Advertisement

Recent Developments in Ectomycorrhizal Research

  • Tanveer Kaur
  • M. Sudhakara ReddyEmail author
Chapter

Abstract

Symbiotic associations are known to be established by rhizospheric fungi with the root systems of host plants and trees. Ectomycorrhizae, the symbiotic fungi, provide growth-limiting micronutrients to host plants and enable plants and trees to colonize temperate and boreal regions. The symbiotic associates reciprocally exchange nutrients at the interface of ectomycorrhizae known as Hartig net. The ectomycorrhizal association leads to various root fabrication modifications such as development of plentiful short and inflated lateral roots ensheathed by ectomycorrhizal fungal mantle. Ectomycorrhizae have been known to be evolved from 60 independent saprophytic lineages. The last few years saw the development of latest techniques to gain insight into evolution, diversity, and reciprocal trades occurring between symbiotic partners and molecular mechanisms playing role beneath these phenomena. The whole genomes of several ectomycorrhizal fungi have been sequenced leading to improved perception of behaviour of these fungi and their genes in ectomycorrhizal associations. In this chapter, latest developments in biodiversity of ectomycorrhizal fungi, novel genes involved in symbiosis, molecular mechanisms behind survival of ectomycorrhizal fungi in metal-contaminated regions and extreme environments such as Arctic and Antarctic regions have been summarized.

Keywords

Ectomycorrhizae Hartig net Symbiosis Metal tolerance Genes Extreme environment 

References

  1. Addy HD, Schaffer GF, Miller MH, Peterson RL (1994) Survival of the external mycelium of a VAM fungus in frozen soil over winter. Mycorrhiza 5:1–5CrossRefGoogle Scholar
  2. Alfredsen G, Høiland K (2001) Succession of terrestrial macrofungi along a deglaciation gradient at Glacier Blåisen, South Norway. Nord J Bot 21:19–37CrossRefGoogle Scholar
  3. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge, pp 20–25Google Scholar
  4. Arduini I, Godbold DL, Onnis A (1994) Heavy metal uptake and distribution in tree seedlings. G Bot Ital 128:219–219CrossRefGoogle Scholar
  5. Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320PubMedCrossRefGoogle Scholar
  6. Balestrini R, Kottke I (2016) Structure and development of ectomycorrhizal roots. In: Molecular mycorrhizal symbiosis, pp 47–62CrossRefGoogle Scholar
  7. Barden N (2007) Helianthemum grasslands of the Peak District and their possible mycorrhizal associates. Field Mycol 8:119–126CrossRefGoogle Scholar
  8. Becquer A, Garcia K, Amenc L, Rivard C, Doré J, Trives-Segura C, Szponarski W, Russet S, Baeza Y, Lassalle-Kaiser B, Gay G, Zimmermann SD, Plassard C (2018a) The Hebeloma cylindrosporum HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. New Phytol 220:1185–1199PubMedCrossRefGoogle Scholar
  9. Becquer A, Garcia K, Amenc L, Rivard C, Doré J, Trives-Segura C, Szponarski W, Russet S, Baeza Y, Lassalle-Kaiser B, Gay G, Zimmermann SD, Plassard C (2018b) The Hebeloma cylindrosporum HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. New Phytol 220:1185–1199PubMedCrossRefGoogle Scholar
  10. Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553PubMedCrossRefGoogle Scholar
  11. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181PubMedCrossRefGoogle Scholar
  12. Beneš V, Hložková K, Matěnová M, Borovička J, Kotrba P (2016) Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3. Biometals 29:249–264PubMedCrossRefGoogle Scholar
  13. Billings W (1987) Constraints to plant growth, reproduction, and establishment in arctic environments. Arct Alp Res 19:357–365CrossRefGoogle Scholar
  14. Bjorbækmo M, Carlsen T, Brysting A, Vrålstad T, Høiland K, Ugland K, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10:244PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blaudez D, Chalot M (2011) Characterization of the ER-located zinc transporter ZnT1 and identification of a vesicular zinc storage compartment in Hebeloma cylindrosporum. Fungal Genet Biol 48:496–503PubMedCrossRefGoogle Scholar
  16. Bödeker ITM, Nygren CMR, Taylor AFS, Olson Å, Lindahl BD (2009) ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J 3:1387–1395PubMedCrossRefGoogle Scholar
  17. Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744PubMedCrossRefGoogle Scholar
  18. Burgess TI, Malajczuk N, Grove TS (1993) The ability of 16 ectomycorrhizal fungi to increase growth and phosphorus uptake of Eucalyptus globulus Labill. And E. diversicolor F. Muell. Plant Soil 153:155–164CrossRefGoogle Scholar
  19. Cazares E, Trappe JM (1994) Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia 86:507CrossRefGoogle Scholar
  20. Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut 218:176–185PubMedCrossRefGoogle Scholar
  21. Chen DM, Bastias BA, Taylor AFS, Cairney JWG (2003) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554CrossRefGoogle Scholar
  22. Chen DM, Taylor AFS, Burke RM, Cairney JWG (2001) Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytol 152:151–158CrossRefGoogle Scholar
  23. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24CrossRefGoogle Scholar
  24. Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417PubMedPubMedCentralCrossRefGoogle Scholar
  25. Courty P-E, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663CrossRefGoogle Scholar
  26. Daguerre Y, Levati E, Ruytinx J, Tisserant E, Morin E, Kohler A, Montanini B, Ottonello S, Brun A, Veneault-Fourrey C, Martin F (2017) Regulatory networks underlying mycorrhizal development delineated by genome-wide expression profiling and functional analysis of the transcription factor repertoire of the plant symbiotic fungus Laccaria bicolor. BMC Genomics 18:737PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dahl E (1956) Rondane Mountain vegetation in South Norway and its relation to the environment. Aschehoug, Oslo. In: Rodwell JS (ed) British plant communities. Cambridge University Press, Cambridge, pp 615–616Google Scholar
  28. Frank B (1887) Sind die Wurzelanschwellungen der Erlen und Eläagnaceen Pilzgallen. Berichte der Dtsch Bot Gesellschaft, Bd V 50Google Scholar
  29. Frank B (1891) Ueber die auf Verdauung von Pilzen abzielende Symbiose der mit endotrophen Mykorhizen begabten Pflanzen, sowie der Leguminosen und Erlen. Ber Dtsch Bot Ges 9:244–253Google Scholar
  30. Gadd GM, Fomina M (2011) Uranium and Fungi. Geomicrobiol J 28:471–482CrossRefGoogle Scholar
  31. Gadd GM, Rhee YJ, Stephenson K, Wei Z (2012) Geomycology: metals, actinides and biominerals. Environ Microbiol Rep 4:270–296PubMedCrossRefGoogle Scholar
  32. Gallie U, Meire M, Brunold C (1993) Effect of cadmium on nonmycorrhizal and mycorrhizal Norway spruce seedlings Picea abies (L) Karst and its ectomycorrhizal fungi Laccaria laccata (Scop ex Fr) Bk and Br- sulfate reduction, thiols and distribution of the heavy-metals. New Phytol 125:837–843CrossRefGoogle Scholar
  33. Garcia K, Delaux P-M, Cope KR, Ané J-M (2015) Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol 208:79–87PubMedCrossRefGoogle Scholar
  34. Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty P-E (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–950PubMedCrossRefGoogle Scholar
  35. Geml J, Timling I, Robinson CH, Lennon N, Nusbaum HC, Brochmann C, Noordeloos ME, Taylor DL (2012) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. J Biogeogr 39:74–88CrossRefGoogle Scholar
  36. Gryndler M, Hršelová H, Soukupová L, Borovička J (2012) Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community. Biometals 25:987–993PubMedCrossRefGoogle Scholar
  37. Guerrero-Galán C, Delteil A, Garcia K, Houdinet G, Conéjéro G, Gaillard I, Sentenac H, Zimmermann SD (2018) Plant potassium nutrition in ectomycorrhizal symbiosis: properties and roles of the three fungal TOK potassium channels in Hebeloma cylindrosporum. Environ Microbiol 20:1873–1887PubMedCrossRefGoogle Scholar
  38. Hacquard S, Tisserant E, Brun A, Legué V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol 15:1853–1869PubMedCrossRefGoogle Scholar
  39. Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62PubMedCrossRefGoogle Scholar
  40. Heinonsalo J, Sun H, Santalahti M, Bäcklund K, Hari P, Pumpanen J (2015) Evidences on the ability of mycorrhizal genus Piloderma to use organic nitrogen and deliver it to Scots pine. PLoS One 10(e0131561):1–17Google Scholar
  41. Henke C, Jung E-M, Voit A, Kothe E, Krause K (2016) Dehydrogenase genes in the ectomycorrhizal fungus Tricholoma vaccinum: a role for Ald1 in mycorrhizal symbiosis. J Basic Microbiol 56:162–174PubMedCrossRefGoogle Scholar
  42. Henry C, Raivoarisoa J-F, Razafimamonjy A, Ramanankierana H, Andrianaivomahefa P, Ducousso M, Selosse M-A (2016) Characterization of ectomycorrhizal communities of Asteropeia mcphersonii seedlings spontaneously growing in natural forest and in open disturbed areas. Bot Lett 163:273–279CrossRefGoogle Scholar
  43. Henry C, Sellosse M-A, Richard F, Ramanankierana H, Ducousso M (2014) Comprendre la dynamique des communautés mycorhiziennes lors des successions végétales. Première partie : méthodes d’étude, caractérisations et fonctionnement (revue bibliographique). Rev For Française Fr.], ISSN 0035Google Scholar
  44. Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J, Oda J (2004) Crystal structure of gammaglutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc Natl Acad Sci U S A 101:15052–15057PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hobbie JE, Hobbie EA, Drossman H, Conte M, Weber JC, Shamhart J, Weinrobe M (2009) Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15 N is the key signal. Can J Microbiol 55:84–94PubMedCrossRefGoogle Scholar
  46. Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant-Microbe Interact 19:463–470PubMedCrossRefGoogle Scholar
  47. Ilyas S, Rehman A (2015) Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis. Environ Monit Assess 187:1–7CrossRefGoogle Scholar
  48. Jamoni P (2008) Funghi alpini delle zone alpine superiori e inferiori. Associazione Micologica Bresadola; Fondazione Centro Studi Micologici dell’ A.M.B., Trento Italy; Vicenza ItalyGoogle Scholar
  49. Jumpponen A, Egerton-Warburton L (2005) Mycorrhizal Fungi in successional environments: a community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J, White JF (eds) The fungal community, its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 159–188Google Scholar
  50. Kalsotra T, Khullar S, Agnihotri R, Reddy MS (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. Microbiology 164:868–876PubMedCrossRefGoogle Scholar
  51. Karpati AS, Handel SN, Dighton J, Horton TR (2011) Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza 21:537–547PubMedCrossRefGoogle Scholar
  52. Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31PubMedCrossRefGoogle Scholar
  53. Khosla B, Kaur H, Reddy MS (2009) Influence of ectomycorrhizal colonization on the growth and mineral nutrition of Populus deltoides under aluminum toxicity. J Plant Interact 4:93–99CrossRefGoogle Scholar
  54. Khullar S, Reddy MS (2018) Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Curr Biotechnol 7:231–241CrossRefGoogle Scholar
  55. Khullar S, Reddy MS (2019a) Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis. Environ Microbiol Rep 11:53–61PubMedCrossRefGoogle Scholar
  56. Khullar S, Reddy MS (2019b) Cadmium induced glutathione bioaccumulation mediated by γ-glutamylcysteine synthetase in ectomycorrhizal fungus Hebeloma cylindrosporum. Biometals 32:101–110PubMedCrossRefGoogle Scholar
  57. Kohler A, Kuo A, Nagy LG et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415PubMedCrossRefGoogle Scholar
  58. Krause K, Henke C, Asiimwe T, Ulbricht A, Klemmer S, Schachtschabel D, Boland W, Kothe E (2015) Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on tricholoma vaccinum-spruce ectomycorrhiza. Appl Environ Microbiol 81:7003–7011PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J (2014) On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazard Mater 280:79–88PubMedCrossRefGoogle Scholar
  60. Kumari D, Reddy MS, Upadhyay RC (2011) Cantharellus pseudoformosus, a new species associated with Cedrus deodara from India. Mycoscience 52:147–151CrossRefGoogle Scholar
  61. Lazaruk LW, Kernaghan G, Macdonald SE, Khasa D (2005) Effects of partial cutting on the ectomycorrhizae of Picea glauca forests in northwestern Alberta. Can J For Res 35:1442–1454CrossRefGoogle Scholar
  62. Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146PubMedCrossRefGoogle Scholar
  63. Liao H-L, Chen Y, Bruns TD, Peay KG, Taylor JW, Branco S, Talbot JM, Vilgalys R (2014) Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ. Environ Microbiol 16:3730–3742PubMedCrossRefGoogle Scholar
  64. Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci U S A 101:507–512Google Scholar
  65. Luis P, Kellner H, Zimdars B, Langer U, Martin F, Buscot F (2005) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb Ecol 50:570–579PubMedCrossRefGoogle Scholar
  66. Lundell TK, Mäkelä MR, de Vries RP, Hildén KS (2014) Genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. Adv Bot Res 70:329–370CrossRefGoogle Scholar
  67. Maggi O, Tosi S, Angelova M, Lagostina E, Fabbri AA, Pecoraro L, Altobelli E, Picco AM, Savino E, Branda E, Turchetti B, Zotti M, Vizzini A, Buzzini P (2013) Adaptation of fungi, including yeasts, to cold environments. Plant Biosyst – An Int J Deal All Asp Plant Biol 147:247–258Google Scholar
  68. Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedPubMedCentralCrossRefGoogle Scholar
  69. Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10:204–210PubMedCrossRefGoogle Scholar
  70. Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773PubMedCrossRefGoogle Scholar
  71. Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515PubMedCrossRefGoogle Scholar
  72. Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci U S A 85:8815–8819PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mello A, Balestrini R (2018) Recent insights on biological and ecological aspects of ectomycorrhizal fungi and their interactions. Front Microbiol 9:216PubMedPubMedCentralCrossRefGoogle Scholar
  74. Miller SL, Larsson E, Larsson K-H, Verbeken A, Nuytinck J (2006) Perspectives in the new Russulales. Mycologia 98:960–970PubMedCrossRefGoogle Scholar
  75. Mohanan C (2014) Macrofungal diversity in the Western Ghats, Kerala, India: members of Russulaceae. J Threat Taxa 6:5636–5648CrossRefGoogle Scholar
  76. Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J (2015) Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Glob Chang Biol 21:959–972PubMedCrossRefGoogle Scholar
  77. Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6:182–186CrossRefGoogle Scholar
  78. Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 190:916–926PubMedCrossRefGoogle Scholar
  79. Pena R, Lang C, Naumann A, Polle A (2014) Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. Front Plant Sci 5:229PubMedPubMedCentralCrossRefGoogle Scholar
  80. Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088CrossRefGoogle Scholar
  81. Pikalova T, Sacky J, Briksi A, Borovicka J, Kotrba P (2011) Zinc accumulation and different ways to sequestration of intracellular zinc in fruit-bodies of ectomycorrhizal fungi Russula spp. and hebeloma spp. In: Proceedings of the 7th international conference on mushroom productsGoogle Scholar
  82. Plett JM, Daguerre Y, Wittulsky S, Vayssières A, Deveau A, Melton SJ, Kohler A, Morrell-Falvey JL, Brun A, Veneault-Fourrey C, Martin F (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci U S A 111:8299–8304PubMedPubMedCentralCrossRefGoogle Scholar
  83. Plett JM, Kemppainen M, Kale SD, Kohler A, Legué V, Brun A, Tyler BM, Pardo AG, Martin F (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21:1197–1203PubMedCrossRefGoogle Scholar
  84. Raidl S (1997) Studien zur Ontogenie an Rhizomorphen von Ektomykorrhizen. J CramerGoogle Scholar
  85. Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75:2266–2274PubMedPubMedCentralCrossRefGoogle Scholar
  86. Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242PubMedCrossRefGoogle Scholar
  87. Reddy MS, Verma B (2014) Suillus triacicularis sp. nov., a new species associated with Pinus roxburghii from northwestern Himalayas, India. Phytotaxa 162:157CrossRefGoogle Scholar
  88. Rineau F, Lmalem H, Ahren D, Shah F, Johansson T, Coninx L, Ruytinx J, Nguyen H, Grigoriev I, Kuo A, Kohler A, Morin E, Vangronsveld J, Martin F, Colpaert JV (2017) Comparative genomics and expression levels of hydrophobins from eight mycorrhizal genomes. Mycorrhiza 27:383–396PubMedCrossRefGoogle Scholar
  89. Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14PubMedCrossRefGoogle Scholar
  90. Sammer D, Krause K, Gube M, Wagner K, Kothe E (2016) Hydrophobins in the life cycle of the ectomycorrhizal basidiomycete Tricholoma vaccinum. PLoS One 11:e0167773PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36:217–227CrossRefGoogle Scholar
  92. Schlunk I, Krause K, Wirth S, Kothe E (2015) A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environ Sci Pollut Res 22:19384–19393CrossRefGoogle Scholar
  93. Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628PubMedCrossRefGoogle Scholar
  94. Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60CrossRefGoogle Scholar
  95. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, New York, p 120Google Scholar
  96. Tang Y, Shi L, Zhong K, Shen Z, Chen Y (2019) Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals. Chemosphere 215:115–123PubMedCrossRefGoogle Scholar
  97. Tedersoo L, Bahram M, Polme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688–1256688PubMedCrossRefGoogle Scholar
  98. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263PubMedPubMedCentralCrossRefGoogle Scholar
  99. Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ (2007) Quantitaive transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genomics 30:35–43PubMedCrossRefGoogle Scholar
  100. Timling I, Dahlberg A, Walker DA, Gardes M, Charcosset JY, Welker JM, Taylor DL (2012) Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere 3:art111CrossRefGoogle Scholar
  101. Timling I, Taylor DL (2012) Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5:419–429CrossRefGoogle Scholar
  102. Townsend DM (2007) S-Gluathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–324PubMedPubMedCentralCrossRefGoogle Scholar
  103. Treseder KK, Torn MS, Masiello CA (2006) An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol Biochem 38:1077–1082CrossRefGoogle Scholar
  104. Turgeman T, Ben Asher J, Roth-Bejerano N, Kagan-Zur V, Kapulnik Y, Sitrit Y (2011) Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21:623–630PubMedCrossRefGoogle Scholar
  105. Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447PubMedCrossRefGoogle Scholar
  106. Urban A (2011) Metal elements and the diversity and function of ectomycorrhizal communities, pp 231–254Google Scholar
  107. Vašák M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. JBIC J Biol Inorg Chem 16:1067–1078PubMedCrossRefGoogle Scholar
  108. Vayssières A, Pěnčík A, Felten J, Kohler A, Ljung K, Martin F, Legué V (2015) Development of the Poplar-Laccaria bicolor Ectomycorrhiza modifies root auxin metabolism, signaling, and response. Plant Physiol 169:890–902PubMedPubMedCentralCrossRefGoogle Scholar
  109. Veneault-Fourrey C, Commun C, Kohler A, Morin E, Balestrini R, Plett J, Danchin E, Coutinho P, Wiebenga A, de Vries RP, Henrissat B, Martin F (2014) Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 72:168–181PubMedCrossRefGoogle Scholar
  110. Verma B, Reddy MS (2015) Suillus indicus sp. nov. (Boletales, Basidiomycota), a new boletoid fungus from northwestern Himalayas, India. Mycology 6:35–41PubMedCrossRefGoogle Scholar
  111. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  112. Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M, Kemppainen M, Commun C, Deveau A, Pardo A, Veneault-Fourrey C, Kohler A, Rosso M-N, Henrissat B, Berrin J-G, Martin F (2018) The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol 220:1309–1321PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyThapar Institute of Engineering & TechnologyPatialaIndia

Personalised recommendations