Advertisement

Trace Element Geochemistry

  • Surendra P. VermaEmail author
Chapter

Abstract

This chapter covers the basic concepts of trace element geochemistry. We document the shortcomings of the existing bivariate and ternary trace element diagrams for tectonic discrimination. The need for normalization in multi-element diagrams is made clear. This is followed by quantitative applications of trace elements in multi-element normalised diagrams. A worldwide compilation of the Nb and Ta anomalies is presented and its importance for the petrogenesis of areas having conflicting or complex tectonic settings, such as the Mexican Volcanic Belt, is pointed out. The chapter ends with the presentation and usefulness of combined ratio parameters for drastically reducing the number of bivariate or ternary diagrams and providing a better innovative geochemometric alternative for the handling of geochemical data. It is interesting to see how all these quantititative parameters are useful for solving geological problems.

References

  1. Agrawal, S., Guevara, M., & Verma, S. P. (2008). Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50, 1057–1079.CrossRefGoogle Scholar
  2. Albarède, F. (2018). Geochemistry: An Introduction. Cambridge, United Kingdom: Cambridge University Press.Google Scholar
  3. Bhatia, M. R., & Crook, A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.CrossRefGoogle Scholar
  4. Butler, J. C., & Woronow, A. (1986). Discrimination among tectonic settings using trace element abundances of basalts. Journal of Geophysical Research, 91, 10289–10300.Google Scholar
  5. Cabanis, B., & Lecolle, M. (1989). Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Compte Rendu Academy Sciences Paris, 309, 2023–2029.Google Scholar
  6. Coryell, C. D., Chase, J. W., & Winchester, J. W. (1963). A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research, 68, 559–566. Google Scholar
  7. Harkins, W. D. (1917). The evolution of the elements and the stability of complex atoms. Journal of the American Chemical Society, 39, 856.CrossRefGoogle Scholar
  8. Kim, W. H., Clayton, R. W., & Keppie, F. (2011). Evidence of a collision between the Yucatán block and Mexico in the Miocene. Geophysical Journal International, 187, 989–1000.CrossRefGoogle Scholar
  9. Masuda, A. (1962). Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. Journal of Earth Science, Nagoya University, 10, 173–187.Google Scholar
  10. McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  11. Meschede, M. (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56, 207–218.CrossRefGoogle Scholar
  12. Oddo, G. (1914). Die molekularstruktur der radioaktiven atome. Zeitschrift für Anorganische Chemie, 87, 253.CrossRefGoogle Scholar
  13. Pacheco, J. F., & Singh, S. K. (2010). Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. Journal of Geophysical Research, 115.  https://doi.org/10.1029/2009jb006453.
  14. Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In R. S. Thorpe (Ed.) Andesites (pp. 525–548). Chichester: Wiley.Google Scholar
  15. Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, 290–300.Google Scholar
  16. Pearce, J. A., & Gale, G. H. (1977). Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geological Society, London, Special Publications, 7, 14–24.Google Scholar
  17. Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33–47.CrossRefGoogle Scholar
  18. Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., et al. (2008). Horizontal subduction and truncation of the Cocos plate beneath central Mexico. Geophysical Research Letters, 35, L18303.CrossRefGoogle Scholar
  19. Rock, N. M. S. (1987). The need for standardization of normalized multi-element diagrams in geochemistry: A comment. Geochemical Journal, 21, 75–84.CrossRefGoogle Scholar
  20. Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Essex: Longman Scientific Technical.Google Scholar
  21. Shervais, J. W. (1982). Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59, 101–118.CrossRefGoogle Scholar
  22. Verma, S. P. (2002). Absence of Cocos plate subduction-related basic volcanism in southern Mexico: A unique case on Earth? Geology, 30, 1095–1098.CrossRefGoogle Scholar
  23. Verma, S. P. (2006). Extension-related origin of magmas from a garnet-bearing source in the Los Tuxtlas volcanic field, Mexico. International Journal of Earth Sciences, 95, 871–901.CrossRefGoogle Scholar
  24. Verma, S. P. (2009). Continental rift setting for the central part of the Mexican Volcanic Belt: A statistical approach. Open Geology Journal, 3, 8–29.CrossRefGoogle Scholar
  25. Verma, S. P. (2010). Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences, 19, 185–238.Google Scholar
  26. Verma, S. P. (2015a). Present state of knowledge and new geochemical constraints on the central part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc in terms of near and far trench magmas. Turkish Journal of Earth Sciences, 24, 399–460.CrossRefGoogle Scholar
  27. Verma, S. P. (2015b). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.CrossRefGoogle Scholar
  28. Verma, S. P., & Agrawal, S. (2011). New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas, 28, 24–44.Google Scholar
  29. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.CrossRefGoogle Scholar
  30. Verma, S. P., & Verma, S. K. (2013). First 15 probability-based multi-dimensional discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22, 931–995.Google Scholar
  31. Verma, S. P., & Verma, S. K. (2018). Petrogenetic and tectonic implications of major and trace element and radiogenic isotope geochemistry of Pliocene to Holocene rocks from the Tacaná Volcanic Complex and Chiapanecan Volcanic Belt, southern Mexico. Lithos, 312–313, 274–289.CrossRefGoogle Scholar
  32. Verma, S. P., Andaverde, J., & Santoyo, E. (2006). Statistical evaluation of methods for the calculation of static formation temperatures in geothermal and oil wells using an extension of the error propagation theory. Journal of Geochemical Exploration, 89, 398–404.Google Scholar
  33. Verma, S. P., Cruz-Huicochea, R., & Díaz-González, L. (2013). Univariate data analysis system: Deciphering mean compositions of island and continental arc magmas, and influence of underlying crust. International Geology Review, 55, 1922–1940.Google Scholar
  34. Verma, S. P., Pandarinath, K., & Rivera-Gómez, M. A. (2016). Evaluation of the ongoing rifting and subduction processes in the geochemistry of magmas from the western part of the Mexican Volcanic Belt. Journal of South American Earth Sciences, 66, 125–148.CrossRefGoogle Scholar
  35. Verma, S. P., Rosales-Rivera, M., Díaz-González, L., & Quiroz-Ruiz, A. (2017). Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests. Turkish Journal of Earth Sciences, 26, 331–353.CrossRefGoogle Scholar
  36. White, W. M. (2013). Geochemistry. Hoboken, United States: Wiley.Google Scholar
  37. Wood, D. A. (1980). The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50, 11–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations