, Steffenson BJ, Casper HH, Tacke B, Prom LK Jr, Fetch TG, Schwarz PB (1999) Fusarium species pathogenic to barley and their associated mycotoxins. Plant Dis 83:667–674PubMedCrossRefPubMedCentralGoogle Scholar
  128. Sampietro DA, Díaz CG, Gonzalez V, Vattuone MA, Ploper LD, Catalan CAN, Ward TJ (2011) Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. Int J Food Microbiol 145:359–364PubMedCrossRefPubMedCentralGoogle Scholar
  129. Sarver BAJ, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48:1096–1107PubMedCrossRefPubMedCentralGoogle Scholar
  130. Scherm B, Orru M, Balmas V, Spanu F, Azara E, Delogu G, Hammond TM, Keller NP, Migheli Q (2011) Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings. Mol Plant Pathol 12(8):759–771PubMedPubMedCentralCrossRefGoogle Scholar
  131. Scoz LB, Astolfi P, Reartes DS, Schmale Iii DG, Moraes MG, Del Ponte EM (2009) Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathol 58:344–351CrossRefGoogle Scholar
  132. Shen CM, Hu TC, Sun HY, Li W, Guo JH, Chen HG (2012) Geographic distribution of trichotecene chemoptypes of Fusarium graminearum species complex in major winter wheat production area of China. Plant Dis 96:1172–1178PubMedCrossRefPubMedCentralGoogle Scholar
  133. Starkey DE, WardTJ AT, Gale LR, Kistler HC, Geiser DM, Suga H, Tóth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sudakin DL (2003) Trichothecenes in the environment: relevance to human health. Toxicol Lett 143:97–107PubMedCrossRefPubMedCentralGoogle Scholar
  135. Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M (2008) Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  136. Talas F, Parzies HK, Miedaner T (2011) Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. Eur J Plant Pathol 131:39–48CrossRefGoogle Scholar
  137. Tomczak M, Wisniewska H, Stepien L, Kostecki M, Chelkowski J, Golinski P (2002) Deoxynivalenol, nivalenol and moniliformin in wheat samples with head blight (scab) symptoms in Poland (1998–2000). Eur J Plant Pathol 108:625–630CrossRefGoogle Scholar
  138. Tóth B, Mesterhazy A, Nicholson P, Teren J, Varga J (2004) Mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. Eur J Plant Pathol 110:587–599CrossRefGoogle Scholar
  139. Tóth B, Merterhazy A, Horvath Z, Bartok T, Varga M, Varga J (2005) Genetic variability of central European isolates of the Fusarium graminearum species complex. Eur J Plant Pathol 113:35–45CrossRefGoogle Scholar
  140. Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149:103–110PubMedPubMedCentralCrossRefGoogle Scholar
  141. Trail F, Xu H, Loranger R, Gadoury D (2002) Physiological and environmental aspects of ascospore discharge in Gibberella zeae. Mycologia 94:181–189PubMedCrossRefPubMedCentralGoogle Scholar
  142. Trigo-Stockli DM, Deyoe CW, Satumbaga RF, Pedersen JR (1994) Distribution of deoxynivalenol and zearalenone in milled fractions of wheat. Cereal Chem 73(3):388–391Google Scholar
  143. Tunali B, Özsevenİ BO, Erdurmuş D, Demirci A (2006) Fusarium head blight and deoxynivalenol accumulation of wheat in Marmara region and reactions of wheat cultivars and lines to F. graminearum and Fusarium culmorum. Plant Pathol J 5(2):150–156CrossRefGoogle Scholar
  144. Venkataramana M, Shilpa P, Balakrishna K, Murali HS, Batra HV (2013) Incidence and multiplex PCR based detection of trichothecene chemotypes of Fusarium culmorum isolates collected from freshly harvested maize kernels in Southern India. Braz J Microbiol 44:401–406PubMedPubMedCentralCrossRefGoogle Scholar
  145. Völkl A, Vogler B, Schollenberger M, Karlovsky P (2004) Microbial detoxification of mycotoxin deoxynivalenol. J Basic Microbiol 44(2):147–156PubMedCrossRefPubMedCentralGoogle Scholar
  146. Waalwijk C, Kastelein P, De Vries I, Kerenyi Z, Van Der Lee T, Hesselink T (2003) Major changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754CrossRefGoogle Scholar
  147. Walker SL, Leath S Jr, Hagler WM, Murphy JP (2000) Variation among isolates of Fusarium graminearum associated with fusarium head blight in North Carolina. Plant Dis 85:404–410CrossRefGoogle Scholar
  148. Wang JH, Li HP, Qu B, Zhang JB, Huang T, Chen FF, Liao YC (2008) Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum clade. Int J Mol Sci 9:2495–2504PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang JH, Ndoye M, Zhang JB, Li HP, Liao YC (2011) Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins 3(8):1020–1037PubMedPubMedCentralCrossRefGoogle Scholar
  150. Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99:9278–9283PubMedPubMedCentralCrossRefGoogle Scholar
  151. Windels CR (2000) Economic and social impacts of fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90(1):17–21PubMedCrossRefPubMedCentralGoogle Scholar
  152. Wisniewska H, Kowalczyk K (2005) Resistance of cultivars and breeding lines of spring wheat to Fusarium culmorum and powdery mildew. J Appl Genet 46(1):35–40PubMedPubMedCentralGoogle Scholar
  153. Yli-Mattila T (2010) Ecology and evolution of toxigenic Fusarium species in cereals in Northern Europe and Asia. J Plant Pathol 92:7–18Google Scholar
  154. Yli-Mattila T (2012) Morphological and molecular taxonomyof highly toxigenic Fusarium species from small cereal grains in Northern Europe and Asia. In: Misra K, Tewari JP, Deshmukh K (eds) Systematics and evolution of fungi. Science publishers, New Hampshire, pp 277–303Google Scholar
  155. Yli-Mattila T, Gagkaeva T (2010) Molecular chemotyping of Fusarium graminearum, F. culmorum and F. cerealis isolates from Finland and Russia. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, Berlin/Heidelberg/New York, pp 159–177CrossRefGoogle Scholar
  156. Yli-Mattila T, Gagkaeva T (2016) Fusarium toxins in cereals in northern Europe and Asia. In: Deshmukh SK, Misra, JK, Tewari JP, Papp T (eds) Applications of fungi and their management strategies, CRC Press, pp 293–317Google Scholar
  157. Yli-Mattila T, Gagkaeva T, Ward TJ, Aoki T, Kistler HC, O’Donnell K (2009) A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian far east. Mycologia 101:841–852PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yli-Mattila T, Ward TJ, O’Donnell K, Proctor RH, Burkin AA, Kononenko GP, Gavrilova OP, Aoki T, Mccormick SP, Gagkaeva T (2011) Fusarium sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. Int J Food Microbiol 147(1):58–68PubMedCrossRefPubMedCentralGoogle Scholar
  159. Yli-Mattila T, Rämö S, Hietaniemi V, Hussien T, Carlobos-Lopez AL, Cumagun CJR (2013) Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms 1:162–174PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yli-Mattila T, Garvrilova O, Hussien T, Gagkaeva T (2015) Identification of the first Fusarium sibiricum isolate in Iran and Fusarium langsethiae isolate in Siberia by morphology and species-specific primers. J Plant Pathol 97:183–187Google Scholar
  161. Yörük E, Albayrak G (2012) Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopathologia 173:53–61PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yörük E, Albayrak G (2013) Genetic characterization of Fusarium graminearum and F. culmorum isolates from Turkey by using random-amplified polymorphic DNA. Genet Mol Res 12(2):1360–1372PubMedCrossRefGoogle Scholar
  163. Yörük E, Albayrak G (2014) Tri4 and tri5 gene expression analysis in Fusarium graminearum and F. culmorum isolates by qPCR. Plant Pathol J 13(2):133–138CrossRefGoogle Scholar
  164. Yörük E, Gazdağli A, Albayrak G (2014) Class B trichothecene chemotyping in Fusarium species by PCR assay. Genetika 46(3):661–669CrossRefGoogle Scholar
  165. Zhang JB, Li HP, Dang FJ, Qu B, Xu JB, Zhao CS, Liao YC (2007) Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol Res 111:967–975PubMedCrossRefPubMedCentralGoogle Scholar
  166. Zhang H, Theo VDL, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng H (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7(2):1–13Google Scholar
  167. Zhang X, Ma HX, Zhou YJ, Xing JC, Chen JH, Yu GH, Sun XB, Wang L (2014) Identification and genetic division of Fusarium graminearum and Fusarium asiaticum by species-specific SCAR markers. J Phytopathol 162:81–88CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology and Genetics, Faculty of Arts and SciencesIstanbul Yeni Yuzyil UniversityIstanbulTurkey
  2. 2.Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland

Personalised recommendations