Applications of Plant-Based Natural Products to Synthesize Nanomaterial

  • Muhammad Irfan
  • Mamoona Saeed
  • Bushra Iqbal
  • Misbah Ghazanfar
Part of the Clean Energy Production Technologies book series (CEPT)


Plants are the important means of various kinds of phytochemicals with several applications in nanotechnology. Nanotechnology refers to the building and use of materials whose components exist at the nanoscale up to 100 nm in size. These biotechnological tools have been synthesized by the use of different kinds of plants. Plants have numerous natural products like tannins, saponins, flavonoids, steroids, alkaloids, and other nutritional products that can be obtained from several plant parts like seed, barks, leaves, roots, shoots, flowers, and stems. It has been reported that the extracts from plants act as a powerful pioneer for a nanomaterial production in safe procedures. As the plant extracts have numerous secondary metabolites, it plays part as stabilizing and reducing factors for the bioreduction reaction to form new metallic nanoparticles. These plant-based nanoparticles have various applications in different fields especially in biofuel production.


Nanoparticles Plants Natural Nanomaterials Applications Substances 


  1. Ahmad N, Sharma S, Alam MK et al (2010) A rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B 81:81–86CrossRefGoogle Scholar
  2. Aladpoosh R, Montazer M (2015) The role of cellulosic chains of cotton in biosynthesis of ZnOnanorods producing multifunctional properties: mechanism, characterizations and features. Carbohydr Polym 126:122–129PubMedCrossRefGoogle Scholar
  3. Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci 472:145–156PubMedCrossRefGoogle Scholar
  4. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861PubMedCrossRefGoogle Scholar
  5. Amarnath K, Kumar J, Reddy T, Mahesh V, Ayyappan SR, Nellore J (2012) Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity. Colloids Surf B: Biointerfaces 92:254–261PubMedCrossRefGoogle Scholar
  6. Ambika S, Sundrarajan M (2015) Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B Biol 146:52–57CrossRefGoogle Scholar
  7. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta A Mol Biomol Spectrosc 143:304–308PubMedCrossRefGoogle Scholar
  8. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nanomaterials: a review. Biotechnol Adv 30(3):512–523PubMedCrossRefGoogle Scholar
  9. Anwar MF, Yadav D, Kapoor S, Chander J, Samim M (2015) Comparison of antibacterial activity of Ag nanoparticles synthesized from leaf extract of Parthenium hystrophorus L in aqueous media and gentamicin sulphate: in-vitro. Drug Development and Industrial Pharmacy 41:43–50PubMedCrossRefGoogle Scholar
  10. Astalakshmi A, Nima P, Ganesan V (2013) A green approach in the synthesis of silver nanoparticles using bark of Eucalyptus globulus, Labill. Int J Pharm Sci Rev Res 23:47–52Google Scholar
  11. Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem 4(1):29CrossRefGoogle Scholar
  12. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277CrossRefGoogle Scholar
  13. Berlo K, van Hinsberg VJ, Vigouroux N, Gagnon JE, Williams-Jones AE (2014) Sulfide breakdown controls metal signature in volcanic gas at Kawah Ijen volcano, Indonesia. Chem Geol 371:115–127CrossRefGoogle Scholar
  14. Borase HP, Salunke BK, Salunkhe RB, Patil CD, Hallsworth JE, Kim BS, Patil SV (2014) Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl Biochem Biotechnol 173(1):1–29PubMedCrossRefGoogle Scholar
  15. Cai F, Li J, Sun J, Ji Y (2011) Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chem Eng J 175:70–75CrossRefGoogle Scholar
  16. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583Google Scholar
  17. Cho MH, Choi ES, Kim S, Goh SH, Choi Y (2017) Redox-responsive manganese dioxide nanoparticles for enhanced MR imaging and radiotherapy of lung cancer. Front Chem 5:109PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ciftcioglu N, McKay DS, Mathew G, Kajander OE (2006) Nanobacteria: fact or fiction? Characteristics, detection, and medical importance of novel self-replicating, calcifying nanoparticles. J Investig Med 54(7):385–394PubMedCrossRefGoogle Scholar
  19. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 7:1189PubMedPubMedCentralCrossRefGoogle Scholar
  20. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbor-tristis flower extract. Bioprocess Biosyst Eng 34(5):615–619PubMedCrossRefPubMedCentralGoogle Scholar
  21. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170CrossRefGoogle Scholar
  22. Dubey SP, Lahtinen M, Sillanpää M (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng Asp 364(1–3):34–41CrossRefGoogle Scholar
  23. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  24. Dutta N, Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2014) Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles. Bioresour Technol 153:269–277PubMedCrossRefGoogle Scholar
  25. Elavazhagan T, Arunachalam KD (2011) Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine 6:1265PubMedPubMedCentralCrossRefGoogle Scholar
  26. Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci 345:329–336CrossRefGoogle Scholar
  27. Estevam EC, Witek K, Faulstich L, Nasim MJ, Latacz G, Domínguez-Álvarez E et al (2015) Aspects of a distinct cytotoxicity of selenium salts and organic selenides in living cells with possible implications for drug design. Molecules 20(8):13894–13912PubMedCrossRefGoogle Scholar
  28. Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R et al (2017) Natural selenium particles from Staphylococcus carnosus: hazards or particles with particular promise? J Hazard Mater 324:22–30PubMedCrossRefGoogle Scholar
  29. Ezoe Y, Lin CH, Noto M, Watanabe Y, Yoshimura K (2002) Evolution of water chemistry in natural acidic environments in Yangmingshan, Taiwan. J Environ Monit 4(4):533–540PubMedCrossRefGoogle Scholar
  30. Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh MG, Suguna L (2013) Spontaneous ultra-fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf B: Biointerfaces 106:208–216PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B: Biointerfaces 96:69–74PubMedCrossRefGoogle Scholar
  32. Griffin S, Tittikpina NK, Al-Marby A, Alkhayer R, Denezhkin P, Witek K et al (2016) Turning waste into value: Nanosized natural plant materials of Solanum incanumL. and Pterocarpus erinaceus Poir with promising antimicrobial activities. Pharmaceutics 8(2):11PubMedCentralCrossRefGoogle Scholar
  33. Honary S, Gharaei-Fathabad E, Paji ZK, Eslamifar M (2012) A novel biological synthesis of gold nanoparticle by Enterobacteriaceae family. Trop J Pharm Res 11(6):887–891Google Scholar
  34. Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111PubMedPubMedCentralCrossRefGoogle Scholar
  35. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  36. Jacob C (2011) Redox signalling via the cellular thiolstat. Biochem Soc Trans 39:1247–1253PubMedCrossRefGoogle Scholar
  37. Jacob SJP, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214PubMedCrossRefGoogle Scholar
  38. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M (2016) Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng C 59:296–302CrossRefGoogle Scholar
  39. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  40. Jha AK, Prasad K, Kumar V, Prasad K (2009) Biosynthesis of silver nanoparticles utilizing Eclipta leaf. Biotechnol Prog 25:1475–1477CrossRefGoogle Scholar
  41. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater 12(6):407–409CrossRefGoogle Scholar
  42. Kajander EO, Ciftcioglu N, Miller-Hjelle MA, Hjelle JT (2001) Nanobacteria: controversial pathogens in nephrolithiasis and polycystic kidney disease. Curr Opin Nephrol Hypertens 10(3):445–452PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79(3):594–598PubMedCrossRefGoogle Scholar
  44. Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62(1):3–16PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kettler K, Krystek P, Giannakou C, Hendriks AJ, de Jong WH (2016) Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells. J Nanopart Res 18(7):182PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574CrossRefGoogle Scholar
  47. Koperuncholan M (2015) Bioreduction of chloroauric acid (HAuCl4) for the synthesis of gold nanoparticles (GNPs): a special empathies of pharmacological activity. Int J Phytopharm 5(4):72–80Google Scholar
  48. Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82(3):670–679CrossRefGoogle Scholar
  49. Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N (2012) Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater Lett 76:18–20CrossRefGoogle Scholar
  50. Krupa AND, Vimala R (2016) Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater Sci Eng C 61:728–735CrossRefGoogle Scholar
  51. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157CrossRefGoogle Scholar
  52. Kumar KP, Paul W, Sharma CP (2012) Green synthesis of silver nanoparticles with Zingiber officinale extract and study of its blood compatibility. BioNanoScience 2(3):144–152CrossRefGoogle Scholar
  53. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm J 24(4):473–484PubMedCrossRefGoogle Scholar
  54. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9(8):852–858CrossRefGoogle Scholar
  55. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:16Google Scholar
  56. Mániková D, Letavayová LM, Vlasáková D, Košík P, Estevam EC, Nasim MJ et al (2014) Intracellular diagnostics: hunting for the mode of action of redox-modulating selenium compounds in selected model systems. Molecules 19(8):12258–12279PubMedPubMedCentralCrossRefGoogle Scholar
  57. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C et al (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549PubMedCrossRefGoogle Scholar
  58. Mauludin R, Müller RH, Keck CM (2009) Development of an oral rutin nanocrystal formulation. Int J Pharm 370(1–2):202–209PubMedCrossRefGoogle Scholar
  59. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Emerging technologies and management of crop stress tolerance. Academic, San Diego, pp 159–180CrossRefGoogle Scholar
  60. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356PubMedCrossRefGoogle Scholar
  61. Moss DM, Siccardi M (2014) Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol 171(17):3963–3979PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588CrossRefGoogle Scholar
  63. Mukunthan KS, Balaji S (2012) Silver nanoparticles shoot up from the root of Daucus carota (L.). Int J Green Nanotechnol 4(1):54–61CrossRefGoogle Scholar
  64. Müller RH, Keck CM (2008) Second generation of drug nanocrystals for delivery of poorly soluble drugs: smart crystal technology: l34. Eur J Pharm Sci 34(1):S20–S21CrossRefGoogle Scholar
  65. Müller RH, Keck CM (2012) Twenty years of drug nanocrystals: where are we, and where do we go?.European. J Pharm Biopharm 80(1):1–3CrossRefGoogle Scholar
  66. Murr LE, Guerrero PA (2006) Carbon nanotubes in wood soot. Atmos Sci Lett 7(4):93–95CrossRefGoogle Scholar
  67. Nagajyothi PC, An TM, Sreekanth TVM, Lee JI, Lee DJ, Lee KD (2013) Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Mater Lett 108:160–163CrossRefGoogle Scholar
  68. Nagajyothi PC, Sreekanth TVM, Tettey CO, Jun YI, Mook SH (2014) Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg Med Chem Lett 24(17):4298–4303PubMedCrossRefGoogle Scholar
  69. Nagaraj B, Krishnamurthy NB, Liny P, Divya TK, Dinesh R (2011) Biosynthesis of gold nanoparticles of Ixora coccinea flower extract & their antimicrobial activities. Int J Pharm Bio Sci 2(4):557–565Google Scholar
  70. Naraginti S, Kumari PL, Das RK, Sivakumar A, Patil SH, Andhalkar VV (2016) Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater Sci Eng C 62:293–300CrossRefGoogle Scholar
  71. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169(2):59–79CrossRefGoogle Scholar
  72. Noruzi M, Zare D, Khoshnevisan K, Davoodi D (2011) Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 79(5):1461–1465PubMedCrossRefGoogle Scholar
  73. Pasula RR, Lim S (2017) Engineering nanoparticle synthesis using microbial factories. Eng Biol 1(1):12–17CrossRefGoogle Scholar
  74. Patel P, Agarwal P, Kanawaria S, Kachhwaha S, Kothari SL (2015a) Plant-based synthesis of silver nanoparticles and their characterization. In: Nanotechnology and plant sciences. Springer, Cham, pp 271–288Google Scholar
  75. Patel V, Berthold D, Puranik P, Gantar M (2015b) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119CrossRefGoogle Scholar
  76. Pawlak J, Łodyga-Chruścińska E, Chrustowicz J (2014) Fate of platinum metals in the environment. J Trace Elem Med Biol 28(3):247–254PubMedCrossRefGoogle Scholar
  77. Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa-sinensis. Phys E 42(5):1417–1424CrossRefGoogle Scholar
  78. Prakash NT, Sharma N, Prakash R, Raina KK, Fellowes J, Pearce CI, Pattrick RA (2009) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31(12):1857PubMedCrossRefGoogle Scholar
  79. Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Selvaraj K (2011) Biogenic synthesis of silver nanoparticles using Nicotianatobaccum leaf extract and study of their antibacterial effect. Afr J Biotechnol 10(41):8122–8130CrossRefGoogle Scholar
  80. Ramesh V, Armash A (2015) Green synthesis of gold nanoparticles against pathogens and cancer cells. Int J Pharm Res 5(10):250–256Google Scholar
  81. Rani PU, Rajasekharreddy P (2011) Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Asp 389(1–3):188–194CrossRefGoogle Scholar
  82. Rao ML, Savithramma N (2013) Biological synthesis and validation of silver nano particles from roots of Svensonia hyderobadensis (Walp.) Mold- A rare medicinal plant taxon. Int J Adv Sci Tech Res 5:524–541Google Scholar
  83. Rastogi L, Arunachalam J (2011) Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater Chem Phys 129(1–2):558–563CrossRefGoogle Scholar
  84. Rawat R, Srivastava N, Chadha BS, Oberoi HS (2014) Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillus niger HO. Energy Fuel 28(8):5067–5075CrossRefGoogle Scholar
  85. Roy D, Goswami R, Pal A (2017) Nanomaterial and toxicity: what can proteomics tell us about the nanotoxicology? Xenobiotica 47(7):632–643CrossRefGoogle Scholar
  86. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3CrossRefGoogle Scholar
  87. Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1(03):154CrossRefGoogle Scholar
  88. Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Biostruct 5(2):427–432Google Scholar
  89. Scholz P, Keck M, C. (2015) Nanocrystals: from raw material to the final formulated oral dosage form-a review. Curr Pharm Des 21(29):4217–4228PubMedCrossRefGoogle Scholar
  90. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A et al (2012) Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 17(7):8506–8517PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–1631PubMedCrossRefGoogle Scholar
  92. Shors T (2011) Understanding viruses. Jones & Bartlett Publishers, BurlingtonGoogle Scholar
  93. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471PubMedCrossRefGoogle Scholar
  94. Singh S, Saikia JP, Buragohain AK (2013) A novel ‘green’ synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. Colloids Surf B: Biointerfaces 102:83–85PubMedCrossRefGoogle Scholar
  95. Singh P, Kim YJ, Zhang D, Yang DC (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599PubMedCrossRefGoogle Scholar
  96. Singh P, Singh R, Borthakur A, Srivastava P, Srivastava N, Tiwary D, Mishra PK (2016b) Effect of nanoscale TiO 2-activated carbon composite on Solanum lycopersicum (L.) and Vignaradiata (L.) seeds germination. Energy Ecol Environ 1(3):131–140CrossRefGoogle Scholar
  97. Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V (2017) Selenium nanoparticles as a nutritional supplement. Nutrition 33:83–90PubMedCrossRefGoogle Scholar
  98. Song S, Rao R, Yang H, Liu H, Zhang A (2010) Facile synthesis of Fe3O4/MWCNTs by spontaneous redox and their catalytic performance. Nanotechnology 21(18):185602PubMedCrossRefGoogle Scholar
  99. Songand JY, Kim BS (2009) Biological synthesis of metal nanoparticles. In: Biocatalysis and agricultural biotechnology. CRC Press, Boca Raton, pp 399–407Google Scholar
  100. Srivastava N, Rawat R, Sharma R, Oberoi HS, Srivastava M, Singh J (2014) Effect of nickel–cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (Class: Eurotiomycetes). Appl Biochem Biotechnol 174(3):1092–1103PubMedCrossRefGoogle Scholar
  101. Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015a) Application of cellulases in biofuels industries: an overview. J Biofuels Bioenergy 1(1):55–63CrossRefGoogle Scholar
  102. Srivastava N, Singh J, Ramteke PW, Mishra PK, Srivastava M (2015b) Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour Technol 183:262–266PubMedCrossRefGoogle Scholar
  103. Suman TY, Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16PubMedCrossRefGoogle Scholar
  104. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262CrossRefGoogle Scholar
  105. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachtaindica (Neem) leaves. J Nanopart Res 12(1):237–246CrossRefGoogle Scholar
  106. Urbano P, Urbano F (2007) Nanobacteria: facts or fancies? PLoS Pathog 3(5):e55PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Malarkodi C, Annadurai G (2013) Phytosynthesis and characterization of silver nanoparticles using stem extract of Coleus aromaticus. Int J Mater Biomater Appl 3(1):1–4Google Scholar
  108. Vankar PS, Bajpai D (2010) Preparation of gold nanoparticles from Mirabilis jalapa flowers. Indian J Biochem Biophys 47(3):157–160PubMedGoogle Scholar
  109. Varun S, Sellappa S, RafiqKhan M, Vijayakumar S (2015) Green synthesis of gold nanoparticles using Argemonemexicana L. Leaf extract and its characterization. Int J Pharm Sci Rev Res 32:42–44Google Scholar
  110. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6PubMedCrossRefGoogle Scholar
  111. Vidya C, Hiremath S, Chandraprabha MN, Antonyraj ML, Gopal IV, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol 1:118–120Google Scholar
  112. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341(12):2012–2018PubMedCrossRefGoogle Scholar
  113. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240CrossRefGoogle Scholar
  114. Vijayaraghavan K, Nalini SK, Prakash NU, Madhankumar D (2012) One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B: Biointerfaces 94:114–117PubMedCrossRefGoogle Scholar
  115. Vincent BB, Loeve S (2014) Metaphors in nanomedicine: the case of targeted drug delivery. NanoEthics 8(1):1–17CrossRefGoogle Scholar
  116. Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2biosensor. Colloids Surf B: Biointerfaces 80(1):94–102PubMedCrossRefGoogle Scholar
  117. Wei Y, Li X, Yu L, Zou D, Yuan H (2015) Mesophilic anaerobic co-digestion of cattle manure and corn Stover with biological and chemical pretreatment. Bioresour Technol 198:431–436PubMedCrossRefGoogle Scholar
  118. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116CrossRefGoogle Scholar
  119. Wu CY, Martel J, Wong TY, Young D, Liu CC, Lin CW, Young JD (2016) Formation and characteristics of biomimetic mineralo-organic particles in natural surface water. Sci Rep 6:28817PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757Google Scholar
  121. Yang Z, Huang R, Qi W, Tong L, Su R, He Z (2015) Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide. Chem Eng J 280:90–98CrossRefGoogle Scholar
  122. Yazdi MH, Mahdavi M, Varastehmoradi B, Faramarzi MA, Shahverdi AR (2012) The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: an in vivo study. Biol Trace Elem Res 149(1):22–28PubMedCrossRefGoogle Scholar
  123. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. In: Advances in applied microbiology, vol 70. Academic, Cambridge, MA, pp 1–55CrossRefGoogle Scholar
  124. Yu J, Xu D, Guan HN, Wang C, Huang LK (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112CrossRefGoogle Scholar
  125. Yuvakkumar R, Suresh J, Saravanakumar B, Nathanael AJ, Hong SI, Rajendran V (2015) Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 137:250–258PubMedCrossRefGoogle Scholar
  126. Zhang L, Li D, Gao P (2012) Expulsion of selenium/protein nanoparticles through vesicle-like structures by Saccharomyces cerevisiae under microaerophilic environment. World J Microbiol Biotechnol 28(12):3381–3386PubMedCrossRefGoogle Scholar
  127. Zimmermann S, Sures B (2004) Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere. Environ Sci Pollut Res 11(3):194CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Muhammad Irfan
    • 1
  • Mamoona Saeed
    • 1
  • Bushra Iqbal
    • 1
  • Misbah Ghazanfar
    • 1
  1. 1.Department of BiotechnologyUniversity of SargodhaSargodhaPakistan

Personalised recommendations