Advertisement

Nanomaterials: Types, Synthesis and Characterization

  • T. C. Mokhena
  • M. J. John
  • M. A. Sibeko
  • V. C. Agbakoba
  • M. J. Mochane
  • A. Mtibe
  • T. H. Mokhothu
  • T. S. Motsoeneng
  • M. M. Phiri
  • M. J. Phiri
  • P. S. Hlangothi
  • T. G. Mofokeng
Chapter
  • 24 Downloads
Part of the Clean Energy Production Technologies book series (CEPT)

Abstract

Nanoparticles are generally defined as particles having one or more dimensions of sizes ranging from 1 to 100 nm. Nanoparticles can be classified into organic, inorganic and carbon-based materials. In comparison with conventional micro-size particles, nanoparticles show enhanced properties, such as high reactivity, strength, surface area, sensitivity and stability due to their nanosize. Various preparation methods, viz. physical, chemical and mechanical, have been employed to synthesize different nanoparticles. This chapter presents an overview on nanoparticles and their types, properties, synthesis methods and application in bioconversion of biomass into biofuels.

Keywords

Nanoparticles Synthesis Characterization Properties Biofuel application 

Notes

Acknowledgements

The authors would like to thank the financial support from the National Research Funding (NRF) and Department of Science and Technology (DST) Biorefinery Program in South Africa.

References

  1. Ahmed S, Annu CSA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B Biol 166:272–284.  https://doi.org/10.1016/j.jphotobiol.2016.12.011CrossRefGoogle Scholar
  2. Almkhelfe H, Li X, Rao R, Amama PB (2017) Catalytic CVD growth of millimeter-tall single-wall carbon nanotube carpets using industrial gaseous waste as a feedstock. Carbon 116:181–190CrossRefGoogle Scholar
  3. Amirkhani L, Moghaddas J, Jafarizadeh-Malmiri H (2016) Candida rugosa lipase immobilization on magnetic silica aerogel nanodispersion. RSC Adv 6(15):12676–12687CrossRefGoogle Scholar
  4. Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA (2006) Physical properties of ZnO thin films deposited by spray pyrolysis technique. Appl Surf Sci 252(22):7844–7848.  https://doi.org/10.1016/j.apsusc.2005.09.048CrossRefGoogle Scholar
  5. Badireddy AR, Wiesner MR, Liu J (2012) Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced Darkfield microscopy. Environ Sci Technol 46(18):10081–10088.  https://doi.org/10.1021/es204140sCrossRefPubMedGoogle Scholar
  6. Bai Y-X, Li Y-F, Yang Y, Yi L-X (2006) Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. J Biotechnol 125(4):574–582CrossRefGoogle Scholar
  7. Balasubramanian C, Joseph B, Gupta P, Saini NL, Mukherjee S, Di Gioacchino D, Marcelli A (2014) X-ray absorption spectroscopy characterization of iron-oxide nanoparticles synthesized by high temperature plasma processing. J Electron Spectrosc Relat Phenom 196:125–129.  https://doi.org/10.1016/j.elspec.2014.02.011CrossRefGoogle Scholar
  8. Begum R, Farooqi ZH, Naseem K, Ali F, Batool M, Xiao J, Irfan A (2018) Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: a review. Crit Rev Anal Chem 48(6):503–516CrossRefGoogle Scholar
  9. Berkmans J, Jagannatham M, Reddy R, Haridoss P (2015) Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere. Diam Relat Mater 55:12–15CrossRefGoogle Scholar
  10. Bet-Moushoul E, Farhadi K, Mansourpanah Y, Nikbakht AM, Molaei R, Forough M (2016) Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel 164:119–127.  https://doi.org/10.1016/j.fuel.2015.09.067CrossRefGoogle Scholar
  11. Binnig G, Rohrer H (1983) Scanning tunneling microscopy. Surf Sci 126(1–3):236–244CrossRefGoogle Scholar
  12. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15(12):564–589.  https://doi.org/10.1016/S1369-7021(13)70014-2CrossRefGoogle Scholar
  13. Bota P, Dorobantu D, Boerasu I, Bojin D, Enachescu M (2015) New laser ablation chamber for producing carbon nanomaterials using excimer laser. Mater Res Innov 19(1):33–39CrossRefGoogle Scholar
  14. Boz N, Degirmenbasi N, Kalyon DM (2009) Conversion of biomass to fuel: transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Appl Catal B Environ 89(3–4):590–596CrossRefGoogle Scholar
  15. Carlsson J-O, Martin PM (2010) Chapter 7. Chemical vapor deposition. In: Martin PM (ed) Handbook of deposition technologies for films and coatings, 3rd edn. William Andrew Publishing, Boston, pp 314–363.  https://doi.org/10.1016/B978-0-8155-2031-3.00007-7CrossRefGoogle Scholar
  16. Chen Z, Westerhoff P, Herckes P (2008a) Quantification of C60 fullerene concentrations in water. Environ Toxicol Chem 27(9):1852–1859CrossRefGoogle Scholar
  17. Chen YZ, Yang CT, Ching CB, Xu R (2008b) Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. Langmuir 24(16):8877–8884CrossRefGoogle Scholar
  18. Choi S, Byeon C, Park D, Jeong M (2016) Polarization-selective alignment of a carbon nanotube film by using femtosecond laser ablation. J Korean Phys Soc 68(2):210–214CrossRefGoogle Scholar
  19. Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Phys Status Solidi B 252(8):1860–1867CrossRefGoogle Scholar
  20. Cooper AJ, Wilson NR, Kinloch IA, Dryfe RA (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350CrossRefGoogle Scholar
  21. Cui J, Björnmalm M, Ju Y, Caruso F (2018) Nanoengineering of poly(ethylene glycol) particles for stealth and targeting. Langmuir 34(37):10817–10827.  https://doi.org/10.1021/acs.langmuir.8b02117CrossRefPubMedGoogle Scholar
  22. Dao ATN, Mott DM, Maenosono S (2015) Characterization of metallic nanoparticles based on the abundant usages of X-ray techniques. In: Handbook of nanoparticles, pp 1–24Google Scholar
  23. de la Calle I, Menta M, Klein M, Séby F (2017) Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES). Talanta 171:291–306.  https://doi.org/10.1016/j.talanta.2017.05.002CrossRefPubMedGoogle Scholar
  24. Degueldre C, Favarger P-Y (2004) Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 62(5):1051–1054CrossRefGoogle Scholar
  25. Degueldre C, Favarger P-Y, Bitea C (2004) Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry. Anal Chim Acta 518(1–2):137–142CrossRefGoogle Scholar
  26. Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23(4):517–523.  https://doi.org/10.1016/j.sjbs.2015.05.016CrossRefPubMedGoogle Scholar
  27. Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 30(3–4):125–129CrossRefGoogle Scholar
  28. Dutta S, Ganguly BN (2012) Characterization of ZnO nanoparticles grown in presence of folic acid template. J Nanobiotechnol 10(1):29CrossRefGoogle Scholar
  29. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KV, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125(7):1684–1685CrossRefGoogle Scholar
  30. Fang X, Shashurin A, Teel G, Keidar M (2016) Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon 107:273–280CrossRefGoogle Scholar
  31. Firouzjaee MH, Taghizadeh M (2017) Optimization of process variables for biodiesel production using the nanomagnetic catalyst CaO/NaY-Fe3O4. Chem Eng Technol 40(6):1140–1148CrossRefGoogle Scholar
  32. Fischer HC, Fournier-Bidoz S, Chan W, Pang K (2007) Quantitative detection of engineered nanoparticles in tissues and organs: an investigation of efficacy and linear dynamic ranges using ICP-AES. NanoBiotechnology 3(1):46–54CrossRefGoogle Scholar
  33. Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87(3):756–761CrossRefGoogle Scholar
  34. Glatter O (2018) Chapter 11. Dynamic Light Scattering (DLS). In: Glatter O (ed) Scattering methods and their application in colloid and Interface science. Elsevier, Amsterdam, pp 223–263.  https://doi.org/10.1016/B978-0-12-813580-8.00011-0CrossRefGoogle Scholar
  35. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443.  https://doi.org/10.1016/j.jpowsour.2013.11.103CrossRefGoogle Scholar
  36. Guo J, Li J, Kou H (2011) Chapter 19. Chemical preparation of advanced ceramic materials. In: Xu R, Pang W, Huo Q (eds) Modern inorganic synthetic chemistry. Elsevier, Amsterdam, pp 429–454.  https://doi.org/10.1016/B978-0-444-53599-3.10019-8CrossRefGoogle Scholar
  37. Han H, Guan Y (2009) Synthesis of biodiesel from rapeseed oil using K2O/γ-Al2O3 as nano-solid-base catalyst. Wuhan Univ J Nat Sci 14(1):75–79CrossRefGoogle Scholar
  38. Hoo CM, Starostin N, West P, Mecartney ML (2008) A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res 10(1):89–96CrossRefGoogle Scholar
  39. Horak D, Babič M, Mackova H, Beneš MJ (2007) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 30(11):1751–1772CrossRefGoogle Scholar
  40. Hou B, Wu C, Inoue T, Chiashi S, Xiang R, Maruyama S (2017) Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5). Carbon 119:502–510.  https://doi.org/10.1016/j.carbon.2017.04.045CrossRefGoogle Scholar
  41. Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88(8):2685–2690CrossRefGoogle Scholar
  42. Ionescu MI, Zhang Y, Li R, Sun X, Abou-Rachid H, Lussier L-S (2011) Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Appl Surf Sci 257(15):6843–6849CrossRefGoogle Scholar
  43. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30(2):168–175.  https://doi.org/10.1016/j.jksus.2016.10.002CrossRefGoogle Scholar
  44. James AE, Driskell JD (2013) Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). Analyst 138(4):1212–1218CrossRefGoogle Scholar
  45. Ji X, Zhang W, Li X, Yu H, Dong H (2017) A novel hybrid method combining ASP with PECVD for in-situ low temperature synthesis of vertically aligned carbon nanotube films. Diam Relat Mater 77:16–24CrossRefGoogle Scholar
  46. Jin Y, Kannan S, Wu M, Zhao JX (2007) Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 20(8):1126–1133CrossRefGoogle Scholar
  47. Kaur M, Ali A (2011) Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renew Energy 36(11):2866–2871CrossRefGoogle Scholar
  48. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.05.011
  49. Kim HH, Kim HJ (2006) Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Mater Sci Eng B 133(1–3):241–244CrossRefGoogle Scholar
  50. Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20(22):225107CrossRefGoogle Scholar
  51. Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66–79.  https://doi.org/10.1016/j.jpowsour.2013.03.160CrossRefGoogle Scholar
  52. Kwon SS, Jeon SH, Shon JK, Kim DH, Chang IS, Kim JM (2007) Preparation and stabilization of chitosan-lipase composite within mesoporous silica material. Solid State Phenom, Trans Tech Publ:1717–1720Google Scholar
  53. Lee Y-C, Lee K, Oh Y-K (2015) Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresour Technol 184:63–72.  https://doi.org/10.1016/j.biortech.2014.10.145CrossRefPubMedGoogle Scholar
  54. Li Y, Ruan Z, Zheng M, Deng Q, Zhang S, Zheng C, Tang H, Huang F, Shi J (2018) Candida rugosa lipase covalently immobilized on facilely-synthesized carbon nitride nanosheets as a novel biocatalyst. RSC Adv 8(26):14229–14236CrossRefGoogle Scholar
  55. Lin V, Mahoney P, Gibson K (2009) Nanofarming technology extracts biofuel oil without harming algae. News released from Office of Public AffairsGoogle Scholar
  56. Liu X-M, Huang Z, Oh S, Zhang B, Ma P-C, Yuen MMF, Kim J-K (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72(2):121–144.  https://doi.org/10.1016/j.compscitech.2011.11.019CrossRefGoogle Scholar
  57. Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19(3):311–317.  https://doi.org/10.1016/j.jscs.2012.04.007CrossRefGoogle Scholar
  58. López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6(1):38–56CrossRefGoogle Scholar
  59. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRefGoogle Scholar
  60. Lu J, Yang J-x, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375.  https://doi.org/10.1021/nn900546bCrossRefPubMedGoogle Scholar
  61. Luz Martínez S, Romero R, López JC, Romero A, Sánchez Mendieta VC, Natividad R (2010) Preparation and characterization of CaO nanoparticles/NaX zeolite catalysts for the transesterification of sunflower oil. Ind Eng Chem Res 50(5):2665–2670CrossRefGoogle Scholar
  62. Ma S, Livingstone R, Zhao B, Lombardi JR (2011) Enhanced Raman spectroscopy of nanostructured semiconductor phonon modes. J Phys Chem Lett 2(6):671–674CrossRefGoogle Scholar
  63. Madhuvilakku R, Piraman S (2013) Biodiesel synthesis by TiO2–ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol 150:55–59.  https://doi.org/10.1016/j.biortech.2013.09.087CrossRefPubMedGoogle Scholar
  64. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125CrossRefGoogle Scholar
  65. Marchand P, Hassan IA, Parkin IP, Carmalt CJ (2013) Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans 42(26):9406–9422CrossRefGoogle Scholar
  66. Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: formation and applications. Curr Opin Colloid Interface Sci 17(5):290–296.  https://doi.org/10.1016/j.cocis.2012.06.005CrossRefGoogle Scholar
  67. Maria KH, Mieno T (2015) Synthesis of single-walled carbon nanotubes by low-frequency bipolar pulsed arc discharge method. Vacuum 113:11–18.  https://doi.org/10.1016/j.vacuum.2014.11.025CrossRefGoogle Scholar
  68. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360(3–4):229–234CrossRefGoogle Scholar
  69. Maruyama T, Kondo H, Ghosh R, Kozawa A, Naritsuka S, Iizumi Y, Okazaki T, Iijima S (2016) Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon 96:6–13.  https://doi.org/10.1016/j.carbon.2015.09.010CrossRefGoogle Scholar
  70. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci 406:339–347.  https://doi.org/10.1016/j.apsusc.2017.01.219CrossRefGoogle Scholar
  71. Meland H, Johannessen T, Arstad B, Venvik HJ, Rønning M, Holmen A (2006) Preparation of low temperature water-gas shift catalysts by flame spray pyrolysis. In: Gaigneaux EM, Devillers M, De Vos DE et al (eds) Studies in surface science and catalysis, vol 162. Elsevier, pp 985–992.  https://doi.org/10.1016/S0167-2991(06)81006-2
  72. Meysami SS, Dillon F, Koós AA, Aslam Z, Grobert N (2013a) Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: I. Mapping the reactor. Carbon 58:151–158CrossRefGoogle Scholar
  73. Meysami SS, Koós AA, Dillon F, Grobert N (2013b) Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon 58:159–169CrossRefGoogle Scholar
  74. Meysami SS, Koos AA, Dillon F, Dutta M, Grobert N (2015) Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: III. Towards upscaling. Carbon 88:148–156CrossRefGoogle Scholar
  75. Miura S, Yoshihara Y, Asaka M, Hasegawa K, Sugime H, Ota A, Oshima H, Noda S (2018) Millimeter-tall carbon nanotube arrays grown on aluminum substrates. Carbon 130:834–842.  https://doi.org/10.1016/j.carbon.2018.01.075CrossRefGoogle Scholar
  76. Mokhena TC, Luyt AS (2017a) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165:304–312CrossRefGoogle Scholar
  77. Mokhena TC, Luyt AS (2017b) Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres. J Clean Prod 156:470–479CrossRefGoogle Scholar
  78. Montero JM, Wilson K, Lee AF (2010) Cs promoted triglyceride transesterification over MgO nanocatalysts. Top Catal 53(11–12):737–745CrossRefGoogle Scholar
  79. Moreno-Vega A-I, Gomez-Quintero T, Nunez-Anita R-E, Acosta-Torres L-S, Castaño V (2012) Polymeric and ceramic nanoparticles in biomedical applications. J Nanotechnol 2012:1Google Scholar
  80. Mottana A (2014) 1913–2013 – the centennial of X-ray absorption spectroscopy (XAS): evidences about a question still open. J Electron Spectrosc Relat Phenom 196:14–19.  https://doi.org/10.1016/j.elspec.2013.12.004CrossRefGoogle Scholar
  81. Mtibe A, Mokhothu TH, John MJ, Mokhena TC, Mochane MJ (2018) Chapter 8. Fabrication and characterization of various engineered nanomaterials. In: Mustansar Hussain C (ed) Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 151–171.  https://doi.org/10.1016/B978-0-12-813351-4.00009-2CrossRefGoogle Scholar
  82. Mubarak N, Abdullah E, Jayakumar N, Sahu J (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20(4):1186–1197CrossRefGoogle Scholar
  83. Muehlethaler C, Leona M, Lombardi JR (2015) Review of surface enhanced Raman scattering applications in forensic science. Anal Chem 88(1):152–169CrossRefGoogle Scholar
  84. Nemade K (2014) Waghuley S (2014) synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation. Int J Met 2014:1CrossRefGoogle Scholar
  85. Netto CG, Andrade LH, Toma HE (2009) Enantioselective transesterification catalysis by Candida antarctica lipase immobilized on superparamagnetic nanoparticles. Tetrahedron Asymmetry 20(19):2299–2304CrossRefGoogle Scholar
  86. Noureddini H, Gao X, Philkana R (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96(7):769–777CrossRefGoogle Scholar
  87. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  88. Okitsu K (2013) UV-vis spectroscopy for characterization of metal nanoparticles formed from reduction of metal ions during ultrasonic irradiation. In: UV-VIS and photoluminescence spectroscopy for nanomaterials characterization. Springer, Berlin, pp 151–177CrossRefGoogle Scholar
  89. Omraei M, Sheibani S, Sadrameli SM, Towfighi J (2013) Preparation of biodiesel using KOH-MWCNT catalysts: an optimization study. Ind Eng Chem Res 52(5):1829–1835.  https://doi.org/10.1021/ie301418yCrossRefGoogle Scholar
  90. Patil PS (1999) Versatility of chemical spray pyrolysis technique. Mater Chem Phys 59(3):185–198.  https://doi.org/10.1016/S0254-0584(99)00049-8CrossRefGoogle Scholar
  91. Pena MDPS, Gottipati A, Tahiliani S, Neu-Baker NM, Frame MD, Friedman AJ, Brenner SA (2016) Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microsc Res Tech 79(5):349–358CrossRefGoogle Scholar
  92. Pizarro AVL, Park EY (2003) Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochem 38(7):1077–1082CrossRefGoogle Scholar
  93. Ramos AP (2017) 4 - dynamic light scattering applied to nanoparticle characterization. In: Da Róz AL, Ferreira M, de Lima Leite F, Oliveira ON (eds) Nanocharacterization techniques. William Andrew Publishing, Oxford, pp 99–110.  https://doi.org/10.1016/B978-0-323-49778-7.00004-7CrossRefGoogle Scholar
  94. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127(28):10096–10100.  https://doi.org/10.1021/ja051977cCrossRefPubMedGoogle Scholar
  95. Romero G, Moya SE (2012) Chapter 4. Synthesis of organic nanoparticles. In: de la Fuente JM, Grazu V (eds) Frontiers of nanoscience, vol 4. Elsevier, Amsterdam, pp 115–141.  https://doi.org/10.1016/B978-0-12-415769-9.00004-2CrossRefGoogle Scholar
  96. Scheffer A, Engelhard C, Sperling M, Buscher W (2008) ICP-MS as a new tool for the determination of gold nanoparticles in bioanalytical applications. Anal Bioanal Chem 390(1):249–252CrossRefGoogle Scholar
  97. Seo DJ, Cho MY, Park SB (2006) Preparation of titania nanoparticles of anatase phase by using flame spray pyrolysis. In: Rhee H-K, Nam I-S, Park JM (eds) Studies in surface science and catalysis, vol 159. Elsevier, Amsterdam, pp 761–764.  https://doi.org/10.1016/S0167-2991(06)81708-8CrossRefGoogle Scholar
  98. Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J 1(1):30CrossRefPubMedPubMedCentralGoogle Scholar
  99. Shao Y, Wu C, Wu T, Yuan C, Chen S, Ding T, Ye X, Hu Y (2018) Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int J Biol Macromol 111:1281–1292.  https://doi.org/10.1016/j.ijbiomac.2018.01.012CrossRefPubMedGoogle Scholar
  100. Sigfridsson K, Björkman J-A, Skantze P, Zachrisson H (2011) Usefulness of a nanoparticle formulation to investigate some hemodynamic parameters of a poorly soluble compound. J Pharm Sci 100(6):2194–2202.  https://doi.org/10.1002/jps.22440CrossRefPubMedPubMedCentralGoogle Scholar
  101. Solanki K, Gupta M (2011) Simultaneous purification and immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for catalyzing transesterification reactions. New J Chem 35(11):2551–2556CrossRefGoogle Scholar
  102. Sree R, Babu NS, Prasad PS, Lingaiah N (2009) Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts. Fuel Process Technol 90(1):152–157CrossRefGoogle Scholar
  103. Su Y, Yang Z, Wei H, Kong ES-W, Zhang Y (2011) Synthesis of single-walled carbon nanotubes with selective diameter distributions using DC arc discharge under CO mixed atmosphere. Appl Surf Sci 257(7):3123–3127.  https://doi.org/10.1016/j.apsusc.2010.10.127CrossRefGoogle Scholar
  104. Su Y, Wei H, Li T, Geng H, Zhang Y (2014) Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge. Mater Res Bull 50:23–25.  https://doi.org/10.1016/j.materresbull.2013.10.013CrossRefGoogle Scholar
  105. Tamilselvi P, Yelilarasi A, Hema M, Anbarasan R (2013) Synthesis of hierarchical structured MgO by sol-gel method. Nano Bulletin 2(1):130106Google Scholar
  106. Tsang SC, Yu CH, Gao X, Tam K (2006) Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J Phys Chem B 110(34):16914–16922CrossRefGoogle Scholar
  107. Ullah F, Nosheen A, Hussain I, Banon A (2009) Base catalyzed transesterification of wild apricot kernel oil for biodiesel production. Afr J Biotechnol 8(14)Google Scholar
  108. van der Pol E, Coumans FAW, Sturk A, Nieuwland R, van Leeuwen TG (2014) Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett 14(11):6195–6201.  https://doi.org/10.1021/nl503371pCrossRefPubMedGoogle Scholar
  109. Vander Wal R, Berger G, Ticich T (2003) Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl Phys A 77(7):885–889CrossRefGoogle Scholar
  110. Venkat Reddy CR, Oshel R, Verkade JG (2006) Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy Fuel 20(3):1310–1314CrossRefGoogle Scholar
  111. Verziu M, Cojocaru B, Hu J, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem 10(4):373–381CrossRefGoogle Scholar
  112. Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Torres-Martínez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48(1):22–27CrossRefGoogle Scholar
  113. Wang J-T (2011) Chapter 7. CVD and its related theories in inorganic synthesis and materials preparations. In: Xu R, Pang W, Huo Q (eds) Modern inorganic synthetic chemistry. Elsevier, Amsterdam, pp 151–171.  https://doi.org/10.1016/B978-0-444-53599-3.10007-1CrossRefGoogle Scholar
  114. Wang L, Yang J (2007) Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel 86(3):328–333CrossRefGoogle Scholar
  115. Wang Y, Hu S-y, Guan Y-p, Wen L-b, Han H-y (2009) Preparation of mesoporous nanosized KF/CaO–MgO catalyst and its application for biodiesel production by transesterification. Catal Lett 131(3–4):574–578CrossRefGoogle Scholar
  116. Wen L, Wang Y, Lu D, Hu S, Han H (2010) Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89(9):2267–2271CrossRefGoogle Scholar
  117. Williams DN, Ehrman SH, Holoman TRP (2006) Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnol 4(1):3CrossRefGoogle Scholar
  118. Xiang B, Wang P, Zhang X, Dayeh SA, Aplin DPR, Soci C, Yu D, Wang D (2007) Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett 7(2):323–328.  https://doi.org/10.1021/nl062410cCrossRefPubMedGoogle Scholar
  119. Xie W, Ma N (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuel 23(3):1347–1353CrossRefGoogle Scholar
  120. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507CrossRefGoogle Scholar
  121. Yacob AR, Mustajab M, Samadi NS (2009) Calcination temperature of nano MgO effect on base transesterification of palm oil. World Acad Sci Eng Technol 56:408–412Google Scholar
  122. Yang G, Tian-Wei T, Kai-Li N, Fang W (2006) Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chin J Biotechnol 22(1):114–118CrossRefGoogle Scholar
  123. Yu J, Yu X (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42(13):4902–4907.  https://doi.org/10.1021/es800036nCrossRefPubMedGoogle Scholar
  124. Yu J, Wang W, Cheng B, Su B-L (2009) Enhancement of photocatalytic activity of Mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem C 113(16):6743–6750.  https://doi.org/10.1021/jp900136qCrossRefGoogle Scholar
  125. Zhang XL, Yan S, Tyagi RD, Surampalli RY (2013) Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sust Energ Rev 26:216–223.  https://doi.org/10.1016/j.rser.2013.05.061CrossRefGoogle Scholar
  126. Zhao X, Ohkohchi M, Inoue S, Suzuki T, Kadoya T, Ando Y (2006) Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diam Relat Mater 15(4–8):1098–1102CrossRefGoogle Scholar
  127. Zhao J, Wei L, Yang Z, Zhang Y (2012) Continuous and low-cost synthesis of high-quality multi-walled carbon nanotubes by arc discharge in air. Physica E 44(7):1639–1643.  https://doi.org/10.1016/j.physe.2012.04.010CrossRefGoogle Scholar
  128. Zhong YL, Swager TM (2012) Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J Am Chem Soc 134(43):17896–17899CrossRefGoogle Scholar
  129. Zhou C, Krueger AB, Barnard JG, Qi W, Carpenter JF (2015) Characterization of nanoparticle tracking analysis for quantification and sizing of submicron particles of therapeutic proteins. J Pharm Sci 104(8):2441–2450.  https://doi.org/10.1002/jps.24510CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • T. C. Mokhena
    • 1
    • 2
  • M. J. John
    • 1
    • 2
  • M. A. Sibeko
    • 1
  • V. C. Agbakoba
    • 1
    • 2
  • M. J. Mochane
    • 3
  • A. Mtibe
    • 2
  • T. H. Mokhothu
    • 4
  • T. S. Motsoeneng
    • 2
  • M. M. Phiri
    • 1
  • M. J. Phiri
    • 1
  • P. S. Hlangothi
    • 1
  • T. G. Mofokeng
    • 5
  1. 1.Department of ChemistryNelson Mandela UniversityPort ElizabethSouth Africa
  2. 2.CSIR Materials Science and Manufacturing, Polymers and CompositesPort ElizabethSouth Africa
  3. 3.Department of Life SciencesCentral University of Technology Free StateBloemfonteinSouth Africa
  4. 4.Department of ChemistryDurban University of TechnologyDurbanSouth Africa
  5. 5.DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations