Advertisement

Significance Tests

  • Surendra P. VermaEmail author
Chapter

Abstract

In this chapter, we present some of the most popular significance statistical tests, which are of great importance for the handling of experimental data. The current practice to document data quality in a geochemical study is to simply present the measured concentrations of major or trace elements in geochemical reference materials (GRMs), along with the literature values in a table. We present the four-step procedure FICI for the relevant statistical significance tests of Fisher F, Student t, and ANOVA, also called inferential statistics. These tests and the relevant equations are explained in detail. The inherent assumption of normality requires that discordant outlier-free data be used for FICI. The chapter ends with a brief explanation of the critical sample sizes for the “fit-for-purpose” concept, most useful for planning an experiment.

References

  1. Anderson, R. L. (1987). Practical statistics for analytical chemists. Van Nostrand Reinhold.Google Scholar
  2. Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Chichester: Wiley.Google Scholar
  3. Bevington, P. R. (1969). Data reduction and error analysis for the physical sciences. New York: Mc-Graw Hill Book Company.Google Scholar
  4. Bevington, P. R., & Robinson, D. K. (2003). Data reduction and error analysis for the physical sciences. Boston: McGraw Hill.Google Scholar
  5. Cruz-Huicochea, R., & Verma, S. P. (2013). New critical values for F and their use in the ANOVA and Fisher’s F tests for evaluating geochemical reference material granite G-2 (U.S.A.) and igneous rocks from the Eastern Alkaline Province (Mexico). Journal of Iberian Geology, 39, 13–30.CrossRefGoogle Scholar
  6. Ebdon, D. (1988). Statistics in Geography. Oxford: Basic Blackwell.Google Scholar
  7. Gibbons, R. D. (1994). Statistical methods for groundwater monitoring. New York: Wiley.CrossRefGoogle Scholar
  8. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold.Google Scholar
  9. Jensen, J. L., Lake, L. W., Corbett, P. W. M., & Goggin, D. J. (2000). Statistics for petroleum engineers and geoscientists. Amsterdam: Elsevier.Google Scholar
  10. Kanji, G. K. (1993). 100 Statistical Tests. London: SAGE Publications.Google Scholar
  11. Meier, P. C., & Zünd, R. E. (1992). Statistical methods in analytical chemistry. New York: Wiley.Google Scholar
  12. Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry. (5th ed.), Essex CM20 2JE. England: Pearson Prentice Hall.Google Scholar
  13. Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed.), Essex CM20 2JE, England: Pearson Prentice Hall.Google Scholar
  14. Rosales-Rivera, M., Díaz-González, L., & Verma, S. P. (2019). Evaluation of nine USGS reference materials for quality control through Univariate Data Analysis System, UDASys3. Arabian Journal of Geosciences, 12, 40.  https://doi.org/10.1007/s12517-018-4220-0.CrossRefGoogle Scholar
  15. Student. (1908). The probable error of the mean. Biometrika, 6, 1–25.Google Scholar
  16. Taylor, J. K. (1990). Statistical techniques for data analysis. Michigan, U.S.A: Lewis Publishers Inc.Google Scholar
  17. Trafford, A. D., Jee, R. D., Moffat, A. C., & Graham, P. (1999). A rapid quantitative assay of intact paracetamol tablets by reflectance near-infrared spectroscopy. Analyst, 124, 163–167.CrossRefGoogle Scholar
  18. Verma, S. P. (2005). Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría). México, D. F: UNAM.Google Scholar
  19. Verma, S. P. (2016). Análisis estadístico de datos composicionales. CDMX: Universidad Nacional Autónoma de México.Google Scholar
  20. Verma, S. P., & Cruz-Huicochea, R. (2013). Alternative approach for precise and accurate Student´s t critical values and application in geosciences. Journal of Iberian Geology, 39, 31–56.Google Scholar
  21. Verma, S. P., Díaz-González, L., Pérez-Garza, J. A., & Rosales-Rivera, M. (2016). Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arabian Journal of Geosciences, 9, 740.CrossRefGoogle Scholar
  22. Verma, S. P., Rosales-Rivera, M., Díaz-González, L., & Quiroz-Ruiz, A. (2017a). Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests. Turkish Journal of Earth Sciences, 26, 331–353.CrossRefGoogle Scholar
  23. Verma, S. P., Díaz-González, L., Pérez-Garza, J. A., & Rosales-Rivera, M. (2017b). Erratum to: quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arabian Journal of Geosciences, 10, 24.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations