Major Element Geochemistry

  • Surendra P. VermaEmail author


This chapter deals with the use of major elements in geochemistry. We first cover the important topic of the classification of fresh or relatively less-altered volcanic rocks, for which the mass-balance based CIPW norm (Cross et al. in Journal of Geology, 10, 555–690, 1902) procedure of Verma et al. (in Schweizerische Mineralogische und Petrographische Mitteilungen, 83, 197–216, 2003) is presented and related computer programs are pointed out. The chemical classification of plutonic rocks is covered, but the difficulties with the use of ternary diagrams for the mineralogical classification are dealt with first. Similarly, the difficulties with the other highly used classification diagrams are pointed out. Then, after commenting on the classification of sedimentary rocks, the shortcomings of the frequently-used weathering indices are discussed. The chapter ends with the adverse evaluation of the existing major element concentration-based diagrams for both igneous and sedimentary rocks, which has made is clear that geochemometric solutions to the problem of the nomenclature and tectonic discrimination should be proposed.


  1. Agrawal, S., Guevara, M., & Verma, S. P. (2004). Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks. International Geology Review, 46, 575–594.CrossRefGoogle Scholar
  2. Agrawal, S., Guevara, M., & Verma, S. P. (2008). Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50, 1057–1079.CrossRefGoogle Scholar
  3. Aitchison, J. (1986). The statistical analysis of compositional data. London, UK: Chapman and Hall.CrossRefGoogle Scholar
  4. Armstrong-Altrin, J. S., & Verma, S. P. (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177, 115–129.CrossRefGoogle Scholar
  5. Basaltic Volcanism Study Project. (1981). Basaltic volcanism on the terrestrial planets. In Basaltic volcanism on the terrestrial planets (p. 1286). New York: Pergamon Press, Inc.Google Scholar
  6. Best, M. G. (2003). Igneous and metamorphic petrology. Oxford: Blackwell Science Ltd.Google Scholar
  7. Bevington, P. R. (1969). Data reduction and error analysis for the physical sciences. New York: Mc-Graw Hill Book Company.Google Scholar
  8. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.CrossRefGoogle Scholar
  9. Brooks, C. K. (1976). The Fe2O3/FeO ratio of basaltic analyses: An appeal for a standardized procedure. Bulletin of the Geological Society of Denmark, 25, 117–120.Google Scholar
  10. Butler, J. C. (1979). Trends in ternary petrologic variation diagrams—Fact or fantasy? American Mineralogist, 64, 1115–1121.Google Scholar
  11. Carr, P. F. (1985). Geochemistry of Late Permian shoshonitic lavas from the southern Sydney Basin. In F. L. Sutherland, B. J. Franklin, & A. E. Waltho (Eds.), Volcanism in Eastern Australia (pp. 165–183). Geological Society of Australia, New South Wales Division, Publication.Google Scholar
  12. Chilingar, G. V. (1960). Notes on classification of carbonate rocks on basis of chemical composition. Journal of Sedimentary Petrology, 30, 157–158.CrossRefGoogle Scholar
  13. Coombs, D. S. (1963). Trends and affinities of basaltic magmas and pyroxenes as illustrated on the diopside-olivine-silica diagram. International Mineralogical Association Special Paper, 1, 227–250.Google Scholar
  14. Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The interpretation of igneous rocks (p. 450). London: George Allen & Unwin.Google Scholar
  15. Cross, W., Iddings, J. P., Pirsson, L. V., & Washington, H. S. (1902). A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. Journal of Geology, 10, 555–690.CrossRefGoogle Scholar
  16. Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40, 695–707.Google Scholar
  17. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.CrossRefGoogle Scholar
  18. Ewart, A. (1982). The mineralogy and petrology of tertiary—Recent orogenic volcanic rocks: With special reference to the andesitic-basaltic compositional range. In R. S. Thorpe (Ed.), Andesites (pp. 25–95). Chichester: Wiley.Google Scholar
  19. Floyd, P. A., & Winchester, J. A. (1975). Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, 27, 211–218.CrossRefGoogle Scholar
  20. Floyd, P. A., & Winchester, J. A. (1978). Identification and discrimination of altered and meta-morphosed volcanic rocks using immobile elements. Chemical Geology, 21, 291–306.CrossRefGoogle Scholar
  21. Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322.CrossRefGoogle Scholar
  22. Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. Journal of Petrology, 48, 2341–2357.CrossRefGoogle Scholar
  23. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.Google Scholar
  24. Hughes, C. J., & Hussey, E. M. (1976). M and Mg values in igneous rocks: Proposed usage and a comment on currently employed Fe2O3 corrections. Geochimica et Cosmochimica Acta, 40, 485–486.CrossRefGoogle Scholar
  25. Hughes, C. J., & Hussey, E. M. (1979). Standardized procedure for presenting corrected Fe2O3/FeO ratios in analyses of fine grained mafic rocks. Neues Jahrbuch für Mineralogie-Monatshefte, 12, 570–572.Google Scholar
  26. Hutchison, C. S. (1974). Laboratory handbook of petrographic techniques. New York: Wiley.Google Scholar
  27. Innocenti, F., Mazzuoli, R., Pasquare, G., Radicate di Brozolo, F., & Villari, L. (1982). Tertiary and quaternary volcanism of the Erzurum-Kars area (Eastern Turkey): Geochronological data and geodynamic evolution. Journal of Volcanology and Geothermal Research, 13, 223–240.CrossRefGoogle Scholar
  28. Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548.CrossRefGoogle Scholar
  29. Johannsen, A. (1931). A descriptive petrography of the igneous rocks. Chicago: Chicago University Press.Google Scholar
  30. Kelsey, C. H. (1965). Calculation of the CIPW norm. Mineralogical Magazine, 34, 276–282.CrossRefGoogle Scholar
  31. Kuno, H. (1959). Origin of Cenozoic petrographic provinces of Japan and surrounding areas. Bulletin Volcanologique, XX(II), 37–76.CrossRefGoogle Scholar
  32. Kuno, H. (1966). Lateral variation of basalt magma type across continental margins and island arcs. In IAV International Symposium on Volcanology (pp. 195–222). New Zealand.Google Scholar
  33. Kuno, H. (1968). Differentiation of basalt magmas. In H. H. Hess & A. Poldervaart (Eds.), Basalts: The Poldervaart treatise on rocks of basaltic composition (pp. 623–688). New York: Interscience.Google Scholar
  34. Le Bas, M. J. (1989). Nephelinitic and basanitic rocks. Journal of Petrology, 30, 1299–1312.CrossRefGoogle Scholar
  35. Le Bas, M. J. (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41, 1467–1470.CrossRefGoogle Scholar
  36. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.CrossRefGoogle Scholar
  37. Le Maitre, R. W. (1976). Some problems of the projection of chemical data into mineralogical classifications. Contributions to Mineralogy and Petrology, 56, 181–189.CrossRefGoogle Scholar
  38. Le Maitre, R. W. (1982). Numerical petrology. Statistical interpretation of geochemical data. Amsterdam: Elsevier.Google Scholar
  39. Le Maitre, R. W. (1984). A proposal by the IUGS Subcommission on the Systematics for Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Sciences, 31, 243–255.CrossRefGoogle Scholar
  40. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., et al. (1989). A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Oxford: Blackwell Scientific Publications.Google Scholar
  41. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., et al. (2002). Igneous rocks. A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. MacDonald, G. A. (1968). Composition and origin of Hawaiian lavas. In R. R. Coats, R. L. Hay, & C. A. Anderson (Eds.), Studies in volcanology: A memoir in honor of Howel Williams (pp. 477–522). Geological Society of America Memoir.Google Scholar
  43. MacDonald, G. A., & Katsura, T. (1964). Chemical composition of Hawaiian lavas. Journal of Petrology, 5, 82–133.CrossRefGoogle Scholar
  44. Middlemost, E. A. K. (1985). Magmas and magmatic rocks. An introduction to igneous petrology. London: Longman.Google Scholar
  45. Middlemost, E. A. K. (1989). Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77, 19–26.CrossRefGoogle Scholar
  46. Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth Science Reviews, 37, 215–224.CrossRefGoogle Scholar
  47. Mullen, E. D. (1983). MnO/TiO2/P2O5: A minor element discrimination for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62, 53–62.CrossRefGoogle Scholar
  48. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.CrossRefGoogle Scholar
  49. Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107, 501–504.CrossRefGoogle Scholar
  50. Pearce, J. A. (1976). Statistical analysis of major element patterns in basalts. Journal of Petrology, 17, 15–43.CrossRefGoogle Scholar
  51. Pearce, T. H., Gorman, B. E., & Birkett, T. C. (1977). The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 36, 121–132.CrossRefGoogle Scholar
  52. Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.CrossRefGoogle Scholar
  53. Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstone. New York: Springer-Verlag.Google Scholar
  54. Poldervaart, A., & Parker, A. B. (1964). The crystallization index as a parameter of igneous differentiation in binary variation diagrams. American Journal of Science, 262, 281–289.CrossRefGoogle Scholar
  55. Ragland, P. C. (1989). Basic analytical petrology. New York: Oxford University Press.Google Scholar
  56. Rickwood, P. C. (1989). Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22, 247–263.CrossRefGoogle Scholar
  57. Rittmann, A. (1973). Stable mineral assemblages of igneous rocks. Berlin: Springer.CrossRefGoogle Scholar
  58. Roaldset, E. (1972). Mineralogy and geochemistry of quaternary clays in the Numedal area, Southern Norway. Norsk Geologisk Tidsskrift, 52, 335–369.Google Scholar
  59. Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Essex: Longman Scientific Technical.Google Scholar
  60. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.CrossRefGoogle Scholar
  61. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139.CrossRefGoogle Scholar
  62. Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12, 1–33.CrossRefGoogle Scholar
  63. Streckeisen, A., & Le Maitre, R. W. (1979). A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch für Mineralogie-Abhandlungen, 136, 169–206.Google Scholar
  64. Thornton, C. P., & Tuttle, O. F. (1960). Chemistry of igneous rocks. I. Differentiation index. American Journal of Science, 258, 664–684.CrossRefGoogle Scholar
  65. Till, R. (1977). The hardrock package, a series of Fortran IV computer programs for performing and plotting petrochemical calculations. Computers & Geosciences, 3, 185–243.CrossRefGoogle Scholar
  66. Verma, S. P. (2010). Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences, 19, 185–238.Google Scholar
  67. Verma, S. P. (2012). Geochemometrics. Revista Mexicana de Ciencias Geológicas, 29, 276–298.Google Scholar
  68. Verma, S. P. (2015). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.CrossRefGoogle Scholar
  69. Verma, S. P., & Agrawal, S. (2011). New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas, 28, 24–44.Google Scholar
  70. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.CrossRefGoogle Scholar
  71. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.CrossRefGoogle Scholar
  72. Verma, S. P., & Rivera-Gómez, M. A. (2013). Computer programs for the classification and nomenclature of igneous rocks. Episodes, 36, 115–124.Google Scholar
  73. Verma, S. P., & Verma, S. K. (2013). First 15 probability-based multi-dimensional discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22, 931–995.CrossRefGoogle Scholar
  74. Verma, S. P., Torres-Alvarado, I. S., & Sotelo-Rodríguez, Z. T. (2002). SINCLAS: Standard igneous norm and volcanic rock classification system. Computers & Geosciences, 28, 711–715.CrossRefGoogle Scholar
  75. Verma, S. P., Torres-Alvarado, I. S., & Velasco-Tapia, F. (2003). A revised CIPW norm. Schweizerische Mineralogische und Petrographische Mitteilungen, 83, 197–216.Google Scholar
  76. Verma, S. P., Andaverde, J., & Santoyo, E. (2006). Statistical evaluation of methods for the calculation of static formation temperatures in geothermal and oil wells using an extension of the error propagation theory. Journal of Geochemical Exploration, 89, 398–404.CrossRefGoogle Scholar
  77. Verma, S. P., Rodríguez-Ríos, R., & González-Ramírez, R. (2010). Statistical evaluation of classification diagrams for altered igneous rocks. Turkish Journal of Earth Sciences, 19, 239–265.Google Scholar
  78. Verma, S. P., Cruz-Huicochea, R., & Díaz-González, L. (2013). Univariate data analysis system: Deciphering mean compositions of island and continental arc magmas, and influence of underlying crust. International Geology Review, 55, 1922–1940.CrossRefGoogle Scholar
  79. Verma, S. P., Díaz González, L., & Armstrong-Altrin, J. S. (2016). Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments. Earth Science Informatics, 9, 151–165.CrossRefGoogle Scholar
  80. Vocke, R. D., Jr. (1999). Atomic weights of the elements 1997. Pure & Applied Chemistry, 71, 1593–1607.CrossRefGoogle Scholar
  81. Vogel, D. E. (1975). Precambrian weathering in acid metavolcanic rocks from the Superior Province, Villebon Township, south-central Quebec. Canadian Journal of Earth Sciences, 12, 2080–2085.CrossRefGoogle Scholar
  82. Washington, H. S. (1930). The chemical analysis of rocks. New York: Wiley.Google Scholar
  83. Weltje, G. J. (2006). Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. In A. Buccianti, G. Mateu-Figueras, & V. Pawlowsky-Glahn (Eds.), Compositional data analysis in the geosciences: From theory to practice (pp. 79–99). London: The Geological Society of London.Google Scholar
  84. Winchester, J. A., & Floyd, P. A. (1976). Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28, 459–469.CrossRefGoogle Scholar
  85. Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.CrossRefGoogle Scholar
  86. Woolley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M. S., et al. (1996). Classification of lamprophyres, lamproites, kimberlites and the kalsilitic, melilitic, and leucitic rocks: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Canadian Mineralogist, 34, 175–186.Google Scholar
  87. Wright, J. B. (1969). A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106, 370–384.CrossRefGoogle Scholar
  88. Zanettin, B. (1984). Proposed new chemical classification of volcanic rocks. Episodes, 7, 19–20.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations