Rumen Microbiome and Plant Secondary Metabolites (PSM): Inhibition of Methanogenesis and Improving Nutrient Utilization

  • D. N. Kamra
  • B. Singh


Plants contain a large number of secondary compounds which are not required for the primary activities of plants but act as a defense against pathogenic microbes and dust particles. These plant secondary metabolites (PSM) include saponins, tannins, essential oils, alkaloids, terpene compounds, etc. These PSM have strong anti-methanogenic activity, and a few of them have also fiber degradation stimulating activity, but many of these have no effect on feed degradation or have an adverse effect on nutrient release. A proper combination of these PSM might have a balanced activity against methane inhibition and improve fiber degradation, making the process of livestock production economic and eco-friendly.


Rumen microbes Diversity Methanogenesis Improving fiber degradation Saponins Tannins Essential oils 


  1. Agarwal N, Kamra DN, Chaudhary LC, Patra AK (2006) Effect of Sapindus mukorossi extracts on in vitro methanogenesis and fermentation characteristics in buffalo rumen liquor. J Appl Anim Res 30:1–4CrossRefGoogle Scholar
  2. Akin DE, Rigsby LL (1987 Sep) Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen. Appl Environ Microbiol 53(9):1987–1995PubMedPubMedCentralGoogle Scholar
  3. An D, Dong X, Dong Z (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 11(4):207–215. Epub 2005 Mar 27CrossRefGoogle Scholar
  4. Balch WE, Fox GE, Magrum LJ (1979) Methanogens: reevaluation of a unique biological group, Microbiol. Rev 43(2):260–296Google Scholar
  5. Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595CrossRefGoogle Scholar
  6. Cersosimo LM, Bainbridge ML, Kraft J, Wright AD (2016) Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows. BMC Microbiol 16:78. Scholar
  7. Chaichi Semsari M, MaheriSis N, Sadaghian M, Eshratkhah B, Hassanpour S (2011) Effects of administration of industrial tannins on nutrient excretion parameters during naturally acquired mixed nematode infections in Moghani sheep. J Amer Sci 7(6):245–248Google Scholar
  8. Chaudhary PP, Sirohi SK (2009). Dominance of Methanomicrobium phylotype in methanogen population present in Murrah buffaloes (Bubalus bubalis). Lett Appl Microbiol;49(2):274–277. doi: 10.1111/j.1472-765X.2009.02654.x.Epub 2009 May 27Google Scholar
  9. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. [PubMed].sCrossRefGoogle Scholar
  10. Dridi B, Henry M, El Kh’echine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gutGoogle Scholar
  11. Facey HV, Northwood KS, Wright AD (2012) Molecular diversity of methanogens in fecal samples from captive Sumatran orangutans (Pongo abelii). Am J Primatol 74(5):408–413. Scholar
  12. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131. Scholar
  13. Franzolin R, St-Pierre B, Northwood K, Wright AD (2012) Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets. Microb Ecol 64(1):131–139. Scholar
  14. Gilmore SP, Henske JK, Sexton JA, Solomon KV, Seppälä S, Yoo JI, Huyett LM, Pressman A, Cogan JZ, Kivenson V, Peng X, Tan Y, Valentine DL, O’Malley MA (2017) Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genomics 18(1):639. Scholar
  15. Güçlü-Ustündağ O, Mazza G (2007) Saponins: properties, applications and processingCrossRefGoogle Scholar
  16. Haslam E (1989) Plant polyphenols- vegetable tannins revisited. Cambridge University Press, CambridgeGoogle Scholar
  17. Hassanpour S, Sadaghian M, MaheriSis N, Eshratkhah B, Chaichi SM (2011) Effect of condensed tannin on controlling faecal protein excretion in nematode-infected sheep: in vivo study. J Amer Sci 7(5):896–900Google Scholar
  18. Henderson G, Cox F, Ganesh S, Jonker A, Young W (2015 Oct 9) Global rumen census collaborators, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567. Erratum in: Sci Rep. 2016;6:19175. Yanez-Ruiz, David R [corrected to Yáñez-Ruiz, David R]; Pinares-Patino, Cesar [corrected to Pinares-Patiño, Cesar]; Munoz, Camila [corrected to Muñoz, Camila].
  19. Hess HD, Beuret RA, Lötscher M, Hindrichsen IK, Machmüller A, Carulla JE, Lascano CE, Kreuzer M (2004) Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim Sci 79:177–189CrossRefGoogle Scholar
  20. Hervás G, Frutos P, Giráldez FJ, Mantecón ÁR, Del Pino MC (2003) Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim Feed Sci Technol 109:65–78CrossRefGoogle Scholar
  21. Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C (2009 Jun) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci 92(6):2809–2821. Erratum in: J Dairy Sci. 2009 Jul;92(7):3543. Odongo, N E [added]CrossRefGoogle Scholar
  22. Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625. Epub 2008 Apr 18CrossRefPubMedPubMedCentralGoogle Scholar
  23. Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73(8):2483–2492CrossRefGoogle Scholar
  24. Kala A, Kamra DN, Kumar A, Agarwal N, Chaudhary LC, Joshi CG (2017) Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS One. Scholar
  25. Kamra DN, Patra AK, Chatterjee PN, Kumar R, Agarwal N, Chaudhary LC (2008) Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Aust J Exp Agric Res Aust J Exp Agric 48:175–178CrossRefGoogle Scholar
  26. Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–135Google Scholar
  27. Kamra DN, Zadbuke S, Agarwal N, Choudhary LC, Bhar R (2010) Anti methane. Patent submittedGoogle Scholar
  28. Kamra DN, PawarM, Agarwal N, Choudhary LC, Chaturvedi VB (2012) Methane Suppressor, Patent submittedGoogle Scholar
  29. Kelly WJ, Pacheco DM, Li D, Attwood GT, Altermann E, Leahy SC (2016) The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9. Stand Genomic Sci 11:49. eCollection 2016CrossRefPubMedPubMedCentralGoogle Scholar
  30. King EE, Smith RP, St-Pierre B, Wright AD (2011) Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen. Appl Environ Microbiol 77(16):5682–5687. Epub 2011 Jun 24CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8(2):e47879. Scholar
  32. Lewis WH, Sendra KM, Embley TM, Esteban GF (2018) Morphology and phylogeny of a new species of anaerobic ciliate, Trimyemafinlayi n. sp., with endosymbiotic methanogens. Front Microbiol 9:140. eCollection 2018CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Curr Biol 28(13):R727–R732. Scholar
  34. Malik PK, Kolte AP, Bakshi B, Baruah L, Bhatta R (2017). Enteric methane mitigation in sheep through selected tanniniferous tropical tree leaves. Livestock Science. 2016Google Scholar
  35. Mi J, Zhou J, Huang X, Long R (2017) Lower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters. PLoS One 12(1):e0170044. Scholar
  36. Min BR, Hart SP (2003) Tannins for suppression of internal parasites. J Anim Sci 81:102–109Google Scholar
  37. Orpin CG (1988) Nutrition and biochemistry of anaerobic Chytridiomycetes. Biosystems 21(3–4):365–370CrossRefGoogle Scholar
  38. Ozbayram EG, Ince O, Ince B, Harms H, Kleinsteuber S (2018). Comparison of Rumen and Manure microbiomes and implications for the inoculation of anaerobic digesters. Microorganisms 6(1). pii: E15. Scholar
  39. Patra AK, Saxena J (2010) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 91:24–37CrossRefGoogle Scholar
  40. Patra AK, Yu Z (2012) Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl Environ Microbiol 78(12):4271–4280. Scholar
  41. Patra AK, Kamra DN, Agarwal N (2006) Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int Congr Ser 1293:176–179CrossRefGoogle Scholar
  42. Patra AK, Kamra DN, Bhar R, Kumar R, Agarwal N (2011) Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. J Anim Physiol Anim Nutr 95:187–191CrossRefGoogle Scholar
  43. Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, McSweeney CS, McHardy A, Morrison M (2011) Isolation of Succinivibrionaceae implicated in low methane emissions from tammar wallabies. Science 333:646–648CrossRefGoogle Scholar
  44. Rea S, Bowman JP, Popovski S, Pimm C, Wright AD (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57(Pt 3):450–456CrossRefGoogle Scholar
  45. Ross ZM, O’GaraEA HDJ, SleightholmeHV MDJ (2001) Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl Environ Microbiol 67:475–480CrossRefGoogle Scholar
  46. Rouviere W, Fiebig K, Hippe H (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20(3):407–410CrossRefGoogle Scholar
  47. Samal L, Chaudary LC, Agarwal N, Kamra DN (2016) Impact of phytogenic feed additives on growth performance, nutrient digestion and methanogenesis in growing buffaloes. Anim Prod Sci 55:1056–1063Google Scholar
  48. Santoso B, Mwenya B, Sar C, Gamo Y, Kobayashi T, Morikawa R, Kimura K, Mizukoshi H, Takahashi J (2004) Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest Prod Sci 91:209–217CrossRefGoogle Scholar
  49. Sharma S, Ding Y, Jarrell KF, Brockhausen I (2018) Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis. Glycoconj J 35(6):525–535. Scholar
  50. Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 21(4):499–510. Scholar
  51. Singh KM, Ahir VB, Tripathi AK, Ramani UV, Sajnani M, Koringa PG, Jakhesara S, Pandya, PR, Rank DN, Murty DS, Kothari RK, Joshi C.G. (2011). Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39(4): 4841–4848 Epub 2011 Sep 27CrossRefGoogle Scholar
  52. Singh KM, Ahir VB, Tripathi AK, Ramani UV, Sajnani M, Koringa PG, Jakhesara S, Pandya PR, Rank DN, Murty DS, Kothari RK, Joshi CG (2012 Apr) Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39(4):4841–4848. Epub 2011 Sep 27CrossRefGoogle Scholar
  53. Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523(2):161–166. Epub 2013 Apr 18CrossRefPubMedGoogle Scholar
  54. Sliwiński BJ, Kreuzer M, Wettstein HR, Machmüller A (2002 Dec) Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch Tierernahr 56(6):379–392CrossRefGoogle Scholar
  55. Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44:1202–1205CrossRefGoogle Scholar
  56. Smith-Palmer A, Stewart J, Fyfe L (1998 Feb) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26(2):118–122CrossRefGoogle Scholar
  57. St-Pierre B, Wright AD (2012 Jan 5) Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos). BMC Microbiol 12(1). Scholar
  58. Turnbull KL, Smith RP, St-Pierre B, Wright AD (2012) Molecular diversity of methanogens in fecal samples from Bactrian camels (Camelus bactrianus) at two zoos. Res Vet Sci 93(1):246–249. Epub 2011 Sep 13CrossRefPubMedGoogle Scholar
  59. Waghorn G (2008) Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production- Progress and challenges. Anim Feed Sci Technol 147:116–139CrossRefGoogle Scholar
  60. Whitford V, Ennos AR, Handley JF (2001). ‘City form and natural process’ – indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landsc Urban Plan 57(2):91–103CrossRefGoogle Scholar
  61. Woese CR, Kandler O, Wheelis ML (1990 Jun) Towards a natural system of organisms: proposal for the domains archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579CrossRefGoogle Scholar
  62. Wright AD, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70(3):1263–1270CrossRefGoogle Scholar
  63. Wright AD, Auckland CH, Lynn DH (2007) Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 73(13):4206–4210. Epub 2007 May 4CrossRefGoogle Scholar
  64. Wright AD, Ma X, Obispo NE (2008 Aug) Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microb Ecol 56(2):390–394. Epub 2007 Dec 29CrossRefGoogle Scholar
  65. Wright AD, Northwood KS, Obispo NE (2009) Rumen-like methanogens identified from the crop of the folivorous. South American bird, the hoatzin (Opisthocomus hoazin) 3(10):1120–1126. Epub 2009 Apr 23CrossRefGoogle Scholar
  66. Yatoo MA, Chaudhary LC, Agarwal N, Chaturvedi VB, Kamra DN (2018) Effect of feeding of blend of essential oils on methane production, growth, and nutrient utilization in growing buffaloes. Asian-Australas J Anim Sci 31(5):672–676. Epub 2017 Feb 23CrossRefPubMedGoogle Scholar
  67. Zhou Y-Y, Mao H-L, Jiang F et al (2010). Tea saponins inhibit ruminal methane emission through the inhibitory effect on protozoa in Hu sheep. In: Proceedings of Fourth Greenhouse Gases and Animal Agric. ConferenceGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • D. N. Kamra
    • 1
  • B. Singh
    • 2
  1. 1.Animal Nutrition DivisionICAR-Indian Veterinary Research InstituteIzatnagarIndia
  2. 2.ICAR-Indian Veterinary Research InstitutePalampurIndia

Personalised recommendations