Advertisement

Basic Concepts of Statistics

  • Surendra P. VermaEmail author
Chapter

Abstract

This chapter covers the basic concepts of statistics for handling of experimental data. The two major types of errors (random and systematic) and the respective quality terms (precision and accuracy) as well as the analytical uncertainty, are explained. A day to day example of gasoline (petrol pump) is used to explain these terms. The historical development of geochemical reference materials (GRMs) for quality control in geochemistry and the statistical criteria for sampling are then briefly mentioned. The various types of data distributions are pointed out. The most important normal distribution pertinent to the experimental data in general and geochemical data in particular, is covered in somewhat greater detail. The possibility of handling log-normal distribution is also pointed out. The chapter ends with the mention of univariate, bivariate and multivariate data and the respective mathematical notations. The basic concepts covered in this chapter have implications in converting geochemistry into geochemometrics.

References

  1. Ahrens, L. H. (1954a). The lognormal distribution of the elements (A fundamental law of geochemistry and its subsidiary). Geochimica et Cosmochimica Acta, 5, 49–73.CrossRefGoogle Scholar
  2. Ahrens, L. H. (1954b). The lognormal distribution of the elements (2). Geochimica et Cosmochimica Acta, 6, 121–131.CrossRefGoogle Scholar
  3. Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Chichester: Wiley.Google Scholar
  4. Bevington, P. R. (1969). Data reduction and error analysis for the physical sciences. New York: Mc-Graw Hill Book Company.Google Scholar
  5. Bevington, P. R., & Robinson, D. K. (2003). Data reduction and error analysis for the physical sciences. Boston: McGraw Hill.Google Scholar
  6. Canavos, G. C. (1987). Probabilidad y Estadística Aplicaciones y Métodos (Traducción: Urbina Medal, E.G.). México: McGraw Hill.Google Scholar
  7. Chayes, F. (1954). The lognormal distribution of the elements: a discussion. Geochimica et Cosmochimica Acta, 6, 119–120.CrossRefGoogle Scholar
  8. Duncan, A. J. (1974). Quality control and industrial statistics. Toronto: Irwin.Google Scholar
  9. Ebdon, D. (1988). Statistics in Geography. Oxford: Basic Blackwell.Google Scholar
  10. Fairbairn, H. W. (1951). A cooperative investigation of precision and accuracy in chemical, spectrochemical and modal analysis of silicate rocks. Geological Survey Bulletin, 980, 1–71.Google Scholar
  11. Fairbairn, H. W. 1953. Precision and accuracy of chemical analysis of silicate rocks. Geochimica et Cosmochemica Acta, 143–156.CrossRefGoogle Scholar
  12. Fairbairn, H. W., & Schairer, J. F. (1952). A test of the accuracy of chemical analysis of silicate rocks. American Mineralogist, 37, 744–757.Google Scholar
  13. Fisher, R. A. (1970). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd.Google Scholar
  14. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold.Google Scholar
  15. Gubac, J. (1986). On the character of distribution of chemical elements in nature. Mathematical Geology, 18, 429–432.CrossRefGoogle Scholar
  16. Hahn, G., & Shapiro, S. (1967). Probability distribution applications and relationships from statistical models in engineering. New York: Wiley.Google Scholar
  17. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions. New York: Wiley.Google Scholar
  18. Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis. Boston: McGraw Hill.Google Scholar
  19. Mendenhall, W., McClave, J. T., & Ramey, M. (1977). Statistics for psychology. México: Duxbury Press.Google Scholar
  20. Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry (4th ed.). England: Essex CM20 2JE, Prentice Hall.Google Scholar
  21. Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Essex CM20 2JE, England: Pearson Prentice Hall.Google Scholar
  22. Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed.). Essex CM20 2JE, England: Pearson Prentice Hall.Google Scholar
  23. Neter, J., Wasserman, W., & Whitmore, G. A. (1982). Applied statistics. Boston: Allyn and Bacon.Google Scholar
  24. Norman, G. R., & Streiner, D. L. (2003). PDQ Statistics. Hamilton, London: BC Decker Inc.Google Scholar
  25. Otto, M. (1999). Chemometrics. Statistics and computer application in analytical chemistry. Weinheim: Wiley.Google Scholar
  26. Piskulic, L., Racca, L., Bottai, H., & Leiva, M. (2006). Accuracy and precision in measurements: two complementary approaches. Teaching Statistics, 28, 14–16.CrossRefGoogle Scholar
  27. Rosales-Rivera, M., Díaz-González, L. & Verma, S. P. (2014). Comparative performance of thirteen single outlier discordancy tests from Monte Carlo simulations. In: IAMG16: Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment: Challenges, Processes and Strategies, pp. 4. New Delhi: International Association of Mathematical Geology.Google Scholar
  28. Rosales-Rivera, M., Díaz-González, L., & Verma, S. P. (2018). A new online computer program (BiDASys) for ordinary and uncertainty weighted least-squares linear regressions: case studies from food chemistry. Revista Mexicana de Ingeniería Química, 17, 507–522.CrossRefGoogle Scholar
  29. Rosales-Rivera, M., Díaz-González, L., & Verma, S. P. (2019). Evaluation of nine USGS reference materials for quality control through Univariate Data Analysis System, UDASys3. Arabian Journal of Geosciences, 12, 40.  https://doi.org/10.1007/s12517-018-4220-0.CrossRefGoogle Scholar
  30. Taylor, J. K. (1990). Statistical techniques for data analysis. Michigan, U.S.A: Lewis Publishers Inc.Google Scholar
  31. Velasco-Tapia, F., Guevara, M., & Verma, S. P. (2001). Evaluation of concentration data in geochemical reference materials. Chemie der Erde, 61, 69–91.Google Scholar
  32. Verma, S. P. (1992). Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of Mid-Ocean Ridge Basalt. Geochemical Journal, 26, 159–177.CrossRefGoogle Scholar
  33. Verma, S. P. (1997). Sixteen statistical tests for outlier detection and rejection in evaluation of international geochemical reference materials: example of microgabbro PM-S. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 21, 59–75.CrossRefGoogle Scholar
  34. Verma, S. P. (1998). Improved concentration data in two international geochemical reference materials (USGS basalt BIR-1 and GSJ peridotite JP-1) by outlier rejection. Geofísica Internacional, 37, 215–250.Google Scholar
  35. Verma, S. P. (2005). Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría). México, D.F.: UNAM.Google Scholar
  36. Verma, S. P. (2012). Geochemometrics. Revista Mexicana de Ciencias Geológicas, 29, 276–298.Google Scholar
  37. Verma, S. P. (2015a). Origin, evolution, and tectonic setting of the eastern part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc from conventional multielement normalized and new multidimensional discrimination diagrams and discordancy and significance tests. Turkish Journal of Earth Sciences, 24, 111–164.CrossRefGoogle Scholar
  38. Verma, S. P. (2015b). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.CrossRefGoogle Scholar
  39. Verma, S. P. (2016). Análisis estadístico de datos composicionales. CDMX: Universidad Nacional Autónoma de México.Google Scholar
  40. Verma, S. P., & Quiroz-Ruiz, A. (2006a). Critical values for six Dixon tests for outliers in normal samples up to sizes 100, and applications in science and engineering. Revista Mexicana de Ciencias Geológicas, 23, 133–161.Google Scholar
  41. Verma, S. P., & Quiroz-Ruiz, A. (2006b). Critical values for 22 discordancy test variants for outliers in normal samples up to sizes 100, and applications in science and engineering. Revista Mexicana de Ciencias Geológicas, 23, 302–319.Google Scholar
  42. Verma, S. P., Díaz-González, L., Pérez-Garza, J. A., & Rosales-Rivera, M. (2016a). Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arabian Journal of Geosciences, 9, 740.CrossRefGoogle Scholar
  43. Verma, S. P., Díaz-González, L., & Armstrong-Altrin, J. S. (2016b). Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments. Earth Science Informatics, 9, 151–165.CrossRefGoogle Scholar
  44. Verma, S. P., Rosales-Rivera, M., Díaz-González, L., & Quiroz-Ruiz, A. (2017a). Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests. Turkish Journal of Earth Sciences, 26, 331–353.CrossRefGoogle Scholar
  45. Verma, S. P., Díaz-González, L., Pérez-Garza, J. A., & Rosales-Rivera, M. (2017b). Erratum to: Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arabian Journal of Geosciences, 10, 24.CrossRefGoogle Scholar
  46. Verma, S. P., Verma, S. K., Rivera-Gómez, M. A., Torres-Sánchez, D., Díaz-González, L., Amezcua-Valdez, A., Rivera-Escoto, B. A., Rosales-Rivera, M., Armstrong-Altrin, J. S., López-Loera, H., Velasco-Tapia, F. & Pandarinath, K. (2018). Statistically coherent calibration of X-ray fluorescence spectrometry for major elements in rocks and minerals. Journal of Spectroscopy, 2018, Article ID 5837214, 13p,  https://doi.org/10.1155/2018/5837214.CrossRefGoogle Scholar
  47. Webster´s, 1995. New Webster´s dictionary and thesaurus of the English language. Lexicon Publications, Danbury, Connecticut, 1149 p.Google Scholar
  48. Wetzel, K. (1984). An attempt of an interpretation of the lognormal distribution of chemical elements in rocks. Chemie der Erde, 43, 161–170.Google Scholar
  49. Witte, R. S., & Witte, J. S. (2017). Statistics. Hoboken, New Jersey: Wiley.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations