Advertisement

Basic Concepts of Geochemistry and Composition of Earth Materials

  • Surendra P. VermaEmail author
Chapter

Abstract

This chapter deals with some of the basic concepts of geochemistry. We commence our journey on the road from geochemistry to geochemometrics. The analytical methods can be classified into eight major groups. The lower limits of detection (LODs) of most instruments are not random numbers but obey the odd–even effect of nuclear stability. From an extensive database of Pliocene to Holocene fresh igneous rocks, we illustrate the way statistics and computation can be applied to the geochemistry of earth materials. Both central tendency and dispersion parameters are presented as a novel approach for the subject of geochemistry. This would be a major step towards geochemometrics. The major and most common trace element concentrations of all volcanic rock types are presented and evaluated from the Student t and ANOVA tests, documenting thus the similarities and differences between or among different magma and rock types. These statistical inferences are presented for the first time in the literature. More importantly, the geochemometric methodology for the composition of earth materials is established.

References

  1. Abdel-Rahman, A. F. M., & Lease, N. A. (2012). Petrogenesis of Cenozoic mafic–ultramafic alkaline lavas from the Tigris volcanic field, NE Syria. Geological Magazine, 149, 1–18.CrossRefGoogle Scholar
  2. Ablay, G. J., Carroll, M. R., Palmer, M. R., Martí, J., & Sparks, R. S. J. (1998). Basanite–phonolite lineages of the Teide–Pico Viejo volcanic complex, Tenerife, Canary Islands. Journal of Petrology, 39, 905–936.CrossRefGoogle Scholar
  3. Agostini, S. (2003). Il magmatismo post-collisionale dell’anatolia occidentale: Caratteri geochimici e petrologici, distribuzione spazio-temporale, quadro geodinamico. In Dipartimento di Scienze della Terra (p. 269). Pisa: Università di Pisa.Google Scholar
  4. Agostini, S., Corti, G., Doglioni, C., Carminati, E., Innocenti, F., Tonarini, S., et al. (2006). Tectonic and magmatic evolution of the active volcanic front in El Salvador: Insight into the Berlín and Ahuachapán geothermal areas. Geothermics, 35, 368–408.CrossRefGoogle Scholar
  5. Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., Tonarini, S., & Savascin, M. Y. (2007). The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area. In L. Beccaluva, G. Bianchini, & M. Wilson (Eds.), Cenozoic volcanism in the Mediterranean area, Geological Society of America Special Paper (pp. 1–15). Boulder, Colorado: Geological Society of America.Google Scholar
  6. Aguillón-Robles, A., Tristán-González, M., López-Doncel, R. A., García-Arreola, M. E., Almaguer-Rodríguez, J. L., & Maury, R. C. (2012). Trace elements geochemistry and origin of volcanic units from the San Luis Potosí and Río Santa María volcanic fields, Mexico: The bearing of ICP-QMS data. Geofísica Internacional, 51, 293–308.Google Scholar
  7. Aguillón-Robles, A., Tristán-González, M., Aguirre-Díaz, G. J., López-Doncel, R. A., Bellon, H., & Martínez-Esparza, G. (2014). Eocene to Quaternary mafic-intermediate volcanism in San Luis Potosí, central Mexico: The transition from Farallon plate subduction to intra-plate continental magmatism. Journal of Volcanology and Geothermal Research, 276, 152–172.CrossRefGoogle Scholar
  8. Aguirre-Díaz, G. (2001). Recurrent magma mingling in successive ignimbrites from Amealco caldera, central Mexico. Bulletin Volcanologique, 63, 238–251.CrossRefGoogle Scholar
  9. Aguirre-Díaz, G. J., & López-Martínez, M. (2009). Geologic evolution of the Donguinyó-Huichapan caldera complex, central Mexican Volcanic Belt, Mexico. Journal of Volcanology and Geothermal Research, 179, 133–148.CrossRefGoogle Scholar
  10. Aguirre-Díaz, G. J., & McDowell, F. W. (1999). Volcanic evolution of the Amealco caldera, central Mexico. In H. Delgado-Granados, G. Aguirre-Díaz, & J. M. Stock (Eds.), Cenozoic tectonics and volcanism of Mexico (pp. 1–14). Boulder, Colorado: Geological Society of America Special Paper.Google Scholar
  11. Agustín-Flores, J., Siebe, C., & Guilbaud, M.-N. (2011). Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin volcanic field, south of México City. Journal of Volcanology and Geothermal Research, 201, 143–162.CrossRefGoogle Scholar
  12. Aitchison, J. (1984). Statistical analysis of geochemical compositions. Mathematical Geology, 16, 531–564.CrossRefGoogle Scholar
  13. Aitchison, J. (1986). The statistical analysis of compositional data. London, UK: Chapman and Hall.CrossRefGoogle Scholar
  14. Alam, M. A., Chandrasekharam, D., Vaselli, O., Capaccioni, B., Manetti, P., & Santo, P. B. (2004). Petrology of the prehistoric lavas and dyke of the Barren Island, Andaman Sea, Indian Ocean. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 113, 715–722.Google Scholar
  15. Albarède, F. (2018). Geochemistry: An introduction. Cambridge, United Kingdom: Cambridge University Press.Google Scholar
  16. Albarède, F., & Tamagnan, V. (1988). Modelling the recent geochemical evolution of the Piton de la Fournaise volcano, Réunion Island, 1931–1986. Journal of Petrology, 29, 997–1030.CrossRefGoogle Scholar
  17. Albarède, F., Luais, B., Fitton, G., Semet, M., Kaminski, E., Upton, B. G. J., et al. (1997). The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530 000 years. Journal of Petrology, 38, 171–201.CrossRefGoogle Scholar
  18. Albert, H., Costa, F., & Martí, J. (2015). Timing of magmatic processes and unrest associated with mafic historical monogenetic eruptions in Tenerife Island. Journal of Petrology, 56, 1945–1966.CrossRefGoogle Scholar
  19. Ali, S., Ntaflos, T., & Upton, B. G. J. (2013). Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian Region, Styria, Austria. Chemical Geology, 337–338, 99–113.CrossRefGoogle Scholar
  20. Alici, P., Temel, A., Gourgaud, A., Kieffer, G., & Gündogdu, M. N. (1998). Petrology and geochemistry of potassic rocks in the Gölcük area (Isparta, SW Turkey): Genesis of enriched alkaline magmas. Journal of Volcanology and Geothermal Research, 85, 423–446.CrossRefGoogle Scholar
  21. Alici, P., Temel, A., & Gourgaud, A. (2002). Pb–Nd–Sr isotope and trace element geochemistry of Quaternary extension-related alkaline volcanism: A case study of Kula region (western Anatolia, Turkey). Journal of Volcanology and Geothermal Research, 115, 487–510.CrossRefGoogle Scholar
  22. Allan, J. F. (1986). Geology of the northern Colima and Zacoalco grabens, southwest Mexico: Late Cenozoic rifting in the Mexican Volcanic Belt. Geological Society of America Bulletin, 97, 473–485.CrossRefGoogle Scholar
  23. Allan, J. F., & Carmichael, I. S. E. (1984). Lamprophyric lavas in the Colima graben, SW Mexico. Contributions to Mineralogy and Petrology, 88, 203–216.CrossRefGoogle Scholar
  24. Allan, J. F., & Simkin, T. (2000). Fernandina volcano’s evolved, well-mixed basalts: Mineralogical and petrological constraints on the nature of the Galapagos plume. Journal of Geophysical Research, 105, 6017–6041.CrossRefGoogle Scholar
  25. Allègre, C. J. (2008). Isotope geology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Allen, S. R., & McPhie, J. (2003). Phenocryst fragments in rhyolitic lavas and lava domes. Journal of Volcanology and Geothermal Research, 126, 263–283.CrossRefGoogle Scholar
  27. Allen, M. B., Kheirkhan, M., Neill, I., Emami, M. H., & McLeod, C. L. (2013). Generation of arc and within-plate chemical signatures in collision zone magmatism: Quaternary lavas from Kurdistan Province, Iran. Journal of Petrology, 54, 887–911.CrossRefGoogle Scholar
  28. Almeev, R. R., Kimura, J.-I., Ariskin, A. A., & Ozerov, A. Y. (2013). Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions. Journal of Volcanology and Geothermal Research, 263, 141–171.CrossRefGoogle Scholar
  29. Altherr, R., Henjes-Kunst, F. M., Puchelt, H., & Baumann, A. (1988). Volcanic activity in the Red Sea axial trough—Evidence for a large mantle diapir? Tectonophysics, 150, 121–133.CrossRefGoogle Scholar
  30. Altherr, R., Meyer, H.-P., Holl, A., Volker, F., Alibert, C., McCulloch, M. T., et al. (2004). Geochemical and Sr–Nd–Pb isotopic characteristics of late Cenozoic leucite lamproites from the East European Alpine belt (Macedonia and Yugoslavia). Contributions of Mineralogy and Petrology, 147, 58–73.CrossRefGoogle Scholar
  31. Alvarado, G. E., Soto, G. J., Schmincke, H.-U., Bolge, L. L., & Sumita, M. (2006). The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research, 157, 9–33.CrossRefGoogle Scholar
  32. Andrews, B. J., Gardner, J. E., & Housh, T. B. (2008). Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts. Journal of Volcanology and Geothermal Research, 175, 415–426.CrossRefGoogle Scholar
  33. Aoki, K.-I. (1967). Petrography and petrochemistry of latest Pliocene olivine-tholeiites of Taos area, northern New Mexico, USA. Contributions to Mineralogy and Petrology, 14, 190–203.CrossRefGoogle Scholar
  34. Aoki, K.-I., Yoshida, T., Yusa, K., & Nakamura, Y. (1985). Petrology and geochemistry of the Nyamuragira volcano, Zaire. Journal of Volcanology and Geothermal Research, 25, 1–28.CrossRefGoogle Scholar
  35. Arce, J. L., Macías, J. L., & Vázquez-Selem, L. (2003). The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications. Geological Society of America Bulletin, 115, 230–248.CrossRefGoogle Scholar
  36. Arce, J. L., Cervantes, K. E., Macías, J. L., & Mora, J. C. (2005). The 12.1 ka Middle Toluca Pumice: A dacitic Plinian–subplinian eruption of Nevado de Toluca in Central Mexico. Journal of Volcanology and Geothermal Research, 147, 125–143.CrossRefGoogle Scholar
  37. Arce, J. L., Macías, R., García Palomo, A., Capra, L., Macías, J. L., Layer, P., et al. (2008). Late Pleistocene flank collapse of Zempoala volcano (Central Mexico) and the role of fault reactivation. Journal of Volcanology and Geothermal Research, 177, 944–958.CrossRefGoogle Scholar
  38. Arce, J. L., Layer, P. W., Lassiter, J. C., Benowitz, J. A., Macías, J. L., & Ramírez-Espinosa, J. (2013). 40Ar/39Ar dating, geochemistry, and isotopic analyses of the Quaternary Chichinautzin volcanic field, south of Mexico City: Implications for timing, eruption rate, and distribution of volcanism. Bulletin of Volcanology, 75, 1–25.CrossRefGoogle Scholar
  39. Arce, J. L., Walker, J., & Keppie, J. D. (2014). Petrology of two contrasting Mexican volcanoes, the Chiapanecan (El Chichón) and Central American (Tacaná) volcanic belts: The result of rift versus subduction-related volcanism. International Geology Review, 56, 501–524.CrossRefGoogle Scholar
  40. Arculus, R. J. (1976). Geology and geochemistry of the alkali basalt—Andesite association of Grenada, Lesser Antilles island arc. Geological Society of America Bulletin, 87, 612–624.CrossRefGoogle Scholar
  41. Armienti, P., Barberi, F., Bizouard, H., Clocchiatti, R., Innocenti, F., Metrich, N., et al. (1983). The Phlegraean fields: Magma evolution within a shallow chamber. Journal of Volcanology and Geothermal Research, 17, 289–311.CrossRefGoogle Scholar
  42. Arnórsson, S., Gunnarsson, I., Stefánsson, A., Andrésdóttir, A., & Sveinbjörnsdóttir, A. E. (2002). Major element chemistry of surface- and ground waters in basaltic terrain, N-Iceland. I. Primary mineral saturation. Geochimica et Cosmochimica Acta, 66, 4015–4046.CrossRefGoogle Scholar
  43. Arpa, M. C. B., Patino, L. C., & Vogel, T. A. (2008). The basaltic to trachydacitic upper Diliman Tuff in Manila: Petrogenesis and comparison with deposits from Taal and Laguna Calderas. Journal of Volcanology and Geothermal Research, 177, 1020–1034.CrossRefGoogle Scholar
  44. Auchapt, A., Dupuy, C., Dostal, J., & Kanika, M. (1987). Geochemistry and petrogenesis of rift-related volcanic rocks from South Kivu (Zaire). Journal of Volcanology and Geothermal Research, 31, 33–46.CrossRefGoogle Scholar
  45. Auer, A., Martin, C. E., Palin, J. M., White, J. D. L., Nakagawa, M., & Stirling, C. (2015). The evolution of hydrous magmas in the Tongariro Volcanic Centre: The 10 ka Pahoka-Mangamate eruptions. New Zealand Journal of Geology and Geophysics, 58, 364–384.CrossRefGoogle Scholar
  46. Avanzinelli, R., Elliott, T., Tommasini, S., & Conticelli, S. (2008). Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium. Journal of Petrology, 49, 195–223.CrossRefGoogle Scholar
  47. Avellán, D. R., Macías, J. L., Pardo, N., Scolamacchia, T., & Rodriguez, D. (2012). Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa volcanic field, western Managua, Nicaragua. Journal of Volcanology and Geothermal Research, 213–214, 51–71.CrossRefGoogle Scholar
  48. Ayalew, D., Ebinger, C., Bourdon, E., Wolfenden, E., Yirgu, G., & Grassineau, N. (2006). Temporal compositional variation of syn-rift rhyolites along the western margin of the southern Red Sea and northern Main Ethiopian Rift. In G. Yirgu, C. Ebinger, & P. K. H. Maguire (Eds.), The Afar Volcanic Province within the East African Rift system (pp. 121–130). London: Geological Society of London Special Publications.Google Scholar
  49. Ayalew, D., Jung, S., Romer, R. L., Kerstend, F., Pfänder, J. A., & Garbe-Schönberg, D. (2016). Petrogenesis and origin of modern Ethiopian rift basalts: Constraints from isotope and trace element geochemistry. Lithos, 258–259, 1–14.CrossRefGoogle Scholar
  50. Aydin, F., Karsli, O., & Chen, B. (2008). Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Journal of Volcanology and Geothermal Research, 104, 249–266.Google Scholar
  51. Bach, W., Hegner, E., Erzinger, J., & Satir, M. (1994). Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30° S. Contributions to Mineralogy and Petrology, 116, 365–380.CrossRefGoogle Scholar
  52. Bach, W., Erzinger, J., Dosso, L., Bollinger, C., Bougault, H., Etoubleau, J., et al. (1996). Unusually large Nb–Ta depletions in North Chile ridge basalts at 36°50′ to 38°56′ S: Major element, trace element, and isotopic data. Earth and Planetary Science Letters, 142, 223–240.CrossRefGoogle Scholar
  53. Bachmann, O., Wallace, P. J., & Bourquin, J. (2010). The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean arc). Contributions to Mineralogy and Petrology, 159, 187–202.CrossRefGoogle Scholar
  54. Bagci, U., Alpaslan, M., Frei, R., Kurt, M. A., & Temel, A. (2011). Different degrees of partial melting of the enriched mantle source for Plio–Quaternary basic volcanism, Toprakkale (Osmaniye) region, southern Turkey. Turkish Journal of Earth Sciences, 20, 115–135.Google Scholar
  55. Baggerman, T. D., & DeBari, S. M. (2011). The generation of a diverse suite of late Pleistocene and Holocene basalt through dacite lavas from the northern Cascade arc at Mount Baker, Washington. Contributions to Mineralogy and Petrology, 161, 75–99.CrossRefGoogle Scholar
  56. Bailey, J. C., Jensen, E. S., Hansen, A., Kann, A. D. J., & Kann, K. (2009). Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc. Lithos, 110, 20–36.CrossRefGoogle Scholar
  57. Baker, P. E. (1975). Peralkaline acid volcanic rocks of oceanic islands. Bulletin Volcanologique, 38, 735–754.Google Scholar
  58. Baker, P. E., Buckley, F., & Holland, J. G. (1974). Petrology and geochemistry of Easter Island. Contributions to Mineralogy and Petrology, 44, 85–100.CrossRefGoogle Scholar
  59. Baker, J. A., Menzies, M. A., Thirlwall, M. F., & Macpherson, C. G. (1997). Petrogenesis of Quaternary intraplate volcanism, Sana’a, Yemen: Implications for plume–lithosphere interaction and polybaric melt hybridization. Journal of Petrology, 38, 1359–1390.CrossRefGoogle Scholar
  60. Ban, M., Hirotani, S., Wako, A., Suga, T., Iai, Y., Kagashima, S.-I., et al. (2007). Origin of felsic magmas in a large-caldera-related stratovolcano in the central part of NE Japan—Petrogenesis of the Takamatsu volcano. Journal of Volcanology and Geothermal Research, 167, 100–118.CrossRefGoogle Scholar
  61. Barberi, F., Ferrara, G., Santacroce, R., Treuil, M., & Varet, J. (1975). A transitional basalt-pantellerite sequence of fractional crystallization, the Boina Centre (Afar Rift, Ethiopia). Journal of Petrology, 16, 22–56.CrossRefGoogle Scholar
  62. Bardintzeff, J. M., & Deniel, C. (1992). Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bulletin of Volcanology, 54, 267–283.CrossRefGoogle Scholar
  63. Barker, A. K., Holm, P. M., Peate, D. W., & Barker, J. A. (2009). Geochemical stratigraphy of submarine lavas (3–5 Ma) from the Flamengos Valley, Santiago, southern Cape Verde Islands. Journal of Petrology, 50, 169–193.CrossRefGoogle Scholar
  64. Barker, A. K., Holm, P. M., Peate, D. W., & Baker, J. A. (2010). A 5 million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde Archipelago. Contributions of Mineralogy and Petrology, 160, 133–154.CrossRefGoogle Scholar
  65. Barling, J., Goldstein, S. L., & Nicholls, I. A. (1994). Geochemistry of Heard Island (southern Indian Ocean): Characterization of an enriched mantle component and implications for enrichment of the sub-Indian Ocean mantle. Journal of Petrology, 35, 1017–1053.CrossRefGoogle Scholar
  66. Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Chichester: Wiley.Google Scholar
  67. Barrat, J. A., Jahn, B. M., Fourcade, S., & Joron, J. L. (1993). Magma genesis in an ongoing rifting zone: The Tadjoura Gulf (Afar area). Geochimica et Cosmochimica Acta, 57, 2291–2302.CrossRefGoogle Scholar
  68. Barrat, J. A., Fourcade, S., Jahn, B. M., Chemirke, J. L., & Capdevila, R. (1998). Isotope (Sr, Nd, Pb, O) and trace-element geochemistry of volcanics from the Erta’Ale range (Ethiopia). Journal of Volcanology and Geothermal Research, 80, 85–100.CrossRefGoogle Scholar
  69. Barrat, J. A., Joron, J. L., Taylor, R. N., Fourcade, S., Nesbitt, R. W., & Jahn, B. M. (2003). Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in Central Afar. Lithos, 69, 1–13.CrossRefGoogle Scholar
  70. Barsdell, M. (1988). Petrology and petrogenesis of clinopyroxene-rich tholeiitic lavas, Merelava volcano, Vanuatu. Journal of Petrology, 29, 927–964.CrossRefGoogle Scholar
  71. Barsdell, M., & Berry, R. F. (1990). Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu. Journal of Petrology, 31, 747–777.CrossRefGoogle Scholar
  72. Barton, M., & Huijsmans, J. P. P. (1986). Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: An example of the eruption of lavas of near-constant composition over a 2,200 year period. Contributions to Mineralogy and Petrology, 94, 472–495.CrossRefGoogle Scholar
  73. Basu, A. R., Junwen, W., Wankang, H., Guanghong, X., & Tatsumoto, M. (1991). Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105, 149–169.CrossRefGoogle Scholar
  74. Bau, M., & Knittel, U. (1993). Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: Evidence from Mt. Arayat, Philippines. Chemical Geology, 105, 233–251.CrossRefGoogle Scholar
  75. Beate, B., Monzier, M., Spikings, R., Cotten, J., Silva, J., Bourdon, E., et al. (2001). Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: The Quimsacocha volcanic center. Earth and Planetary Science Letters, 192, 561–570.CrossRefGoogle Scholar
  76. Beaumais, A., Bertrand, H., Chazot, G., Dosso, L., & Robine, C. (2016). Temporal magma source changes at Gaua volcano, Vanuatu island arc. Journal of Volcanologyand GeothermalResearch, 322, 30–47.CrossRefGoogle Scholar
  77. Beccaluva, L., Deriu, M., Macciotta, G., Savelli, C., & Venturelli, G. (1977). Geochronology and magmatic character of the Pliocene-Pleistocene volcanism in Sardinia (Italy). Bulletin Volcanologique, 40, 153–168.CrossRefGoogle Scholar
  78. Beccaluva, L., Di Girolamo, P., & Serri, G. (1991). Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos, 26, 191–221.CrossRefGoogle Scholar
  79. Beccaluva, L., Coltorti, M., Di Girolamo, P., Melluso, L., Milani, L., Morra, V., et al. (2002). Petrogenesis and evolution of Mt. Vulture alkaline volcanism (Southern Italy). Mineralogy and Petrology, 74, 277–297.CrossRefGoogle Scholar
  80. Beier, C., Haase, K. M., & Hansteen, T. H. (2006). Magma evolution of the Sete Cidades volcano, São Miguel, Azores. Journal of Petrology, 47, 1375–1411.CrossRefGoogle Scholar
  81. Beier, C., Stracke, A., & Haase, K. M. (2007). The peculiar geochemical signatures of Sao Miguel (Azores) lavas: Metasomatized or recycled mantle sources? Earth and Planetary Science Letters, 259, 186–199.CrossRefGoogle Scholar
  82. Beier, C., Haase, K., Abouchami, W., Krienitz, M.-S., & Hauff, F. (2008). Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems, 9, 1–26.Google Scholar
  83. Beier, C., Haase, K. M., & Abouchami, W. (2015). Geochemical and geochronological constraints on the evolution of the Azores Plateau. In C. R. Neal, W. W. Sager, T. Sano, & E. Erba (Eds.), The origin, evolution, and environmental impact of oceanic large igneous provinces (pp. 27–55). The Geological Society of America Special Paper.Google Scholar
  84. Bellon, H., Aguillón-Robles, A., Calmus, T., Maury, R. C., Bourgois, J., & Cotten, J. (2006). La Purísima volcanic field, Baja California Sur (Mexico): Miocene to Quaternary volcanism related to subduction and opening of an asthenospheric window. Journal of Volcanology and Geothermal Research, 152, 253–272.CrossRefGoogle Scholar
  85. Benjamin, E. R., Plank, T., Wade, J. A., Kelley, K. A., Hauri, E. H., & Alvarado, G. E. (2007). High water contents in basaltic magmas from Irazú volcano, Costa Rica. Journal of Volcanology and Geothermal Research, 168, 68–92.CrossRefGoogle Scholar
  86. Bergmanis, E. C., Sinton, J. M., & Trusdell, F. A. (2000). Rejuvenated volcanism along the southwest rift zone, East Maui, Hawaii. Bulletin Volcanologique, 62, 239–255.CrossRefGoogle Scholar
  87. Bergmanis, E. C., Sinton, J., & Rubin, K. H. (2007). Recent eruptive history and magma reservoir dynamics on the southern east pacific rise at 17°30′ S. Geochemistry, Geophysics, Geosystems, 8, 1–25.CrossRefGoogle Scholar
  88. Bertotto, G. W., Cingolani, C. A., & Bjerg, E. A. (2009). Geochemical variations in Cenozoic back-arc basalts at the border of La Pampa and Mendoza provinces, Argentina. Journal of South American Earth Sciences, 28, 360–373.CrossRefGoogle Scholar
  89. Besang, C., Harre, W., Kreuzer, H., Lenz, H., Müller, P., & Wendt, I. (1977). Radiometrische datierung, geochemische und petrographische untersuchungen der fichtelgebirgsgranite. Geologisches Jahrbuch, 8, 3–71.Google Scholar
  90. Best, M. G. (2003). Igneous and metamorphic petrology. Oxford: Blackwell Science Ltd.Google Scholar
  91. Best, M. G., & Christiansen, E. H. (2001). Igneous petrology. Massachusetts: Blackwell Science.Google Scholar
  92. Bézos, A., Escrig, S., Langmuir, C. H., Michael, P. J., & Asimow, P. D. (2009). Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research, 114, 1–25.CrossRefGoogle Scholar
  93. Binard, N., Maury, R. C., Guille, G., Talandier, J., Gillot, P. Y., & Cotten, J. (1993). Mehetia Island, South Pacific: Geology and petrology of the emerged part of the Society hot spot. Journal of Volcanology and Geothermal Research, 55, 239–260.CrossRefGoogle Scholar
  94. Bindeman, I. N., Leonov, V. L., Izbekov, P. E., Ponomareva, V. V., Watts, K. E., Shipley, N. K., et al. (2010). Large-volume silicic volcanism in Kamchatka: Ar–Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. Journal of Volcanology and Geothermal Research, 189, 57–80.CrossRefGoogle Scholar
  95. Black, S., Macdonald, R., & Kelly, M. R. (1997). Crustal origin for peralkaline rhyolites from Kenya: Evidence from U-series disequilibria and Th-isotopes. Journal of Petrology, 38, 277–297.CrossRefGoogle Scholar
  96. Blatter, D. L., & Hammersley, L. (2010). Impact of the Orozco fracture zone on the central Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 197, 67–84.CrossRefGoogle Scholar
  97. Blatter, D. L., Carmichael, I. S. E., Deino, A. L., & Renne, P. R. (2001). Neogene volcanism at the front of the central Mexican Volcanic Belt: Basaltic andesites to dacites, with contemporaneous shoshonites and high-TiO2 lava. Geological Society of America Bulletin, 113, 1324–1342.CrossRefGoogle Scholar
  98. Blatter, D. L., Farmer, G. L., & Carmichael, I. S. E. (2007). A north–south transect across the central Mexican Volcanic Belt at ~100° W: Spatial distribution, petrological, geochemical, and isotopic characteristics of Quaternary volcanism. Journal of Petrology, 48, 901–950.CrossRefGoogle Scholar
  99. Blondes, M. S., Reiners, P. W., Ducea, M. N., Singer, B. S., & Chesley, J. (2008). Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California. Earth and Planetary Science Letters, 269, 140–154.CrossRefGoogle Scholar
  100. Bloomer, S. H., Stern, R. J., Fisk, E., & Geschwind, C. H. (1989). Shoshonitic volcanism in the northern Mariana arc. 1. Mineralogic and major and trace element characteristics. Journal of Geophysical Research, 94, 4469–4496.CrossRefGoogle Scholar
  101. Bloomfield, K. (1973). The age and significance of Tenango basalt, central Mexico. Bulletin Volcanologique, 37, 586–595.CrossRefGoogle Scholar
  102. Bloomfield, K. (1975). A late-Quaternary monogenetic volcano field in central Mexico. Geologische Rundschau, 64, 476–497.CrossRefGoogle Scholar
  103. Blum, N., Halbach, P., & Münch, U. (1996). Geochemistry and mineralogy of alkali basalts from Tropic Seamount, central Atlantic Ocean. Marine Geology, 136, 1–19.CrossRefGoogle Scholar
  104. Boari, E., Tommasini, S., Laurenzi, M. A., & Conticelli, S. (2009a). Transition from ultrapotassic kamafugitic to sub-alkaline magmas: Sr, Nd, and Pb isotope, trace element and 40Ar–39Ar age data from the Middle Latin Valley volcanic field, Roman Magmatic Province, Central Italy. Journal of Petrology, 50, 1327–1357.CrossRefGoogle Scholar
  105. Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., Benedetti, A. A. D., et al. (2009b). Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: Inferences on volcano evolution and magma genesis. Bulletin of Volcanology, 71, 977–1005.CrossRefGoogle Scholar
  106. Bohrson, W. A., & Reid, M. R. (1995). Petrogenesis of alkaline basalts from Socorro Island, Mexico: Trace element evidence for contamination of ocean island basalt in the shallow ocean crust. Journal of Geophysical Research, 100, 555–576.CrossRefGoogle Scholar
  107. Bohrson, W. A., & Reid, M. R. (1997). Genesis of silicic peralkaline volcanic rocks in an Ocean Island setting by crustal melting and open-system processes: Socorro Island, Mexico. Journal of Petrology, 38, 1137–1166.CrossRefGoogle Scholar
  108. Bolge, L. L., Carr, M. J., Feigenson, M. D., & Alvarado, G. E. (2006). Geochemical stratigraphy and magmatic evolution at Arenal volcano, Costa Rica. Journal of Volcanology and Geothermal Research, 157, 34–48.CrossRefGoogle Scholar
  109. Bongiolo, E. M., Pires, G. L. C., Geraldes, M. C., Santos, A. C., & Neumannd, R. (2015). Geochemical modeling and Nd–Sr data links nephelinite–phonolite successions and xenoliths of Trindade Island (South Atlantic Ocean, Brazil). Journal of Volcanology and Geothermal Research, 306, 58–73.CrossRefGoogle Scholar
  110. Booden, M. A., Smith, I. E. M., Mauk, J. L., & Black, P. M. (2012). Geochemical and isotopic development of the Coromandel Volcanic Zone, northern New Zealand, since 18 Ma. Journal of Volcanology and Geothermal Research, 219–220, 15–32.CrossRefGoogle Scholar
  111. Borg, L. E., & Clynne, M. A. (1998). The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: Origin by partial melting of basaltic lower crust. Journal of Petrology, 39, 1197–1222.CrossRefGoogle Scholar
  112. Borsi, S., Ferrara, G., Innocenti, F., & Mazzuoli, R. (1972). Geochronology and petrology of recent volcanics in the Eastern Aegean Sea (West Anatolia and Lesvos Island). Bulletin of Volcanology, 36, 473–496.CrossRefGoogle Scholar
  113. Boudal, C. (1985). Pétrologie d’un grand volcan andésitique mexicain: Le Popocatepetl (p. 140). University of Clermont-Ferrand II.Google Scholar
  114. Bougault, H., Dmitriev, L., Schilling, J. G., Sobolev, A., Joron, J. L., & Needham, H. D. (1988). Mantle heterogeneity from trace elements: MAR triple junction near 14° N. Earth and Planetary Science Letters, 88, 27–36.CrossRefGoogle Scholar
  115. Boyce, J. A., Keays, R. R., Nicholls, I. A., & Hayman, P. (2014). Eruption centres of the Hamilton area of the Newer Volcanics Province, Victoria, Australia: Pinpointing volcanoes from a multifaceted approach to landform mapping. Australian Journal of Earth Sciences, 61, 735–754.CrossRefGoogle Scholar
  116. Brandl, P. A., Beier, C., Regelous, M., Abouchami, W., Haase, K. M., Garbe-Schönberg, D., et al. (2012). Volcanism on the flanks of the East Pacific Rise: Quantitative constraints on mantle heterogeneity and melting processes. Chemical Geology, 298–299, 41–56.CrossRefGoogle Scholar
  117. Brenna, M., Cronin, S. J., Smith, I. E. M., Sohn, Y. K., & Németh, K. (2010). Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contributions to Mineralogy and Petrology, 160, 931–950.CrossRefGoogle Scholar
  118. Brenna, M., Cronin, S. J., Smith, I. E. M., Maas, R., & Sohn, Y. K. (2012). How small-volume basaltic magmatic systems develop: A case study from the Jeju Island Volcanic Field, Korea. Journal of Petrology, 53, 985–1018.CrossRefGoogle Scholar
  119. Brenna, M., Price, R., Cronin, S. J., Smith, I. E. M., Sohn, Y. K., Bom Kim, G., et al. (2014). Final magma storage depth modulation of explosivity andtrachyte-phonolite genesis at an intraplatevolcano: A case study from Ulleung Island, South Korea. Journal of Petrology, 55, 709–747.CrossRefGoogle Scholar
  120. Briggs, R. M., Okada, T., Itaya, T., Shibuya, H., & Smith, I. E. M. (1994). K–Ar ages, paleomagnetism, and geochemistry of the South Auckland volcanic field, North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 37, 143–153.CrossRefGoogle Scholar
  121. Brophy, J. G. (1986). The Cold Bay volcanic center, Aleutian volcanic arc. I. Implications for the origin of high-aluminum arc basalt. Contributions to Mineralogy and Petrology, 93, 368–380.CrossRefGoogle Scholar
  122. Brophy, J. G., & Dreher, S. T. (2000). The origin of composition gaps at South Sister volcano, central Oregon: Implications for fractional crystallization processes beneath active calc-alkaline volcanoes. Journal of Volcanology and Geothermal Research, 102, 287–307.CrossRefGoogle Scholar
  123. Brown, G. M., Holland, J. G., Sigurdsson, H., Tomblin, J. F., & Arculus, R. J. (1977). Geochemistry of the Lesser Antilles volcanic island arc. Geochimica et Cosmochimica Acta, 41, 785–801.CrossRefGoogle Scholar
  124. Brown, S. J. A., Smith, R. T., Cole, J. W., & Houghton, B. F. (1994). Compositional and textural characteristics of the strombolian and surtseyan K-Trig basalts, Taupo Volcanic Centre, New Zealand: Implications for eruption dynamics. New Zealand Journal of Geology and Geophysics, 37, 113–126.CrossRefGoogle Scholar
  125. Brown, R. J., Orsi, G., & Vita, S. D. (2008). New insights into late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bulletin of Volcanology, 70, 583–603.Google Scholar
  126. Bruni, S., D’Orazio, M., Haller, M. J., Innocenti, F., Manetti, P., Pécskay, Z., et al. (2008). Time-evolution of magma sources in a continental back-arc setting: The Cenozoic basalts from Sierra de San Bernardo (Patagonia, Chubut, Argentina). Geological Magazine, 145, 714–732.CrossRefGoogle Scholar
  127. Bryan, W. B., Stice, G. D., & Ewart, A. (1972). Geology, petrography, and geochemistry of the volcanic islands of Tonga. Journal of Geophysical Research, 77, 1566–1585.CrossRefGoogle Scholar
  128. Bryan, W. B., Thompson, G., & Ludden, J. N. (1981). Compositional variation in normal MORB from 22°–25° N: Mid-Atlantic ridge and Kane fracture zone. Journal of Geophysical Research, 86, 11815–11836.CrossRefGoogle Scholar
  129. Bryan, S. E., Martí, J., & Leosson, M. (2002). Petrology and geochemistry of the bandas del Sur formation, Las Cañadas edifice, Tenerife (Canary Islands). Journal of Petrology, 43, 1815–1856.CrossRefGoogle Scholar
  130. Bryant, J. A., Yogodzinski, G. M., Hall, M. L., Lewicki, J. L., & Bailey, D. G. (2006). Geochemical constraints on the origin of volcanic rocks from the Andean Northern volcanic zone, Ecuador. Journal of Petrology, 47, 1147–1175.CrossRefGoogle Scholar
  131. Bryant, J. A., Yogodzinski, G. M., & Churikova, T. G. (2011). High-Mg# andesitic lavas of the Shisheisky complex, northern Kamchatka: Implications for primitive calc-alkaline magmatism. Contributions to Mineralogy and Petrology, 161, 791–810.CrossRefGoogle Scholar
  132. Bucchi, F., Lara, L. E., & Gutiérrez, F. (2015). The Carrán–Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting. Journal of Volcanology and Geothermal Research, 308, 70–81.CrossRefGoogle Scholar
  133. Buettner, A., Kleinhanns, I. C., Rufer, D., Hunziker, J. C., & Villa, I. M. (2005). Magma generation at the easternmost section of the Hellenic arc: Hf, Nd, Pb and Sr isotope geochemistry of Nisyros and Yali volcanoes (Greece). Lithos, 83, 29–46.CrossRefGoogle Scholar
  134. Buket, E., & Temel, A. (1998). Major-element, trace-element, and Sr–Nd isotopic geochemistry and genesis of Varto (Mus) volcanic rocks, Eastern Turkey. Journal of Volcanology and Geothermal Research, 85, 405–422.CrossRefGoogle Scholar
  135. Cadoux, A., & Pinti, D. L. (2009). Hybrid character and pre-eruptive events of Mt Amiata volcano (Italy) inferred from geochronological, petro-geochemical and isotopic data. Journal of Volcanology and Geothermal Research, 179, 169–190.CrossRefGoogle Scholar
  136. Cai, Y., LaGatta, A., Goldstein, S. L., Langmuir, C. H., Gómez-Tuena, A., Martín-Del Pozzo, A. L., et al. (2014). Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs. Chemical Geology, 377, 45–55.CrossRefGoogle Scholar
  137. Calanchi, N., Peccerillo, A., Tranne, C. A., Lucchini, F., Rossi, P. L., Kempton, P., et al. (2002). Petrology and geochemistry of volcanic rocks from the island of Panarea: Implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian sea). Journal of Volcanology and Geothermal Research, 115, 367–395.CrossRefGoogle Scholar
  138. Calmus, T., Aguillón-Robles, A., Maury, R. C., Bellon, H., Benoit, M., Cotten, J., et al. (2003). Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: The role of slab melts. Lithos, 66, 77–105.CrossRefGoogle Scholar
  139. Calmus, T., Pallares, C., Maury, R. C., Robles, A. A., Bellon, H., Benoit, M., & Michaud, F. (2010). Volcanic markers of the post-subduction evolution of Baja California and Sonora, Mexico: Slab tearing versus lithospheric rupture of the Gulf of California. Pure and Applied Geophysics.  https://doi.org/10.1007/s00024-010-0204-z.CrossRefGoogle Scholar
  140. Calvache, V. M. L., & Williams, S. N. (1997). Geochemistry and petrology of the Galeras Volcanic Complex, Colombia. Journal of Volcanology and Geothermal Research, 77, 21–38.CrossRefGoogle Scholar
  141. Cameron, B. I., Walker, J. A., Carr, M. J., Patino, L. C., Matías, O., & Feigenson, M. D. (2002). Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. Journal of Volcanology and Geothermal Research, 119, 21–50.CrossRefGoogle Scholar
  142. Camp, V. E., Roobol, M. J., & Hooper, P. R. (1991). The Arabian continental alkali basalt province: Part II. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi Arabia. Geological Society of America Bulletin, 103, 363–391.CrossRefGoogle Scholar
  143. Camp, V. E., Ross, M. E., & Hanson, W. E. (2003). Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon. Geological Society of America Bulletin, 115, 105–128.CrossRefGoogle Scholar
  144. Capra, L., Macías, J. L., & Garduño, V. H. (1997). The Zitácuaro Volcanic Complex, Michoacán, Mexico: Magmatic and eruptive history of a resurgent caldera. Geofísica Internacional, 36, 161–179.Google Scholar
  145. Carmichael, I. S. E., Lange, R. A., & Luhr, J. F. (1996). Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: A consequence of plate extension above a subduction modified mantle wedge. Contributions to Mineralogy and Petrology, 124, 302–333.CrossRefGoogle Scholar
  146. Carmichael, I. S. E., Frey, H. M., Lange, R. A., & Hall, C. M. (2006). The Pleistocene cinder cones surrounding Volcán Colima, Mexico re-visited: Eruption ages and volumes, oxidation states, and sulfur content. Bulletin of Volcanology, 68, 407–419.CrossRefGoogle Scholar
  147. Carn, S. A., & Pyle, D. M. (2001). Petrology and geochemistry of the Lamongan volcanic field, East Java, Indonesia: Primitive Sunda Arc magmas in an extensional tectonic setting? Journal of Petrology, 42, 1643–1683.CrossRefGoogle Scholar
  148. Caroff, M., Guillou, H., Maliaux, M., Maury, R. C., Guille, G., & Cotten, J. (1999). Assimilation of ocean crust by hawaiitic and mugearitic magmas: An example from Eiao (Marquesas). Lithos, 46, 235–258.CrossRefGoogle Scholar
  149. Carr, M. J. (1984). Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. Journal of Volcanology and Geothermal Research, 20, 231–252.CrossRefGoogle Scholar
  150. Carr, M. J., Feigenson, M. D., & Bennett, E. A. (1990). Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369–380.CrossRefGoogle Scholar
  151. Carrasco-Núñez, G. (2000). Structure and proximal stratigraphy of Citlaltépetl volcano (Pico de Orizaba), Mexico. In H. Delgado-Granados, G. Aguirre-Díaz, & J. M. Stock (Eds.), Cenozoic tectonics and volcanism of Mexico (pp. 247–262). Geological Society of America.Google Scholar
  152. Carrasco-Núñez, G., & Branney, M. J. (2005). Progressive assembly of a massive layer of ignimbrite with a normal-to-reverse compositional zoning: The Zaragoza ignimbrite of central Mexico. Bulletin Volcanologique, 68, 3–20.CrossRefGoogle Scholar
  153. Carrasco-Núñez, G., & Rose, W. I. (1995). Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5–9.0 ka. Journal of Volcanology and Geothermal Research, 69, 197–215.CrossRefGoogle Scholar
  154. Carrasco-Núñez, G., Righter, K., Chesley, J., Siebert, L., & Aranda-Gómez, J. J. (2005). Contemporaneous eruption of calc-alkaline and alkaline lavas in a continental arc (Eastern Mexican Volcanic Belt): Chemically heterogeneous but isotopically homogeneous source. Contributions to Mineralogy and Petrology, 150, 423–440.CrossRefGoogle Scholar
  155. Carrasco-Núñez, G., Siebert, L., Díaz-Castellón, R., Vázquez-Selem, L., & Capra, L. (2010). Evolution and hazards of a long-quiescent compound shield-like volcano: Cofre de Perote, Eastern Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 197, 209–224.CrossRefGoogle Scholar
  156. Carrasco-Núñez, G., McCurry, M., Branney, M. J., Norry, M., & Willcox, C. (2012). Complex magma mixing, mingling, and withdrawal associated with an intra-Plinian ignimbrite eruption at a large silicic caldera volcano: Los Humeros of central Mexico. Geological Society of America Bulletin, 124, 1793–1809.CrossRefGoogle Scholar
  157. Carrera Muñoz, M. (2011). Geología y petrología del Arco Volcánico Chiapaneco (AVC), porción norte, Chiapas, México. In Instituto de Geofísica, Posgrado en Ciencias de la Tierra (p. 112). Mexico City: Universidad Nacional Autónoma de México.Google Scholar
  158. Cassidy, R. M. (1988). Determination of rare-earth elements in rocks by liquid chromatography. Chemical Geology, 67, 185–195.CrossRefGoogle Scholar
  159. Cassidy, M., Taylor, R. N., Palmer, M. R., Cooper, R. J., Stenlake, C., & Trofimovs, J. (2012). Tracking the magmatic evolution of island arc volcanism: Insights from a high-precision Pb isotope record of Montserrat, Lesser Antilles. Geochemistry, Geophysics, Geosystems, 13, 1–19.CrossRefGoogle Scholar
  160. Castillo, P. R., & Newhall, C. G. (2004). Geochemical constraints on possible subduction components in lavas of Mayon and Taal volcanoes, southern Luzon, Philippines. Journal of Petrology, 45, 1089–1108.CrossRefGoogle Scholar
  161. Castillo, P. R., Hawkins, J. W., Lonsdale, P. F., Hilton, D. R., & Shaw, A. M. (2002). Petrology of Alarcon Rise lavas, Gulf of California: Nascent intracontinental ocean crust. Journal of Geophysical Research, 107, 2222.CrossRefGoogle Scholar
  162. Castillo, P. R., Rigby, S. J., & Solidum, R. U. (2007). Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines. Lithos, 97, 271–288.CrossRefGoogle Scholar
  163. Castro Govea, R. (1999). Historia eruptiva reciente del volcán La Malinche. In Instituto de Geofísica (p. 130). Mexico City: Universidad Nacional Autónoma de México.Google Scholar
  164. Castro Govea, R. (2007). Historia eruptiva del volcán La Malinche y estudio del emplazamiento del flujo piroclástico Pilares Superior. In Instituto de Geofísica, Posgrado en Ciencias de la Tierra (p. 138). Mexico City: Universidad Nacional Autónoma de México.Google Scholar
  165. Cavazos Tovar, J. G. (2006). Magmatismo adakítico en el volcán Tancítaro, Michoacán, México. In Posgrado en Ciencias de la Tierra, Centro de Geociencias (p. 53). México, D.F.: Universidad Nacional Autónoma de México.Google Scholar
  166. Cebriá, J. M., & López-Ruiz, J. (1996). A refined method for trace element modelling of nonmodal batch partial melting processes: The Cenozoic continental volcanism of Calatrava, central Spain. Geochimica et Cosmochimica Acta, 60, 1355–1366.CrossRefGoogle Scholar
  167. Cebriá, J. M., López-Ruiz, J., Doblas, M., Oyarzun, R., Hertogen, J., & Benito, R. (2000). Geochemistry of the Quaternary alkali basalts of Garrotxa (NE volcanic province, Spain): A case of double enrichment of the mantle lithosphere. Journal of Volcanology and Geothermal Research, 102, 217–235.CrossRefGoogle Scholar
  168. Chadwick, J., Perfit, M., Ridley, I., Jonasson, I., Kamenov, G., Chadwick, W., et al. (2005). Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge. Journal of Geophysical Research, 110, B03101.Google Scholar
  169. Chadwick, J., Perfit, M., McInne, B., Kamenov, G., & Plank, T. (2009). Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth and Planetary Science Letters, 279, 293–302.CrossRefGoogle Scholar
  170. Chakrabarti, R., Basu, A. R., Santo, A. P., Tedesco, D., & Vaselli, O. (2009). Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics, Western rift, East African Rift system. Chemical Geology, 259, 273–289.CrossRefGoogle Scholar
  171. Chan, L. H., Leeman, W. P., & You, C.-F. (1999). Lithium isotopic composition of Central American Volcanic Arc lavas: Implications for modification of subarc mantle by slab-derived fluids. Chemical Geology, 160, 255–280.CrossRefGoogle Scholar
  172. Chandrasekharam, D., Santo, A. P., Capaccioni, B., Vaselli, O., Alam, M. A., Manetti, P., et al. (2009). Volcanological and petrological evolution of Barren Island (Andaman Sea, Indian Ocean). Journal of Asian Earth Sciences, 35, 469–487.CrossRefGoogle Scholar
  173. Chang, J. M., Feeley, T. C., & Deraps, M. R. (2009). Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing. Journal of Petrology, 50, 2249–2286.CrossRefGoogle Scholar
  174. Chauvel, C., & Jahn, B.-M. (1984). Nd–Sr isotope and REE geochemistry of alkali basalts from the Massif Central, France. Geochimica et Cosmochimica Acta, 48, 93–110.CrossRefGoogle Scholar
  175. Chayes, F. (1960). On correlation between variables of constant sum. Journal of Geophysical Research, 65, 4185–4193.CrossRefGoogle Scholar
  176. Chayes, F. (1971). Ratio correlation. A manual for students of petrology and geochemistry. Chicago and London: The University of Chicago Press.Google Scholar
  177. Chen, C.-Y., Frey, F. A., & Garcia, M. O. (1990). Evolution of alkalic lavas at Heleakala volcano, east Maui, Hawaii. Contributions to Mineralogy and Petrology, 105, 197–218.CrossRefGoogle Scholar
  178. Chen, C. Y., Frey, F. A., Garcia, M. O., Dalrymple, G. B., & Hart, S. R. (1991). The tholeiite to alkalic basalt transition at Haleakala volcano, Maui, Hawaii. Contributions to Mineralogy and Petrology, 106, 183–200.CrossRefGoogle Scholar
  179. Cheng, Q. C., Macdougall, J. D., & Lugmair, G. W. (1993). Geochemical studies of Tahiti, Teahitia and Mahetia, Society Island Chain. Journal of Volcanology and Geothermal Research, 55, 155–184.CrossRefGoogle Scholar
  180. Chesley, J., Ruiz, J., Righter, K., Ferrari, L., & Gomez-Tuena, A. (2002). Source contamination versus assimilation: An example from the Trans-Mexican Volcanic Arc. Earth and Planetary Science Letters, 195, 211–221.CrossRefGoogle Scholar
  181. Chesner, C. A., & Halsor, S. P. (1997). Geochemical trends of sequential lava flows from Meseta volcano, Guatemala. Journal of Volcanology and Geothermal Research, 78, 221–237.CrossRefGoogle Scholar
  182. Chesner, C. A., & Luhr, J. F. (2010). A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. Journal of Volcanology and Geothermal Research, 197, 259–278.CrossRefGoogle Scholar
  183. Chesner, C. A., & Rose, W. I., Jr. (1984). Geochemistry and evolution of the Fuego volcanic complex, Guatemala. Journal of Volcanology and Geothermal Research, 21, 25–44.CrossRefGoogle Scholar
  184. Chiaradia, M., Müntener, O., & Beate, B. (2011). Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western Cordillera of Ecuador). Journal of Petrology, 52, 1107–1141.CrossRefGoogle Scholar
  185. Chiaradia, M., Müntener, O., & Beate, B. (2014). Quaternary sanukitoid-like andesites generated by intracrustal processes (Chacana caldera complex, Ecuador): Implications for Archean sanukitoids. Journal of Petrology, 55, 769–802.CrossRefGoogle Scholar
  186. Choi, A. H., Mukasa, S. B., Kwon, S.-T., & Andronikov, A. V. (2006). Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology, 232, 134–151.CrossRefGoogle Scholar
  187. Choo, M. K., Lee, M. J., Lee, J. I., Kim, K. H., & Park, K.-H. (2012). Geochemistry and Sr–Nd–Pb isotopic constraints on the petrogenesis of Cenozoic lavas from the Pali Aike and Morro Chico area (52° S), southern Patagonia, South America. Island Arc, 21, 327–350.CrossRefGoogle Scholar
  188. Chung, S.-L., Sun, S. S., Tu, K., Chen-Hong, C., & Lee, C. L. (1994). Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere–asthenosphere interaction during continental extension. Chemical Geology, 112, 1–20.CrossRefGoogle Scholar
  189. Churikova, T., Dorendorf, F., & Wörner, G. (2001). Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. Journal of Petrology, 42, 1567–1593.CrossRefGoogle Scholar
  190. Clague, D. A., Frey, F. A., Garcia, M. O., Huang, S., McWilliams, M., & Beeson, M. H. (2016). Compositional heterogeneity of the Sugarloaf melilite nephelinite flow, Honolulu Volcanics, Hawai’i. Geochimica et Cosmochimica Acta, 185, 251–277.CrossRefGoogle Scholar
  191. Class, C., & Goldstein, S. L. (1997). Plume-lithosphere interactions in the ocean basins: Constraints from the source mineralogy. Earth and Planetary Science Letters, 150, 245–260.CrossRefGoogle Scholar
  192. Class, C., Altherr, R., Volker, F., Eberz, G., & McCulloch, M. T. (1994). Geochemistry of Pliocene to Quaternary alkali basalts from the Huri Hills, northern Kenya. Chemical Geology, 113, 1–22.CrossRefGoogle Scholar
  193. Class, C., Goldstein, S. L., Altherr, R., & Bachèlery, P. (1998). The process of plume-lithosphere interactions in the ocean basins—The case of Grande Comore. Journal of Petrology, 39, 881–903.CrossRefGoogle Scholar
  194. Class, C., Goldstein, S. L., Stute, M., Kurz, M. D., & Schlosser, P. (2005). Grand Comore Island: A well-constrained “low 3He/4He” mantle plume. Earth and Planetary Science Letters, 233, 391–409.CrossRefGoogle Scholar
  195. Claude-Ivanaj, C., Bourdon, B., & Allègre, C. J. (1998). Ra–Th–Sr isotope systematics in Grande Comore Island: A case study of plume-lithosphere interaction. Earth and Planetary Science Letters, 164, 99–117.CrossRefGoogle Scholar
  196. Cole, J. W. (1981). Genesis of lavas of the Taupo volcanic zone, North Island, New Zealand. Journal of Volcanology and Geothermal Research, 10, 317–337.CrossRefGoogle Scholar
  197. Conly, A. G., Brenan, J. M., Bellon, H., & Scott, S. D. (2005). Arc to rift transitional volcanism in the Santa Rosalía region, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 142, 303–341.CrossRefGoogle Scholar
  198. Conticelli, S. (1998). The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: Mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chemical Geology, 149, 51–81.CrossRefGoogle Scholar
  199. Conticelli, S., & Peccerillo, A. (1992). Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: Petrogenesis and inferences on the evolution of the mantle sources. Lithos, 28, 221–240.CrossRefGoogle Scholar
  200. Conticelli, S., Francalanci, L., Manetti, P., Cioni, R., & Sbrana, A. (1997). Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, central Italy: The role of evolutionary processes in the genesis of variably enriched alkaline magmas. Journal of Volcanology and Geothermal Research, 75, 107–136.CrossRefGoogle Scholar
  201. Conticelli, S., Marchionni, S., Rosa, D., Giordano, G., Boari, E., & Avanzinelli, R. (2009a). Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr–Nd–Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy. Contributions to Mineralogy and Petrology, 157, 41–63.CrossRefGoogle Scholar
  202. Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., et al. (2009b). Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos, 107, 68–92.CrossRefGoogle Scholar
  203. Conticelli, S., Avanzinelli, R., Poli, G., Braschi, E., & Giordano, G. (2013). Shift from lamproite-like to leucititic rocks: Sr–Nd–Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy. Chemical Geology, 353, 246–266.CrossRefGoogle Scholar
  204. Coogan, L. A., MacLeod, C. J., Dick, H. J. B., Edwards, S. J., Kvassnes, A., Natland, J. H., et al. (2001). Whole-rock geochemistry of gabbros from the Southwest Indian Ridge: Constraints on geochemical fractionations between the upper and lower oceanic crust and magma chamber processes at (very) slow-spreading ridges. Chemical Geology, 178, 1–22.CrossRefGoogle Scholar
  205. Cook, C., Briggs, R. M., Smith, I. E. M., & Maas, R. (2005). Petrology and geochemistry of intraplate basalts in the South Auckland volcanic field, New Zealand: Evidence for two coeval magma suites from distinct sources. Journal of Petrology, 46, 473–503.CrossRefGoogle Scholar
  206. Coombs, M. L., Sisson, T., Bleick, H., Henton, S., Nye, C., Payne, A., et al. (2013). Andesites of the 2009 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, Special Issue on the 2009 Redoubt Eruption, 259, 349–372.CrossRefGoogle Scholar
  207. Cooper, A. F., Adam, L. J., Coulter, R. F., Eby, G. N., & McIntosh, W. C. (2007). Geology, geochronology and geochemistry of a basanitic volcano, White Island, Ross Sea, Antarctica. Journal of Volcanology and Geothermal Research, 165, 189–216.CrossRefGoogle Scholar
  208. Corgne, A., Maury, R. C., Lagabrielle, Y., Bourgois, J., Suarez, M., Cotten, J., et al. (2001). La diversité des basalts de Patagonie à la latitude du point triple du Chili (46°–47° lat. S): Doneées complémentaires et implications sur les conditions de la subduction. Comptes Rendus de L Academie des Sciences du Paris/Earth and Planetary Sciences, 333, 363–371.Google Scholar
  209. Correa Tello, J. C. (2011). Caracterización petrográfica y geoquímica de Campo Volcánica de Santiago Tetlapayac-El Tepozán-Santa Cruz, Hidalgo. In Facultad de Ingeniería (p. 121). México, D.F.: Universidad Nacional Autónoma de México.Google Scholar
  210. Corsaro, R. A., & Cristofolini, R. (1993). Nuovi dati petrochimici e isotopici sulla successione del Mongibello Recente. Bullettino delle sedute della Accademia gioenia di scienze naturali in Catania, 341, 185–225.Google Scholar
  211. Corsaro, R. A., & Cristofolini, R. (1996). Origin and differentiation of recent basaltic magmas from Mount Etna. Mineralogy and Petrology, 57, 1–21.CrossRefGoogle Scholar
  212. Corsaro, R. A., Civetta, L., Di Renzo, V., & Miraglia, L. (2009). Petrology of lavas from the 2004–2005 flank eruption of Mt. Etna, Italy: Inferences on the dynamics of magma in the shallow plumbing system. Bulletin of Volcanology, 71, 781–793.CrossRefGoogle Scholar
  213. Corsaro, R. A., Renzo, V. D., Distefano, S., Miraglia, L., & Civetta, L. (2013). Relationship between petrologic processes in the plumbing system of Mt. Etna and the dynamics of the eastern flank from 1995 to 2005. Journal of Volcanology and Geothermal Research, 251, 75–89.CrossRefGoogle Scholar
  214. Costantini, L., Pioli, L., Bonadonna, C., Clavero, J., & Longchamp, C. (2011). A late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit. Journal of Volcanology and Geothermal Research, 200, 143–158.CrossRefGoogle Scholar
  215. Cousens, B. L. (1996). Depleted and enriched upper mantle sources for basaltic rocks from diverse tectonic environments in the northeast Pacific Ocean: The generation of oceanic alkaline vs. tholeiitic basalts. In A. Basu & S. Hart (Eds.), Earth processes: Reading the isotopic code (pp. 207–231). USA: American Geophysical Union.Google Scholar
  216. Cousens, B. L., Clague A., D., & Sharp, W. D. (2003). Chronology, chemistry, and origin of trachytes from Hualalai volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 4, 1078.  https://doi.org/10.1029/2003gc000560.CrossRefGoogle Scholar
  217. Cousens, B., Wetmore, S., & Henry, C. D. (2013). The Pliocene-Quaternary Buffalo Valley volcanic field, Nevada: Post-extension, intraplate magmatism in the north-central Great Basin, USA. Journal of Volcanology and Geothermal Research, 268, 17–35.CrossRefGoogle Scholar
  218. Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The interpretation of igneous rocks (p. 450). London: George Allen & Unwin.Google Scholar
  219. Crummy, J. M., Savov, I. P., Navarro-Ochoa, C., Morgan, D. J., & Wilson, M. (2014). High-K mafic Plinian eruptions of Volcán de Colima, Mexico. Journal of Petrology, 55, 2155–2192.CrossRefGoogle Scholar
  220. Çubukçu, H. E., Ulusoy, I., Aydar, E., Ersoy, O., Sen, E., Gourgaud, A., et al. (2012). Mt. Nemrut volcano (Eastern Turkey): Temporal petrological evolution. Journal of Volcanology and Geothermal Research, 209–210, 33–60.CrossRefGoogle Scholar
  221. Cunningham, H. S., Turner, S. P., Patia, A. D., Eggins, S. M., & Arculus, R. J. (2009). Temporal variations in U-series disequilibria in an active caldera, Rabaul, Papua New Guinea. Journal of Petrology, 50, 507–529.CrossRefGoogle Scholar
  222. D’Antonio, M. (2008). Reconstrucción de los eventos eruptivos de hace ~28 y ~13 Ka asociados al emplazamiento de flujos de bloques y ceniza en el Volcán Nevado de Toluca (México). In Instituto de Geofísica, Posgrado en Ciencias de la Tierra (p. 121). Mexico City: Universidad Nacional Autónoma de México.Google Scholar
  223. D’Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., et al. (1999.) The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. Journal of Volcanology and Geothermal Research, 91, 247–268.CrossRefGoogle Scholar
  224. D’Orazio, M., Agostini, S., Mazzarini, F., Innocenti, F., Manetti, P., Haller, M. J., et al. (2000). The Pali Aike volcanic field, Patagonia: Slab-window magmatism near the tip of South America. Tectonophysics, 321, 407–427.CrossRefGoogle Scholar
  225. D’Orazio, M., Innocenti, F., Manetti, P., Haller, M. J., Di Vincenzo, G., & Tonarini, S. (2005). The late Pliocene mafic lavas from the Camusú Aike volcanic field (~50° S, Argentina): Evidence for geochemical variability in slab window magmatism. Journal of South American Earth Sciences, 18, 107–124.CrossRefGoogle Scholar
  226. Daoud, M. A., Maury, R. C., Barrat, J.-A., Taylor, R. N., Le Gall, B., Guillou, H., et al. (2010). A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts. Lithos, 114, 327–336.CrossRefGoogle Scholar
  227. Dautria, J. M., Dostal, J., Dupuy, C., & Liotard, J. M. (1988). Geochemistry and petrogenesis of alkali basalts from Tahalra (Hoggar, Northwest Africa). Chemical Geology, 69, 17–35.CrossRefGoogle Scholar
  228. Dávalos-Elizando, M. G. (2009). Petrología y geoquímica de xenolitos ultramáficos en Cd. Serdán, porción oriental de la Faja Volcánica Trans-Mexicana. In Posgrado en Ciencias de la Tierra (p. 90). Mexico City: Universidad Nacional Autónoma de México.Google Scholar
  229. Davidson, J. P., & Wilson, I. R. (1989). Evolution of an alkali basalt-trachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallization. Earth and Planetary Science Letters, 95, 141–160.CrossRefGoogle Scholar
  230. Davidson, J., & Wilson, M. (2011). Differentiation and source processes at Mt Pelée and the Quill; Active volcanoes in the Lesser Antilles Arc. Journal of Petrology, 52, 1493–1531.CrossRefGoogle Scholar
  231. Davidson, J. P., Ferguson, K. M., Colucci, M. T., & Dungan, M. A. (1988). The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S. Chile: Multicomponent sources and open system evolution. Contributions to Mineralogy and Petrology, 100, 429–445.CrossRefGoogle Scholar
  232. Davies, G. R., & Macdonald, R. (1987). Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: Combined trace element and Sr–Nd–Pb isotope constraints. Journal of Petrology, 28, 1009–1031.CrossRefGoogle Scholar
  233. Dawson, J. B. (1962). The geology of Oldoinyo Lengai. Bulletin of Volcanology, 24, 349–287.CrossRefGoogle Scholar
  234. de Lima, E. F., Machado, A., Nardi, L. V. S., Saldanha, D. L., Azevedo, J. M. M., Sommer, C. A., et al. (2011). Geochemical evidence concerning sources and petrologic evolution of Faial Island, Central Azores. International Geology Review, 53, 1684–1708.CrossRefGoogle Scholar
  235. De Moor, J. M., Fischer, T. P., Hilton, D. R., Hauri, E., Jaffe, L. A., & Camacho, J. T. (2005). Degassing at Anatahan volcano during the May 2003 eruption: Implications from petrology, ash leachates, and SiO2 emissions. Journal of Volcanology and Geothermal Research, 146, 117–138.CrossRefGoogle Scholar
  236. De Mulder, M., Hertogen, J., Deutsch, S., & André, L. (1986). The role of crustal contamination in the potassic suite of the Karisimbi volcano (Virunga, African Rift Valley). Chemical Geology, 57, 117–136.CrossRefGoogle Scholar
  237. de Silva, S. L. (1991). Styles of zoning in central Andean ignimbrites: Insights into magma chamber processes. Geological Society of America Special Paper, 265, 217–232.CrossRefGoogle Scholar
  238. Debaille, V., Blichert-Toft, J., Agranier, A., Doucelance, R., Schiano, P., & Albarède, F. (2006). Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35° N. Earth and Planetary Science Letters, 241, 844–862.CrossRefGoogle Scholar
  239. Deering, C. D., Gravley, D. M., Vogel, T. A., Cole, J. W., & Leonard, G. S. (2010). Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo Volcanic Zone, New Zealand. Contributions to Mineralogy and Petrology, 160, 609–629.CrossRefGoogle Scholar
  240. Deering, C. D., Bachmann, O., Dufek, J., & Gravley, D. M. (2011). Rift-related transition from andesite to rhyolite volcanism in theTaupo Volcanic Zone (New Zealand) controlled by crystal-melt dynamics in mush zones with variable mineral assemblages. Journal of Petrology, 52, 2243–2263.CrossRefGoogle Scholar
  241. Deering, C. D., Vogel, T. A., Patino, L. C., Szymanski, D. W., & Alvarado, G. E. (2012). Magmatic processes that generate chemically distinct silicic magmas in NW Costa Rica and the evolution of juvenile continental crust in oceanic arcs. Contributions to Mineralogy and Petrology, 163, 259–275.CrossRefGoogle Scholar
  242. Defant, M. J., Jacques, D., Maury, R. C., De Boer, J., & Joron, J.-L. (1989). Geochemistry and tectonic setting of the Luzon arc, Philippines. Geological Society of America Bulletin, 101, 663–672.CrossRefGoogle Scholar
  243. Defant, M. J., Maury, R. C., Ripley, E. M., Feigenson, M. D., & Jacques, D. (1991a). An example of island-arc petrogenesis: Goechemistry and petrology of the southern Luzon arc, Philippines. Journal of Petrology, 32, 455–500.CrossRefGoogle Scholar
  244. Defant, M. J., Clark, L. F., Stewart, R. H., Drummond, M. S., De Boer, J. Z., Maury, R. C., et al. (1991b). Andesite and dacite genesis via contrasting processes: The geology and geochemistry of El Valle Volcano, Panama. Contributions to Mineralogy and Petrology, 106, 309–324.CrossRefGoogle Scholar
  245. Defant, M. J., Sherman, S., Maury, R. C., Bellon, H., de Boer, J., Davidson, J., et al. (2001). The geology, petrology, and petrogenesis of Saba Island, Lesser Antilles. Journal of Volcanology and Geothermal Research, 107, 87–111.CrossRefGoogle Scholar
  246. Delgado, H., Molinero, R., Cervantes, P., Nieto-Obregón, J., Lozano-Santa Cruz, R., Macías-González, H. L., et al. (1998). Geology of Xitle volcano in southern Mexico City—A 2000-year-old monogenetic volcano in an urban area. Revista Mexicana de Ciencias Geológicas, 15, 115–131.Google Scholar
  247. Demant, A. (1981). L’axe néo-volcanique transmexicain, étude volcanologique et pétrographique, signification géodynamique. In Faculté des Sciences et Techniques de St. Jérome. Université de Droit, d’Economie et des Sciences d’Aix-Marseille.Google Scholar
  248. Demidjuk, Z., Turner, S., Sandiford, M., George, R., Foden, J., & Etheridge, M. (2007). U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia. Earth and Planetary Science Letters, 261, 517–533.CrossRefGoogle Scholar
  249. Deniel, C. (1998). Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean). Chemical Geology, 144, 281–303.CrossRefGoogle Scholar
  250. Deniel, C., Vidal, P., Coulon, C., Vellutini, P., & Piguet, P. (1994). Temporal evolution of mantle sources during continental rifting: The volcanism of Djibouti (Afar). Journal of Geophysical Research, 99, 2853–2869.CrossRefGoogle Scholar
  251. Deniel, C., Aydar, E., & Gourgaud, A. (1998). The Hasan Dagi stratovolcano (Central Anatolia, Turkey): Evolution from calc-alkaline to alkaline magmatism in a collision zone. Journal of Volcanology and Geothermal Research, 87, 275–302.CrossRefGoogle Scholar
  252. Déruelle, B. (1982). Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. Journal of Volcanology and Geothermal Research, 14, 77–124.CrossRefGoogle Scholar
  253. Déruelle, B., Moreau, C., Nkoumbou, C., Kambou, R., Lissom, J., Njonfang, E., et al. (1991). The Cameron line: A review. In A. B. Kampunzu & R. T. Lubala (Eds.), Magmatism in extensional structural settings (pp. 274–327). Berlin, Germany: Springer Verlag.CrossRefGoogle Scholar
  254. Desonie, D. L., & Duncan, R. A. (1990). The Cobb-Eickelberg Seamount Chain: Hotspot volcanism with Mid-Ocean Ridge basaal affinity. Journal of Geophysical Research, 95, 12697–12711.CrossRefGoogle Scholar
  255. Devey, C. W., Albarède, F., Cheminee, J.-L., Michard, A., Mohe, R., & Stoffers, P. (1990). Active submarine volcanism on the Society hotspot swell (West Pacific): A geochemical study. Journal of Geophysical Research, 95, 5049–5066.CrossRefGoogle Scholar
  256. Devey, C. W., Garbe-Schönberg, D., & Stoffers, P. (1994). Geochemical effects of dynamic melting beneath ridges: Reconciling major and trace element variations in Kolbeinsey (and global) mid-ocean ridge basalt. Journal of Geophysical Research, 99, 9077–9095.CrossRefGoogle Scholar
  257. Devey, C. W., Hémond, C., & Stoffers, P. (2000). Metasomatic reactions between carbonated plume melts and mantle harzburgite: The evidence from Friday and Domingo Seamounts (Juan Fernandez chain, SE Pacific). Contributions to Mineralogy and Petrology, 139, 68–84.CrossRefGoogle Scholar
  258. Devine, J. D. (1995). Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited. Journal of Volcanology and Geothermal Research, 69, 1–33.CrossRefGoogle Scholar
  259. Devine, J. D., & Sigurdsson, H. (1995). Petrology and eruption styles of Kick’em-Jenny submarine volcano, Lesser Antilles island arc. Journal of Volcanology and Geothermal Research, 69, 35–58.CrossRefGoogle Scholar
  260. Di Battistini, G., Montanini, A., Vernia, L., Bargossi, G. M., & Castorina, F. (1998). Petrology and geochemistry of ultrapotassic rocks from the Montefiascone Volcanic Complex (Central Italy): Magmatic evolution and petrogenesis. Lithos, 43, 169–195.CrossRefGoogle Scholar
  261. Di Battistini, G., Montanini, A., Vernia, L., Venturelli, G., & Tonarini, S. (2001). Petrology of melilite-bearing rocks from the Montefiascone Volcanic complex (Roman Magmatic Province): New insights into the ultrapotassic volcanism of Central Italy. Lithos, 59, 1–24.CrossRefGoogle Scholar
  262. Di Paola, G. M. (1974). Volcanology and petrology of Nisyros Island (Dodecanese, Greece). Bulletin Volcanologique, 38, 944–987.CrossRefGoogle Scholar
  263. Di Piazza, A., Rizzo, A. L., Barberi, F., Carapezza, M. L., De Astis, G., Romano, C., et al. (2015). Geochemistry of the mantle source and magma feeding system beneath Turrialba volcano, Costa Rica. Lithos, 232, 319–335.CrossRefGoogle Scholar
  264. Díaz-Bravo, B. A., Gómez-Tuena, A., Ortega-Obregón, C., & Pérez-Arvizu, O. (2014). The origin of intraplate magmatism in the western Trans-Mexican Volcanic Belt. Geosphere, 10, 340–373.CrossRefGoogle Scholar
  265. Dickin, A. P. (2005). Radiometric isotope geology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  266. Dilek, Y., Imamverdiyev, N., & Altunkaynak, S. (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: Collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52, 536–578.CrossRefGoogle Scholar
  267. Dirksen, O., Humphreys, M. C. S., Pletchov, P., Melnik, O., Demyanchuk, Y., Sparks, R. S. J., et al. (2006). The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling. Journal of Volcanology and Geothermal Research, 155, 201–226.CrossRefGoogle Scholar
  268. Dixon, T. H., Batiza, R., Futa, K., & Martin, D. (1984). Petrochemistry, age and isotopic composition of alkali basalts from Ponape Island, Western Pacific. Chemical Geology, 43, 1–28.CrossRefGoogle Scholar
  269. Dixon, J., Clague, D. A., Cousens, B., Monsalve, M. L., & Uhl, J. (2008). Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii. Geochemistry, Geophysics, Geosystems, 9.  https://doi.org/10.1029/2008GC002076.CrossRefGoogle Scholar
  270. Dogan, G. D. K. (2015). Chronological, magmatological and geochemical study of post-collisional basaltic volcanism in Central Anatolia and its spatio-temporal evolution. Ecole Doctorale des Sciences Fondamentales No 830. Universite blaise Pascal, p. 224.Google Scholar
  271. Dorendorf, F., Churikova, T., Koloskov, A., & Wörner, G. (2000). Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): Volcanic geology and geochemical evolution. Journal of Volcanology and Geothermal Research, 104, 131–151.CrossRefGoogle Scholar
  272. Dosso, L., Bougault, H., Beuzart, P., Calvez, J.-Y., & Joron, J.-L. (1988). The geochemical structure of the South-East Indian Ridge. Earth and Planetary Science Letters, 88, 47–59.Google Scholar
  273. Dosso, L., Bougault, H., & Joron, J.-L. (1993). Geochemical morphology of the north Mid-Atlantic Ridge, 10°–24° N: Trace element-isotope complementarity. Earth and Planetary Science Letters, 120, 443–462.CrossRefGoogle Scholar
  274. Doucelance, R., Escrig, S., Moreira, M., Gariépy, C., & Kurz, M. D. (2003). Pb-Sr-He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochimica et Cosmochimica Acta, 67, 3717–3733.CrossRefGoogle Scholar
  275. Doucet, S., Weis, D., Scoates, J. S., Debaille, V., & Giret, A. (2004). Geochemical and Hf–Pb–Sr–Nd isotopic constraints on the origin of the Amsterdam–St. Paul (Indian Ocean) hotspot basalts. Earth and Planetary Science Letters, 218, 179–195.CrossRefGoogle Scholar
  276. Dreher, S. T., Eichelberger, J. C., & Larsen, J. F. (2005). The petrology and geochemistry of the Aniakchak caldera-forming ignimbrite, Aleutian Arc, Alaska. Journal of Petrology, 46, 1747–1768.CrossRefGoogle Scholar
  277. Dreyer, B. M., Clague, D. A., & Gill, J. B. (2013). Petrological variability of recent magmatism at Axial Seamount summit, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 14, 4306–4333.CrossRefGoogle Scholar
  278. Duffield, W. A., Heiken, G. H., Wohletz, K. H., Maassen, L. W., Dengo, G., McKee, E. H., et al. (1992). Geology and geothermal potential of the Tecuamburro volcano area, Guatemala. Geothemics, 21, 425–446.CrossRefGoogle Scholar
  279. DuFrane, S. A., Asmerom, Y., Mukasa, S. B., Morris, J. D., & Dreyer, B. M. (2006). Subduction and melting processes inferred from U-series, Sr–Nd–Pb isotope, and trace element data, Bicol and Bataan arcs, Philippines. Geochimica et Cosmochimica Acta, 70, 3401–3420.CrossRefGoogle Scholar
  280. DuFrane, S. A., Turner, S., Dosseto, A., & van Soest, M. (2009). Reappraisal of fluid and sediment contributions to Lesser Antilles magmas. Chemical Geology, 265, 272–278.CrossRefGoogle Scholar
  281. Duggen, S., Hoernle, K., Bogaard, P. V. D., & Garbe-Schönberg, D. (2005). Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology, 46, 1151–1201.Google Scholar
  282. Duncan, R. A., Falloon, T. J., Quilty, P. G., & Coffin, M. F. (2016). Widespread Neogene volcanism on Central Kerguelen Plateau, Southern Indian Ocean. Australian Journal of Earth Sciences, 63, 379–392.CrossRefGoogle Scholar
  283. Duncker, K. E., Wolff, J. A., Harmon, R. S., Leat, P. T., Dickin, A. P., & Thompson, R. N. (1991). Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic field, Rio Grande Rift, New Mexico. Contributions to Mineralogy and Petrology, 108, 331–345.CrossRefGoogle Scholar
  284. Dupuy, C., Dostal, J., Marcelot, G., Bougault, H., Joron, J. L., & Treuil, M. (1982). Geochemistry of basalts from central and southern New Hebrides arc: Implication for their source rock composition. Earth and Planetary Science Letters, 60, 207–225.CrossRefGoogle Scholar
  285. Dupuy, C., Barsczus, H. G., Liotard, J. M., & Dostal, J. (1988). Trace element evidence for the origin of ocean island basalts: An example from the Austral Islands (French Polynesia). Contributions to Mineralogy and Petrology, 98, 293–302.CrossRefGoogle Scholar
  286. Dupuy, C., Barsczus, H. G., Dostal, J., Vidal, P., & Liotard, J.-M. (1989). Subducted and recycled lithosphere as the mantle source of ocean island basalts from southern Polynesia, central Pacific. Chemical Geology, 77, 1–18.CrossRefGoogle Scholar
  287. Edwards, C. M. H., Menzies, M. A., Thirlwall, M. F., Morris, J. D., Leeman, W. P., & Harmon, R. S. (1994). The transition to potassic alkaline volcanism in island arcs: The Ringgit-Beser Complex, East Java, Indonesia. Journal of Petrology, 35, 1557–1595.CrossRefGoogle Scholar
  288. Eggins, S. M. (1993). Origin and differentation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contributions to Mineralogy and Petrology, 114, 79–100.CrossRefGoogle Scholar
  289. Eisele, J., Sharma, M., Galer, S. J. G., Blichert-Toft, J., Devey, C. W., & Hofmann, A. W. (2002). The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 196, 197–212.CrossRefGoogle Scholar
  290. Ekící, T., Macpherson, C. G., Otlu, N., & Fontignie, D. (2014). Foreland magmatism during the Arabia–Eurasia collision: Pliocene–Quaternary activity of the Karacadag Volcanic Complex, SW Turkey. Journal of Petrology, 55, 1753–1777.CrossRefGoogle Scholar
  291. Elburg, M., & Foden, J. (1998). Temporal changes in arc magma geochemistry, northern Sulawesi, Indonesia. Earth and Planetary Science Letters, 163, 381–398.CrossRefGoogle Scholar
  292. Elburg, M. A., van Leeuwen, T., Foden, J., & Muhardjo. (2003). Spatial and temporal isotopic domains of contrasting igneous suites in western and northern Sulawesi, Indonesia. Chemical Geology, 199, 243–276.Google Scholar
  293. Elburg, M. A., Foden, J. D., van Bergen, M. J., & Zulkarnain, I. (2005). Australia and Indonesia in collision: Geochemical sources of magmatism. Journal of Volcanology and Geothermal Research, 140, 25–47.CrossRefGoogle Scholar
  294. Elburg, M. A., Kamenetsky, V. S., Foden, J. D., & Sobolev, A. (2007). The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): Mineral and melt inclusion evidence. Chemical Geology, 240, 260–279.CrossRefGoogle Scholar
  295. Eleftheriadis, G., Castorina, F., Soldatos, T., & Masi, U. (2003). Geochemical and Sr–Nd isotopic evidence for the genesis of the late Cainozoic Almopia volcanic rocks (Central Macedonia, Greece). Mineralogy and Petrology, 78, 21–36.CrossRefGoogle Scholar
  296. Elitok, Ö., Özgür, N., Drüppel, K., Dilek, Y., Platevoet, B., Guillou, H., et al. (2010). Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. International Geology Review, 52, 454–504.CrossRefGoogle Scholar
  297. Elliott, T., Plank, T., Zindler, A., White, W. M., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102, 14991–15019.CrossRefGoogle Scholar
  298. Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G., & Forjaz, V. (2007). The origin of enriched mantle beneath Sao Miguel, Azores. Geochimica et Cosmochimica Acta, 71, 219–240.CrossRefGoogle Scholar
  299. Engel, C. G., & Fisher, R. L. (1975). Granitic to ultramafic rock complexes of the Indian Ocean ridge system, western Indian Ocean. Geological Society of America Bulletin, 86, 1553–1578.CrossRefGoogle Scholar
  300. Ercan, T. (1981). Geology of Kula region and pertology of volcanics (Ph.D. thesis). Istanbul University.Google Scholar
  301. Erlund, E. J., Cashman, K. V., Wallace, P. J., Pioli, L., Rosi, M., Johnson, E., et al. (2010). Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record. Journal of Volcanology and Geothermal Research, 197, 167–187.CrossRefGoogle Scholar
  302. Espíndola, J. M., Macías, J. L., Tilling, R. I., & Sheridan, M. F. (2000). Volcanic history of El Chichón volcano (Chiapas, Mexico) during the Holocene, and its impact on human activity. Bulletin of Volcanology, 62, 90–104.CrossRefGoogle Scholar
  303. Espíndola, J. M., Zamora-Camacho, A., Godinez, M. L., Schaaf, P., & Rodríguez, S. R. (2010). The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico. Journal of Volcanology and Geothermal Research, 197, 188–208.CrossRefGoogle Scholar
  304. Ewart, A. (1976). A petrological study of the younger Tongan andesites and dacites, and the olivine tholeiites of Niua Fo’ou Island, S.W. Pacific. Contributions to Mineralogy and Petrology, 58, 1–21.CrossRefGoogle Scholar
  305. Ewart, A., & Bryan, W. B. (1972). Petrography and geochemistry of the igneous rocks from EUA, Tongan islands. Geological Society of America Bulletin, 83, 3281–3298.CrossRefGoogle Scholar
  306. Ewart, A., & Hawkesworth, C. J. (1987). The Pleistocene-Recent Tonga-Kermadec arc lavas: Interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. Journal of Petrology, 28, 495–530.CrossRefGoogle Scholar
  307. Ewart, A., Taylor, S. R., & Capp, A. C. (1968a). Geochemistry of the pantellerites of Mayor Island, New Zealand. Contributions of Mineralogy and Petrology, 17, 116–140.CrossRefGoogle Scholar
  308. Ewart, A., Taylor, S. I., & Capp, A. C. (1968b). Trace and minor element geochemistry of the rhyolitic volcanic rocks, central North Island, New Zealand. Contributions to Mineralogy and Petrology, 18, 76–104.CrossRefGoogle Scholar
  309. Ewart, A., Bryan, W. B., & Gill, J. B. (1973). Mineralogy and geochemistry of the younger volcanic islands of Tonga, S.W. Pacific. Journal of Petrology, 14, 429–465.CrossRefGoogle Scholar
  310. Ewart, A., Brothers, R. N., & Mateen, A. (1977). An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand island arc. Journal of Volcanology and Geothermal Research, 2, 205–270.CrossRefGoogle Scholar
  311. Falloon, T. J., & Crawford, A. J. (1991). The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga ridge. Earth and Planetary Science Letters, 102, 375–394.CrossRefGoogle Scholar
  312. Falloon, T. J., Danyushevsky, L. V., Crawford, T. J., Maas, R., Woodhead, J. D., Eggins, S. M., et al. (2007). Multiple mantle plume components involved in the petrogenesis of subduction-related lavas from the northern termination of the Tonga arc and northern Lau basin: Evidence from the geochemistry of arc and backarc submarine volcanics. Geochemistry, Geophysics, Geosystems, 8.  https://doi.org/10.1029/2007gc001619.CrossRefGoogle Scholar
  313. Fan, Q., & Hooper, P. R. (1991). The Cenozoic basaltic rocks of eastern China: Petrology and chemical composition. Journal of Petrology, 32, 765–810.CrossRefGoogle Scholar
  314. Faure, G. (1977). Principles of isotope geology. New York: Wiley.Google Scholar
  315. Faure, G. (1986). Principles of isotope geology (2nd ed.). New York: Wiley.Google Scholar
  316. Faure, G. (2001). Origin of igneous rocks. The isotopic evidence. Berlin: Springer.CrossRefGoogle Scholar
  317. Faure, G., & Mensing, T. M. (2005). Isotopes: Principles and applications. New Jersey: Wiley.Google Scholar
  318. Feigenson, M. D., Hofmann, A. W., & Spera, F. J. (1983). Case studies on the origin of basalt. II. The transition from tholeiitic to alkalic volcanism on Kohala volcano, Hawaii. Contributions to Mineralogy and Petrology, 84, 390–405.CrossRefGoogle Scholar
  319. Feineman, M., Moriguti, T., Yokoyama, T., Terui, S., & Nakamura, E. (2013). Sediment-enriched adakitic magmas from the Daisen volcanic field, southwest Japan. Geochemistry, Geophysics, Geosystems, 14.  https://doi.org/10.1002/ggge.20176.CrossRefGoogle Scholar
  320. Ferlito, C., Coltorti, M., Cristofolini, R., & Giacomoni, P. P. (2009). The contemporaneous emission of low-K and high-K trachybasalts and the role of the NE Rift during the 2002 eruptive event, Mt. Etna, Italy. Bulletin of Volcanology, 71, 575–587.CrossRefGoogle Scholar
  321. Ferrari, L., Garduño, V. H., Innocenti, F., Manetti, P., Pasquare, G., & Vaggelli, G. (1994). A widespread mafic volcanic unit at the base of the Mexican Volcanic Belt between Guadalajara and Querétaro. Geofísica Internacional, 33, 107–123.Google Scholar
  322. Ferriz, H., & Mahood, G. A. (1987). Strong compositional zonation in a silicic magmatic system: Los Humeros, Mexican Neovolcanic Belt. Journal of Petrology, 28, 171–209.CrossRefGoogle Scholar
  323. Feuerbach, D. L., Smith, E. I., Walker, J. D., & Tangeman, J. A. (1993). The role of the mantle during crustal extension: Constraints from geochemistry of volcanic rocks in the Lake Mead area, Nevada and Arizona. Geological Society of America Bulletin, 105, 1561–1575.CrossRefGoogle Scholar
  324. Finney, B., Turner, S., Hawkesworth, C., Larsen, J., Nye, C., George, R., et al. (2008). Magmatic differentiation at an island-arc caldera: Okmok volcano, Aleutian Islands, Alaska. Journal of Petrology, 49, 857–884.CrossRefGoogle Scholar
  325. Firth, C. W., Handley, H. K., Cronin, S. J., & Turner, S. P. (2014). The eruptive history and chemical stratigraphy of a post-caldera, steady-state volcano: Yasur, Vanuatu. Bulletin of Volcanology, 76, 1–23.CrossRefGoogle Scholar
  326. Fitton, J. G. (1987). The Cameroon line, West Africa: A comparison between oceanic and continental alkaline volcanism. In J. G. Fitton & B. G. J. Upton (Eds.), Alkaline igneous rocks (pp. 273–291). Geological Society Special Publication.Google Scholar
  327. Fitton, J. G., James, D., & Leeman, W. P. (1991). Basic magmatism associated with late Cenozoic extension in the western United States: Compositional variations in space and time. Journal of Geophysical Research, 96, 13693–13711.CrossRefGoogle Scholar
  328. Flower, M. F. J., & O’Hearn, T. (1983). An electron microprobe study of basalt chemical variation at Deep Sea Drilling Project Sites 482–485, Gulf of California. In B. T. R. Lewis, P. Robinson, et al. (Eds.), Deep Sea Drilling Project (pp. 549–557). Washington: U.S. Government Printing Office.Google Scholar
  329. Flower, M. F. J., Pritchard, R. G., Schmincke, H.-U., & Robinson, P. T. (1983). Geochemistry of basalts: Deep Sea Drilling Project Sites 482, 483, and 485 near the Tamayo Fracture Zone, Gulf of California. In B. T. R. Lewis, P. Robinson, et al. (Eds.), Initial reports DSDP. Washington: U.S. Government Printing Office.Google Scholar
  330. Foden, J. (1986). The petrology of Tambora volcano, Indonesia: A model for the 1815 eruption. Journal of Volcanology and Geothermal Research, 27, 1–41.CrossRefGoogle Scholar
  331. Foden, J. D., & Varne, R. (1980). The petrology and tectonic setting of Quaternary—Recent volcanic centres of Lombok and Sumbawa, Sunda arc. Chemical Geology, 30, 201–226.CrossRefGoogle Scholar
  332. Foden, J., Song, S. H., Turner, S., Elburg, M., Smith, P. B., Van der Steldt, B., et al. (2002). Geochemical evolution of lithospheric mantle beneath S.E. South Australia. Chemical Geology, 182, 663–695.CrossRefGoogle Scholar
  333. Foley, F. V., Pearson, N. J., Rushmer, T., Turner, S., & Adam, J. (2013). Magmatic evolution and magma mixing of Quaternary adakites at Solander and little Solander Islands, New Zealand. Journal of Petrology, 54, 703–744.CrossRefGoogle Scholar
  334. Folkes, C. B., de Silva, S. L., Wright, H. M., & Cas, R. A. F. (2011). Geochemical homogeneity of a long-lived, large silicic system; Evidence from the Cerro Galán caldera, NW Argentina. Bulletin of Volcanology, 73, 1455–1486.CrossRefGoogle Scholar
  335. Fontijn, K., Ernst, G. G. J., Elburg, M. A., Williamson, D., Abdallah, E., Kwelwa, S., et al. (2010). Holocene explosive eruptions in the Rungwe Volcanic Province, Tanzania. Journal of Volcanology and Geothermal Research, 196, 91–110.CrossRefGoogle Scholar
  336. Fontijn, K., Elburg, M. A., Nikogosian, I. K., van Bergen, M. J., & Ernst, G. G. J. (2013). Petrology and geochemistry of late Holocene felsic magmas from Rungwe volcano (Tanzania), with implications for trachytic Rungwe Pumice eruption dynamics. Lithos, 177, 34–53.CrossRefGoogle Scholar
  337. Fornari, D. J., Saunders, A. D., & Perfit, M. R. (1982). Major element chemistry of basaltic glasses recovered during Deep Sea Drilling Project Leg 64. In J. R. Curray, D. G. Moore, et al. (Eds.), Initial reports of the Deep Sea Drilling Project, 64 (pp. 643–648). Washington: U.S. Government Printing Office.Google Scholar
  338. Francalanci, L., Innocenti, F., Manetti, P., & Savascin, M. Y. (2000). Neogene alkaline volcanism of the Afyon-Isparta area, Turkey: Petrogenesis and geodynamic implications. Mineralogy and Petrology, 70, 285–312.CrossRefGoogle Scholar
  339. Francalanci, L., Tommasini, S., & Conticelli, S. (2004). The volcanic activity of Stromboli in the 1906–1998 AD period: Mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. Journal of Volcanology and Geothermal Research, 131, 179–211.CrossRefGoogle Scholar
  340. Fretzdorff, S., Schwarz-Schampera, U., Gibson, H. L., Garbe-Schönberg, C.-D., Hauff, F., & Stoffers, P. (2006). Hydrothermal activity and magma genesis along a propagating back-arc basin: Valu Fa Ridge (southern Lau Basin). Journal of Geophysical Research, 111.  https://doi.org/10.1029/2005jb003967.
  341. Frey, F. A., Gerlach, D. C., Hickey, R. L., Lopez-Escobar, L., & Munizaga-Villavicencio, F. (1984). Petrogenesis of the Laguna del Maule volcanic complex, Chile (36° S). Contributions to Mineralogy and Petrology, 88, 133–149.CrossRefGoogle Scholar
  342. Frey, F. A., Garcia, M. O., & Roden, M. F. (1994). Geochemical characteristics of Koolau volcano: Implications of intershield geochemical differences among Hawaiian volcanoes. Geochimica et Cosmochimica Acta, 58, 1441–1462.CrossRefGoogle Scholar
  343. Frey, H. M., Lange, R. A., Hall, C. M., Delgado-Granados, H., & Carmichael, I. S. E. (2007). A Pliocene ignimbrite flare-up along the Tepic-Zacoalco rift: Evidence for the initial stages of rifting between the Jalisco block (Mexico) and North America. Geological Society of America Bulletin, 119, 49–64.CrossRefGoogle Scholar
  344. Frey, H. M., Lange, R. A., Hall, C. M., Nelson, S. A., Delgado-Granados, H., Mastin, L., et al. (2014). 40Ar/39Ar geochronology of Volcán Tepetiltic, western Mexico: Implications for the origin of zoned rhyodacite-rhyolite liquid erupted explosively from an andesite stratovolcano after a prolonged hiatus. Geological Society of America Bulletin, 126, 16–30.CrossRefGoogle Scholar
  345. Furman, T., Bryce, J. G., Karson, J., & Iotti, A. (2004). East African rift system (EARS) plume structure: Insights from Quaternary mafic lavas of Turkana, Kenya. Journal of Petrology, 45, 1069–1088.CrossRefGoogle Scholar
  346. Furman, T., Kaleta, K., Bryce, J. G., & Hanan, B. B. (2006). Tertiary mafic lavas of Turkana, Kenya: Constraints on East African plume structure and the occurrence of high-μ volcanism in Africa. Journal of Petrology, 47, 1221–1244.CrossRefGoogle Scholar
  347. Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Poli, G., et al. (1986). Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets. Journal of Volcanology and Geothermal Research, 28, 297–317.CrossRefGoogle Scholar
  348. Gałaś, A. (2014). Petrology and new data on the geochemistry of the Andahua volcanic group (Central Andes, southern Peru). Journal of South American Earth Sciences, 56, 301–315.CrossRefGoogle Scholar
  349. Gale, A., Escrig, S., Gier, E. J., Langmuir, C. H., & Goldstein, S. L. (2011). Enriched basalts at segment centers: The Lucky Strike (37°17′ N) and Menez Gwen (37°50′ N) segments of the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 12, 1–26.CrossRefGoogle Scholar
  350. Gamble, J. A., Smith, I. E. M., Kokelaar, B. P., Cole, J. W., Houghton, B. F., & Wilson, J. N. (1990). The petrology, phase relations and tectonic setting of basalts from Taupo volcanic zone, New Zealand and the Kermadec island arc—Havre trough, SW Pacific. Journal of Volcanology and Geothermal Research, 43, 235–270.CrossRefGoogle Scholar
  351. Gamble, J. A., Smith, I. E. M., McCulloch, M. T., Graham, I. J., & Kokelaar, B. P. (1993). The geochemistry and petrogenesis of basalts from the Taupo volcanic zone and Kermadec Island arc, S.W. Pacific. Journal of Volcanology and Geothermal Research, 54, 265–290.CrossRefGoogle Scholar
  352. Gamble, J. A., Wright, I. C., Woodhead, J. D., & McCulloch, M. T. (1995). Arc and back-arc geochemistry in the southern Kermadec arc-Ngatoro basin and offshore Taupo volcanic zone, SW Pacific. In J. L. Smellie (Ed.), Volcanism associated with extension at consuming plate margins (pp. 193–212). Geological Society Special Publication.Google Scholar
  353. Garcia, M., Ho, R., Rhodes, J., & Wolfe, E. (1989). Petrologic constraints on rift-zone processes. Bulletin of Volcanology, 52, 81–96.CrossRefGoogle Scholar
  354. Garcia, M. O., Rhodes, J. M., Wolfe, E. W., Ulrich, G. E., & Ho, R. A. (1992). Petrology of lavas from episodes 2–47 of the Puu Oo eruption of Kilauea Volcano, Hawaii: Evaluation of magmatic processes. Bulletin of Volcanology, 55, 1–16.CrossRefGoogle Scholar
  355. Garcia, M. O., Rhodes, J. M., Trusdell, F. A., & Pietruszka, A. J. (1996). Petrology of lavas from the Puu Oo eruption of Kilauea Volcano. 3. The Kupaianaha episode (1986–1992). Bulletin of Volcanology, 58, 359–379.CrossRefGoogle Scholar
  356. Garcia, M. O., Pietruszka, A. J., Rhodes, J. M., & Swanson, K. (2000). Magmatic processes during the prolonged Pu’u ‘O’o eruption of Kilauea Volcano, Hawaii. Journal of Petrology, 41, 967–990.CrossRefGoogle Scholar
  357. Garcia, M. O., Weis, D., Swinnard, L., Ito, G., & Pietruszka, A. J. (2015). Petrology and geochemistry of volcanic rocks from the South Kaua’i Swell volcano, Hawaii: Implications for the lithology and composition of the Hawaiian mantle plume. Journal of Petrology, 56, 1173–1197.CrossRefGoogle Scholar
  358. Garcia, M. O., Weis, D., Jicha, B. R., Ito, G., & Hanano, D. (2016). Petrology and geochronology of lavas from Ka’ula Volcano: Implications for rejuvenated volcanism of the Hawaiian mantle plume. Geochimica et Cosmochimica Acta, 185, 278–301.CrossRefGoogle Scholar
  359. García-Palomo, A., Macías, J. L., Tolson, G., Valdez, G., & Mora, J. C. (2002a). Volcanic stratigraphy and geological evolution of the Apan region, east-central sector of the Trans-Mexican Volcanic Belt. Geofísica Internacional, 41, 133–150.Google Scholar
  360. García-Palomo, A., Macías, J. L., Arce, J. L., Capra, L., Garduño, V. H., & Espíndola, J. M. (2002b). Geology of Nevado de Toluca volcano and surrounding areas, central Mexico (MCH089, 26 p).Google Scholar
  361. García-Tovar, G. P., & Martínez-Serrano, R. G. (2011). Geología y geoquímica de las lavas pleistocénicas del estratovolcán Telapón, Sierra Nevada, México. Revista Mexicana de Ciencias Geológicas, 28, 301–322.Google Scholar
  362. Garrison, J., Davidson, J., Reid, M., & Turner, S. (2006). Source versus differentiation controls on U-series disequilibria: Insights from Cotopaxi volcano, Ecuador. Earth and Planetary Science Letters, 244, 548–565.CrossRefGoogle Scholar
  363. Garrison, J. M., Davidson, J. P., Hall, M., & Mothes, P. (2011). Geochemistry and petrology of the most recent deposits from Cotopaxi volcano, northern volcanic zone, Ecuador. Journal of Petrology, 52, 1641–1678.CrossRefGoogle Scholar
  364. Gasperini, D., Blichert-Toft, J., Bosch, D., Del Moro, A., Macera, P., & Albarède, F. (2002). Upwelling of deep mantle material through a plate window: Evidence from the geochemistry of Italian basaltic volcanics. Journal of Geophysical Research, 107, 2367.  https://doi.org/10.1029/2001JB000418.CrossRefGoogle Scholar
  365. Gastil, G., Krummenacher, D., & Minch, J. (1979). The record of Cenozoic volcanism around the Gulf of California. Geological Society of America Bulletin, 90, 839–857.CrossRefGoogle Scholar
  366. Gazel, E., Carr, M. J., Hoernle, K., Feigenson, M. D., Szymanski, D., Hauff, F., & van den Bogaard, P. (2009). Galapagos-OIB in southern Central America: Mantle refertilization by arc-hot spot interaction. Geochemistry, Geophysics, Geosystems, 10.  https://doi.org/10.1029/2008gc002246.CrossRefGoogle Scholar
  367. Gazel, E., Hoernle, K., Carr, M. J., Herzberg, C., Saginor, I., van den Bogaard, P., et al. (2011). Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting. Lithos, 121, 117–134.CrossRefGoogle Scholar
  368. Geist, D. J., McBirney, A. R., & Duncan, R. A. (1986). Geology and petrogenesis of lavas from San Cristobal Islands, Galapos Archipelago. Geological Society of America Bulletin, 97, 555–566.CrossRefGoogle Scholar
  369. Geist, D., White, W., Albarède, F., Harpp, K., Reynolds, R., Blichert-Toft, J., et al. (2002). Volcanic evolution in the Galapagos: The dissected shield of Volcan Ecuador. Geochemistry, Geophysics, Geosystems, 3, 1061.CrossRefGoogle Scholar
  370. Geist, D. J., Harpp, K. S., Naumann, T. R., Poland, M., Chadwick, W. W., Hall, M., et al. (2008). The 2005 eruption of Sierra Negra volcano, Galápagos, Ecuador. Bulletin of Volcanology, 70, 655–673.CrossRefGoogle Scholar
  371. Geldmacher, J., & Hoernle, K. (2000). The 72 Ma geochemical evolution of the Medeira hotspot (eastern North Atlantic): Recycling of Paleozoic (≤500 Ma) oceanic lithosphere. Earth and Planetary Science Letters, 183, 73–92.CrossRefGoogle Scholar
  372. Geldmacher, J., Hoernle, K., Klügel, A., Bogaard, P. V. D., Wombacher, F., & Berning, B. (2006). Origin and geochemical evolution of the Madeira-Tore Rise (eastern North Atlantic). Journal of Geophysical Research, 111.  https://doi.org/10.1029/2005jb003931.
  373. Genske, F. S., Turner, S. P., Beier, C., & Schaefer, B. F. (2012). The petrology and geochemistry of lavas from the western Azores Islands of Flores and Corvo. Journal of Petrology, 53, 1673–1708.CrossRefGoogle Scholar
  374. George, R., Turner, S., Hawkesworth, C., Morris, J., Nye, C., Ryan, J., & Zheng, S.-H. (2003). Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U–Th–Ra–Be isotope study. Journal of Geophysical Research, 108.  https://doi.org/10.1029/2002jb001916.
  375. Gerlach, D. C., Frey, F. A., Moreno-Roa, H., & Lopez-Escobar, L. (1988). Recent volcanism in the Puyehue-Cordon Caulle region, Southern Andes, Chile (40.5° S): Petrogenesis of evolved lavas. Journal of Petrology, 29, 333–382.CrossRefGoogle Scholar
  376. Gertisser, R., & Keller, J. (2003). Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: Evidence for the involvement of subducted sediments in Sunda Arc magma genesis. Journal of Petrology, 44, 457–489.CrossRefGoogle Scholar
  377. Gertisser, R., Self, S., Thomas, A. L., Handley, H. K., van Calsteren, P., & Wolff, J. A. (2012). Processes and timescales of magma genesis and differentiation leading to the great Tambora eruption in 1815. Journal of Petrology, 53, 271–297.CrossRefGoogle Scholar
  378. Gibson, S. A., Thompson, R. N., Leat, P. T., Dickin, A. P., Morrison, M. A., Hendry, G. L., & Mitchell, J. G. (1992). Asthenosphere-derived magmatism in the Rio Grande rift, western USA: Implications for continental break-up. In B. C. Storey, T. Alabaster, & R. J. Pankhurst (Eds.), Magmatism and the causes of continental break-up (pp. 61–89). Geological Society Special Publication.Google Scholar
  379. Gilbert, C. M., Mahood, G. A., & Carmichel, I. S. E. (1985). Volcanic stratigraphy of the Guadalajara area, Mexico. Geofísica Internacional, 24, 169–191.Google Scholar
  380. Gioncada, A., Mazzuoli, R., Bisson, M., & Pareschi, M. T. (2003). Petrology of volcanic products younger than 42 ka on the Lipari vulcano complex (Aeolian Islands, Italy): An example of volcanism controlled by tectonics. Journal of Volcanology and Geothermal Research, 122, 191–220.CrossRefGoogle Scholar
  381. Giordano, F., D’Antonio, M., Civetta, L., Tonarini, S., Orsi, G., Ayalewd, D., et al. (2014). Genesis and evolution of mafic and felsic magmas at Quaternary volcanoes within the Main Ethiopian Rift: Insights from Gedemsa and Fanta’Ale complexes. Lithos, 188, 130–144.CrossRefGoogle Scholar
  382. Girard, G., & Stix, J. (2009). Magma recharge and crystal mush rejuvenation associated with early post-collapse Upper Basin Member rhyolites, Yellowstone caldera, Wyoming. Journal of Petrology, 50, 2095–2125.CrossRefGoogle Scholar
  383. Gluhak, T. M., & Hofmeister, W. (2009). Roman lava quarries in the Eifel region (Germany): Geochemical data for millstone provenance studies. Journal of Archaeological Science, 36, 1774–1782.CrossRefGoogle Scholar
  384. Godard, M., Awaji, S., Hansen, H., Hellebrand, E., Brunelli, D., Johnson, K., et al. (2009). Geochemistry of a long in-situ section of intrusive slow–spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30° N Mid-Atlantic-Ridge). Earth and Planetary Science Letters, 279, 110–122.CrossRefGoogle Scholar
  385. Gómez-Tuena, A., LaGatta, A. B., Langmuir, C. H., Goldstein, S. L., Ortega-Gutiérrez, F., & Carrasco-Núñez, G. (2003). Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochemistry, Geophysics, Geosystems, 4.  https://doi.org/10.1029/2003gc000524.
  386. Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S. M., & Ortega-Gutiérrez, F. (2007). Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt. Journal of Petrology, 48, 537–562.CrossRefGoogle Scholar
  387. Gómez-Tuena, A., Mori, L., Goldstein, S. L., & Pérez-Arvizu, O. (2011). Magmatic diversity of western Mexico as a function of metamorphic transformations in the subducted oceanic plate. Geochimica et Cosmochimica Acta, 75, 213–241.CrossRefGoogle Scholar
  388. González Partida, E., Torres Rodriguez, V., & Birkle, P. (1997). Plio-Pleistocene volcanic history of the Ahuachapan geothermal system, El Salvador: The Concepción de Ataco caldera. Geothermics, 26, 555–575.CrossRefGoogle Scholar
  389. Gopalan, K. (2017). Principles of radiometric dating. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  390. Gourgaud, A., & Vincent, P. M. (2004). Petrology of two continental alkaline intraplate series at Emi Koussi volcano, Tibesti, Chad. Journal of Volcanology and Geothermal Research, 129, 261–290.CrossRefGoogle Scholar
  391. Graham, I. J., & Hackett, W. R. (1987). Petrology of calc-alkaline lavas from Ruapehu volcano and related vents, Taupo Volcanic Zone, New Zealand. Journal of Petrology, 28, 531–567.CrossRefGoogle Scholar
  392. Green, T. H. (1992). Petrology and geochemistry of basaltic rocks from the Balleny Is, Antarctica. Australian Journal of Earth Sciences, 39, 603–617.CrossRefGoogle Scholar
  393. Greene, A. R., Garcia, M. O., Pietruszka, A. J., Weis, D., Marske, J. P., Vollinger, M. J., et al. (2013). Temporal geochemical variations in lavas from Kilauea’s Pu’u ‘O’o eruption (1983–2010): Cyclic variations from melting of source heterogeneities. Geochemistry, Geophysics, Geosystems, 14, 4849–4873.CrossRefGoogle Scholar
  394. Grib, E. N., Leonov, V. L., & Perepelov, A. B. (2009). The Karymskii volcanic center: Volcanic rock geochemistry. Journal of Volcanology and Seismology, 3, 367–387.CrossRefGoogle Scholar
  395. Gribble, R. F., Stern, R. J., Newman, S., Bloomer, S. H., & O’Hearn, T. (1998). Chemical and isotopic composition of lavas from the northern Marianas Trough: Implications for magmagenesis in back-arc basins. Journal of Petrology, 39, 125–154.Google Scholar
  396. Grützner, T., Prelevic, D., & Akal, C. (2013). Geochemistry and origin of ultramafic enclaves and their basanitic host rock from Kula Volcano, Turkey. Lithos, 180–181, 58–73.CrossRefGoogle Scholar
  397. Güçtekin, A., & Köprübasi, N. (2009). Geochemical characteristics of mafic and intermediate volcanic rocks from the Hasandağ and Erciyes volcanoes (Central Anatolia, Turkey). Turkish Journal of Earth Sciences, 18, 1–27.Google Scholar
  398. Guilbaud, M.-N., Siebe, C., & Agustín-Flores, J. (2009). Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City. Bulletin of Volcanology, 71, 859–880.CrossRefGoogle Scholar
  399. Guivel, C., Morata, D., Pelleter, E., Espinoza, F., Maury, R. C., Lagabrielle, Y., et al. (2006). Miocene to late Quaternary Patagonian basalts (46–47° S): Geochronometric and geochemical evidence for slab tearing due to active spreading ridge subduction. Journal of Volcanology and Geothermal Research, 149, 346–370.CrossRefGoogle Scholar
  400. Güleç, N. (1991). Crust-mantle interaction in western Turkey: Implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geological Magazine, 128, 417–435.CrossRefGoogle Scholar
  401. Gunn, B. M., & Mooser, F. (1971). Geochemistry of the volcanics of central Mexico. Bulletin Volcanologique, 34, 577–613.CrossRefGoogle Scholar
  402. Guo, Z., Wilson, M., Liu, J., & Mao, Q. (2006). Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology, 47, 1177–1220.CrossRefGoogle Scholar
  403. Haase, K. M. (2002). Geochemical constraints on magma sources and mixing processes in Easter Microplate MORB (SE Pacific): A case study of plume-ridge interaction. Chemical Geology, 182, 335–355.CrossRefGoogle Scholar
  404. Haase, K. M., & Devey, C. W. (1994). The petrology and geochemistry of Vesteris Seamount, Greenland basin—An interplate alkaline volcano of non-plume origin. Journal of Petrology, 35, 295–328.CrossRefGoogle Scholar
  405. Haase, K. M., & Devey, C. W. (1996). Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter Hotspot, southeast Pacific: Implications for intraplate magma genesis near a spreading axis. Earth and Planetary Science Letters, 123, 129–143.CrossRefGoogle Scholar
  406. Haase, K. M., Devey, C. W., Mertz, D. F., Stoffers, P., & Dieter, G.-S. (1996). Geochemistry of lavas from Mohns Ridge, Norwegian-Greenland Sea: Implications for melting conditions and magma sources near Jan Mayen. Contributions to Mineralogy and Petrology, 123, 223–237.CrossRefGoogle Scholar
  407. Haase, K. M., Stoffers, P., & Garbe-Schönberg, C. D. (1997). The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near-ridge hotspot volcanoes in the SE Pacific. Journal of Petrology, 38, 785–813.CrossRefGoogle Scholar
  408. Haase, K. M., Worthington, T. J., Stoffers, P., Garbe-Schönberg, D., & Wright, I. (2002). Mantle dynamics, element recycling, and magma genesis beneath the Kermadec arc-Havre Trough. Geochemistry, Geophysics, Geosystems, 3, 1071.  https://doi.org/10.1029/2002GC00035.CrossRefGoogle Scholar
  409. Haase, K. M., Devey, C. W., & Wieneke, M. (2003). Magmatic processes and mantle heterogeneity beneath the slow-spreading northern Kolbeinsey Ridge segment, North Atlantic. Contributions to Mineralogy and Petrology, 144, 428–448.CrossRefGoogle Scholar
  410. Haase, K. M., Stroncik, N., Garbe-Schönberg, D., & Stoffers, P. (2006). Formation of island arc dacite magmas by extreme crystal fractionation: An example from Brothers Seamount, Kermadec island arc (SW Pacific). Journal of Volcanology and Geothermal Research, 152, 316–330.CrossRefGoogle Scholar
  411. Halama, R., Boudon, G., Villemant, B., Joron, J.-L., Le Friant, A., & Komorowski, J.-C. (2006). Pre-eruptive crystallization conditions of mafic and silicic magmas at the Plat Pays volcanic complex, Dominica (Lesser Antilles). Journal of Volcanology and Geothermal Research, 153, 200–220.CrossRefGoogle Scholar
  412. Handley, H. K., Macpherson, C. G., Davidson, J. P., Berlo, K., & Lowryñ, D. (2007). Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen volcanic complex. Journal of Petrology, 48, 1155–1183.CrossRefGoogle Scholar
  413. Handley, H. K., Turner, S., Macpherson, C. G., Gertisser, R., & Davidson, J. P. (2011). Hf–Nd isotope and trace element constraints on subduction inputs at island arcs: Limitations of Hf anomalies as sediment input indicators. Earth and Planetary Science Letters, 304, 212–223.CrossRefGoogle Scholar
  414. Hannah, R. S., Vogel, T. A., Patino, L. C., Alvarado, G. E., Pérez, W., & Smith, D. R. (2002). Origin of silicic volcanic rocks in central Costa Rica: A study of a chemically variable ash-flow sheet in the Tiribí Tuff. Bulletin of Volcanology, 64, 117–133.CrossRefGoogle Scholar
  415. Hanyu, T., Tatsumi, Y., Senda, R., Miyazaki, T., Chang, Q., Hirahara, Y., et al. (2011). Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochemistry, Geophysics, Geosystems, 12, 1–30.CrossRefGoogle Scholar
  416. Haraguchi, S., Kimura, J.-I., Senda, R., Fujinaga, K., Nakamura, K., Takaya, Y., et al. (2017). Origin of felsic volcanism in the Izu arc intra-arc rift. Contributions to Mineralogy and Petrology, 172, 25.  https://doi.org/10.1007/s00410-017-1345-1.CrossRefGoogle Scholar
  417. Harpp, K. S., Fornari, D. J., Geist, D. J., & Kurz, M. D. (2003). Genovesa submarine ridge: A manifestation of plume-ridge interaction in the northern Galápagos Islands. Geochemistry, Geophysics, Geosystems, 4, 8511.  https://doi.org/10.1029/2003GC000531.CrossRefGoogle Scholar
  418. Hart, W. K., WoldeGabriel, G., Walter, R. C., & Mertzman, S. A. (1989). Basaltic volcanism in Ethiopia: Constraints on continental rifting and mantle interactions. Journal of Geophysical Research, 94, 7731–7748.CrossRefGoogle Scholar
  419. Hart, S. R., Blusztajn, J., & Craddock, C. (1995). Cenozoic volcanism in Antarctica: Jones Mountains and Peter I Island. Geochimica et Cosmochimica Acta, 59, 3379–3388.CrossRefGoogle Scholar
  420. Hart, S. R., Blusztajn, J., LeMasurier, W. E., & Rex, D. C. (1997). Hobbs Coast Cenozoic volcanism: Implications for the West Antarctic rift system. Chemical Geology, 139, 223–248.CrossRefGoogle Scholar
  421. Hart, S. R., Coetzee, M., Workman, R. K., Blusztajn, J., Johnson, K. T. M., Sinton, J. M., et al. (2004). Genesis of the Western Samoa seamount province: Age, geochemical fingerprint and tectonics. Earth and Planetary Science Letters, 227, 37–56.CrossRefGoogle Scholar
  422. Hartley, M. E., & Thordarson, T. (2013). The 1874–1876 volcano-tectonic episode at Askja, North Iceland: Lateral flow revisited. Geochemistry, Geophysics, Geosystems, 14, 2286–2309.CrossRefGoogle Scholar
  423. Hasenaka, T. (1992). Chemical compositions of selected samples. In K. Aoki (Ed.), Subduction volcanism and tectonics of western Mexican Volcanic Belt. International Scientific Research Program (No. 03041014) Japan-Mexico Co-operative Research (pp. 238–247). Sendai, Japan: The Faculty of Science, Tohoku University.Google Scholar
  424. Hauff, F., Hoernle, K., van den Bogaard, P., Alvarado, G., & Garbe-Schönberg, D. (2000). Age and geochemistry of basaltic complexes western Costa Rica: Contributions to the geotectonic evolution of Central America. Geochemistry, Geophysics, Geosystems, 1, 1009.  https://doi.org/10.1029/1999GC000020.CrossRefGoogle Scholar
  425. Hauri, E. H., & Hart, S. R. (1997). Rhenium abundances and systematics in oceanic basalts. Chemical Geology, 139, 185–205.CrossRefGoogle Scholar
  426. Hazlett, R. W. (1987). Geology of San Cristobal volcanic complex, Nicaragua. Journal of Volcanology and Geothermal Research, 33, 223–230.CrossRefGoogle Scholar
  427. Hegner, E., & Smith, I. E. M. (1992). Isotopic compositions of late Cenozoic volcanics from southeast Papua New Guinea: Evidence for multi-component sources in arc and rift environments. Chemical Geology, 97, 233–249.CrossRefGoogle Scholar
  428. Heinrich, W., & Besch, T. (1992). Thermal history of the upper mantle beneath a young back-arc extensional zone: Ultramafic xenoliths from San Luis Potosí, Central Mexico. Contributions to Mineralogy and Petrology, 111, 126–142.CrossRefGoogle Scholar
  429. Hekinian, R., Francheteau, J., Armijo, R., Cogné, J. P., Constantin, M., Girardeau, J., et al. (1996). Petrology of the Easter microplate region in the South Pacific. Journal of Volcanology and Geothermal Research, 72, 259–289.CrossRefGoogle Scholar
  430. Hekinian, R., Stoffers, P., Devey, C., Ackerman, D., Hémond, C., & O’Connor, J. (1997). Intraplate versus ridge volcanism on the Pacific-Antarctic Ridge near 37° S–111° W. Journal of Geophysical Research, 102, 12265–12286.CrossRefGoogle Scholar
  431. Hekinian, R., Cheminée, J. L., Dubois, J., Stoffers, P., Scott, S., Guivel, C., et al. (2003). The Pitcairn hotspot in the South Pacific: Distribution and composition of submarine volcanic sequences. Journal of Volcanology and Geothermal Research, 121, 219–245.CrossRefGoogle Scholar
  432. Hellevang, B., & Pedersen, R. B. (2008). Magma ascent and crustal accretion at ultraslow-spreading ridges: Constraints from plagioclase ultraphyric basalts from the Arctic mid-ocean ridge. Journal of Petrology, 49, 267–294.CrossRefGoogle Scholar
  433. Helo, C., Clague, D. A., Dingwell, D. B., & Stix, J. (2013). High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge. Journal of Volcanology and Geothermal Research, 253, 54–64.CrossRefGoogle Scholar
  434. Hémond, C., Devey, C. W., & Chauvel, C. (1994). Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry. Chemical Geology, 115, 7–45.CrossRefGoogle Scholar
  435. Herbrich, A., Hauff, F., Hoernle, K., Werner, R., Garbe-Schônberg, D., & White, S. (2016). A 1.5 Ma record of plume-ridge interaction at the Western Galápagos Spreading Center (91°40′–92°00′ W). Geochimica et Cosmochimica Acta, 185, 141–159.CrossRefGoogle Scholar
  436. Hergt, J. M., & Woodhead, J. D. (2007). A critical evaluation of recent models for Lau-Tonga arc–backarc basin magmatic evolution. Chemical Geology, 245, 9–44.CrossRefGoogle Scholar
  437. Heydolph, K., Hoernle, K., Hauff, F., Paul van den Bogaard, P., Portnyagin, M., Bindeman, I., et al. (2012). Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite. Geochimica et Cosmochimica Acta, 84, 459–491.CrossRefGoogle Scholar
  438. Heyworth, Z., Turner, S., Schaefer, B., Wood, B., George, R., Berlo, K., et al. (2007). 238U–230Th–226Ra–210Pb constraints on the genesis of high-Mg andesites at White Island, New Zealand. Chemical Geology, 243, 105–121.CrossRefGoogle Scholar
  439. Hickey, R. L., Frey, F. A., Gerlach, D. C., & Lopez-Escobar, L. (1986). Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41° S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. Journal of Geophysical Research, 91, 5963–5983.CrossRefGoogle Scholar
  440. Hickey-Vargas, R., Moreno Roa, H., Lopez Escobar, L., & Frey, F. A. (1989). Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5° S): An evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contributions to Mineralogy and Petrology, 103, 361–386.CrossRefGoogle Scholar
  441. Hidalgo, S., Monzier, M., Martin, H., Chazot, G., Eissen, J.-P., & Cotten, J. (2007). Adakitic magmas in the Ecuadorian volcanic front: Petrogenesis of the Iliniza volcanic complex (Ecuador). Journal of Volcanology and Geothermal Research, 159, 366–392.CrossRefGoogle Scholar
  442. Hildenbrand, A., Madureira, P., Marques, F. O., Cruz, I., Henry, B., & Silva, P. (2008). Multi-stage evolution of a sub-aerial volcanic ridge over the last 1.3 Myr: S. Jorge Island, Azores Triple Junction. Earth and Planetary Science Letters, 273, 289–298.CrossRefGoogle Scholar
  443. Hildner, E., Klügel, A., & Hauff, F. (2011). Magma storage and ascent during the 1995 eruption of Fogo, Cape Verde Archipelago. Contributions to Mineralogy and Petrology, 162, 751–772.CrossRefGoogle Scholar
  444. Hildreth, W., & Fierstein, J. (1997). Recent eruptions of Mount Adams, Washington Cascades, USA. Bulletin of Volcanology, 58, 472–490.CrossRefGoogle Scholar
  445. Hildreth, W., Fierstein, J., Siems, D. F., Budahn, J. R., & Ruíz, J. (2004). Rear-arc vs. arc-front volcanoes in the Katmai reach of the Alaska Peninsula: A critical appraisal of across-arc compositional variation. Contributions to Mineralogy and Petrology, 147, 243–275.CrossRefGoogle Scholar
  446. Hilton, D. R., Halldórsson, S. A., Barry, P. H., Fischer, T. P., de Moor, J. M., Ramirez, C. J., et al. (2011). Helium isotopes at Rungwe Volcanic Province, Tanzania, and the origin of East African Plateaux. Geophysical Research Letters, 38, L21304.  https://doi.org/10.1029/2011GL049589.CrossRefGoogle Scholar
  447. Hirotani, S., & Ban, M. (2006). Origin of silicic magma and magma feeding system of the Shirataka volcano, NE Japan. Journal of Volcanology and Geothermal Research, 156, 229–251.CrossRefGoogle Scholar
  448. Ho, K.-S., Chen, J.-C., & Juang, W.-S. (2000). Geochronology and geochemistry of late Cenozoic basalts from Leiqiong area, southern China. Journal of Asian Earth Sciences, 18, 307–324.CrossRefGoogle Scholar
  449. Hoang, N., & Uto, K. (2006). Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB mantle. Earth and Planetary Science Letters, 249, 229–240.CrossRefGoogle Scholar
  450. Hoang, N., Itoh, J.-I., & Miyagi, I. (2011). Subduction components in Pleistocene to recent Kurile arc magmas in NE Hokkaido, Japan. Journal of Volcanology and Geothermal Research, 200, 255–266.CrossRefGoogle Scholar
  451. Hochstaedter, A. G., Gill, J. B., Taylor, B., Ishizuka, O., Yuasa, M., & Morita, S. (2000). Across-arc geochemical trends in the Izu-Bonin arc: Constraints on source composition and mantle melting. Journal of Geophysical Research, 105, 495–512.CrossRefGoogle Scholar
  452. Hoffer, G., Eissen, J.-P., Beate, B., Bourdon, E., Fornari, M., & Cotten, J. (2008). Geochemical and petrological constraints on rear-arc magma genesis processes in Ecuador: The Puyo cones and Mera lavas volcanic formations. Journal of Volcanology and Geothermal Research, 176, 107–118.CrossRefGoogle Scholar
  453. Hoke, L., & Lamb, S. (2007). Cenozoic behind-arc volanism in the Bolivian Andes, South America: Implications for mantle melt generation and lithoshperic structure. Journal of Geological Society London, 164, 795–814.CrossRefGoogle Scholar
  454. Holm, P. M., Wilson, J. R., Christensen, B. P., Hansen, L., Hansen, S. L., Hein, K. M., et al. (2006). Sampling the Cape Verde mantle plume: Evolution of melt compositions on Santo Antão, Cape Verde Islands. Journal of Petrology, 47, 145–189.CrossRefGoogle Scholar
  455. Hoogewerff, J. A., van Bergen, M. J., Vroon, P. Z., Hertogen, J., Wordel, R., Sneyers, A., et al. (1997). U-series, Sr–Nd–Pb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface. Geochimica et Cosmochimica Acta, 61, 1057–1072.CrossRefGoogle Scholar
  456. Horz, K. H., Worthington, T. J., Winn, K., & Stoffers, P. (2004). Late Quaternary tephra in the New Ireland Basin, Papua New Guinea. Journal of Volcanology and Geothermal Research, 132, 73–95.CrossRefGoogle Scholar
  457. Housh, T. B., Aranda-Gómez, J. J., & Luhr, J. F. (2010). Isla Isabel (Nayarit, México): Quaternary alkalic basalts with mantle xenoliths erupted in the mouth of the Gulf of California. Journal of Volcanology and Geothermal Research, 197, 85–107.CrossRefGoogle Scholar
  458. Hsu, C.-N., & Chen, J.-C. (1998). Geochemistry of late Cenozoic basalts from Wudalianchi and Jingpohu areas, Heilongjiang Province, northeast China. Journal of Asian Earth Sciences, 16, 385–405.CrossRefGoogle Scholar
  459. Hsu, C.-N., Chen, J.-C., & Ho, K.-S. (2000). Geochemistry of Cenozoic volcanic rocks from Kirin Province, northeast China. Geochemical Journal, 34, 33–58.CrossRefGoogle Scholar
  460. Huang, S. W., & Frey, F. A. (2003). Trace element abundances of Mauna Kea basalt from phase 2 of the Hawaii Scientific Drilling Project: Petrogenetic implications of correlations with major element content and isotopic ratios. Geochemistry Geophysics Geosystems, 4, 1–43.Google Scholar
  461. Huang, Y., Hawkesworth, C., Smith, I., van Calsteren, P., & Black, P. (2000). Geochemistry of late Cenozoic basaltic volcanism in Northland and Coromandel, New Zealand: Implications for mantle enrichment processes. Chemical Geology, 164, 219–238.CrossRefGoogle Scholar
  462. Huber, W. (2003). Basic calculations about the limit of detection and its optimal determination. Accreditation and Quality Assurance, 8, 213–217.Google Scholar
  463. Huijsmans, J. P. P., Barton, M., & Salters, V. J. M. (1988). Geochemistry and evolution of the calc-alkaline volcanic complex of Santorini, Aegean Sea, Greece. Journal of Volcanology and Geothermal Research, 34, 283–306.CrossRefGoogle Scholar
  464. Innocenti, S., Marmol, M.-A. D., Voight, B., Andreastuti, S., & Furman, T. (2013). Textural and mineral chemistry constraints on evolution of Merapi Volcano, Indonesia. Journal of Volcanology and Geothermal Research, 261, 20–37.Google Scholar
  465. Ireland, T. J., Walker, R. J., & Garcia, M. O. (2009). Highly siderophile elements and 187Os isotope systematics of Hawaiian picrites: Implications for parental melt composition and source heterogeneity. Chemical Geology, 260, 112–128.CrossRefGoogle Scholar
  466. Ishikawa, T., Tera, F., & Nakazawa, T. (2001). Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochimica et Cosmochimica Acta, 65, 4523–4537.CrossRefGoogle Scholar
  467. Ishizuka, O., Taylor, R. N., Milton, T. J., & Nesbitt, R. (2003). Fluid mantle interaction in an intra-oceanic arc: Constraints from high-precision Pb isotopes. Earth and Planetary Science Letters, 211, 221–236.CrossRefGoogle Scholar
  468. Ishizuka, O., Taylor, R. N., Milton, J. A., Nesbitt, R. W., Yuasa, M., & Sakamoto, I. (2006). Variation in the mantle sources of the northern Izu arc with time and space—Constraints from high-precision Pb isotopes. Journal of Volcanology and Geothermal Research, 156, 266–290.CrossRefGoogle Scholar
  469. Ishizuka, O., Taylor, R. N., Yuasa, M., Milton, J. A., Nesbitt, R. W., Uto, K., & Sakamoto, I. (2007). Processes controlling along-arc isotopic variation of the southern Izu-Bonic arc. Geochemistry, Geophysics, Geosystems, 8.  https://doi.org/10.1029/2006gc001475.CrossRefGoogle Scholar
  470. Ishizuka, O., Yuasa, M., Tamura, Y., Shukuno, H., Stern, R. J., Naka, J., et al. (2010). Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation. Earth and Planetary Science Letters, 294, 111–122.CrossRefGoogle Scholar
  471. Izbekov, P. E., Eichelberger, J. C., & Ivanov, B. V. (2004). The 1996 eruption of Karymsky volcano, Kamchatka: Historical record of basaltic replenishment of an andesite reservoir. Journal of Petrology, 45, 2325–2345.CrossRefGoogle Scholar
  472. Jackson, M. C., Frey, F. A., Garcia, M. O., & Wilmoth, R. A. (1999). Geology and geochemistry of basaltic lava flows and dikes from the Trans-Koolau tunnel, Oahu, Hawaii. Bulletin of Volcanology, 60, 381–401.CrossRefGoogle Scholar
  473. Jacques, G., Hoernle, K., Gill, J., Hauff, F., Wehmann, H., Garbe-Schönberg, D., et al. (2013). Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0 S): Constraints on mantle wedge and slab input compositions. Geochimica et Cosmochimica Acta, 123, 218–243.CrossRefGoogle Scholar
  474. Jeffery, A. J., Gertisser, R., Self, S., Pimentel, A., O’Driscoll, B., & Pacheco, J. M. (2017). Petrogenesis of the peralkaline ignimbrites of Terceira, Azores. Journal of Petrology, 58, 2365–2402.CrossRefGoogle Scholar
  475. Jicha, B. R., Singer, B. S., & Valentine, M. J. (2013). 40Ar/39Ar geochronology of subaerial Ascension Island and a re-evaluation of thetemporal progression of basaltic to rhyolitic volcanism. Journal of Petrology, 54, 2581–2596.CrossRefGoogle Scholar
  476. Johnson, R. W., Knutson, J., & Taylor, S. R. (1989). Intraplate volcanism in Eastern Australia and New Zealand. Cambridge: Australian Academy of Science and Cambridge University Press.Google Scholar
  477. Johnson, K. E., Harmon, R. S., Richardson, J. M., Moorbath, S., & Strong, D. (1996). Isotope and trace element geochemistry of Augustine Volcano, Alaska: Implications for magmatic evolution. Journal of Petrology, 37, 95–115.CrossRefGoogle Scholar
  478. Johnson, K. T. M., Graham, D. W., Rubin, K. H., Nicolaysen, K., Scheirer, D. S., Forsyth, D. W., et al. (2000). Boomerang Seamount: The active expression of the Amsterdam–St. Paul hotspot, Southeast Indian Ridge. Earth and Planetary Science Letters, 183, 245–259.CrossRefGoogle Scholar
  479. Jordan, S. C., Jowitt, S. M., & Cas, R. A. F. (2015). Origin of temporal—Compositional variations during the eruption of Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. Bulletin of Volcanology, 77(883), 1–15.Google Scholar
  480. Jørgensen, J. O., & Holm, P. M. (2002). Temporal variation and carbonatite contamination in primitive ocen island volcanics from São Vicente, Cape Verde Islands. Chemical Geology, 192, 249–267.CrossRefGoogle Scholar
  481. Kabeto, K., Sawada, Y., Iizumi, S., & Wakatsuki, T. (2001). Mantle sources and magma–crust interactions in volcanic rocks from northern Kenya rift: Geochemical evidence. Lithos, 56, 111–136.CrossRefGoogle Scholar
  482. Kampunzu, A. B., & Mohr, P. (1991). Magmatic evolution and petrogenesis in the East African rift system. In A. B. Kampunzu & R. T. Lubala (Eds.), Magmatism in extensional structural settings. The Phanerozoic African plate (pp. 85–146). Berlin, Heidelberg: Springer-Verlag.Google Scholar
  483. Karsli, O., Chen, B., Uysal, I., Aydin, F., Wijbrans, J. R., & Kandemir, R. (2008). Elemental and Sr–Nd–Pb isotopic geochemistry of the most recent Quaternary volcanism in the Erzincan Basin, Eastern Turkey: Framework for the evaluation of basalt–lower crust interaction. Lithos, 106, 55–70.CrossRefGoogle Scholar
  484. Karsten, J. L., Delaney, J. R., Rhodes, J. M., & Liias, R. A. (1990). Spatial and temporal evolution of magmatic systems beneath the Endeavour Segment, Juan de Fuca Ridge: Tectonic and petrologic constraints. Journal of Geophysical Research, 95, 19235–19256.CrossRefGoogle Scholar
  485. Kay, S. M., & Gordillo, C. E. (1994). Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the Central Andes. Contributions to Mineralogy and Petrology, 117, 25–44.CrossRefGoogle Scholar
  486. Kay, S. M., & Kay, R. W. (1994). Aleutian magmas in space and time. In G. Plafker & H. C. Berg (Eds.), The geology of North America (pp. 687–722). USA: Geological Society of America.Google Scholar
  487. Kay, S. M., Mpodozis, C., Ramos, V. A., & Munizaga, F. (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes. Geological Society of America Special Paper, 265, 113–137.CrossRefGoogle Scholar
  488. Kay, S. M., Coira, B. L., Caffe, P. J., & Chen, C.-H. (2010). Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research, 198, 81–111.CrossRefGoogle Scholar
  489. Keller, R. A., Fisk, M. R., Smellie, J. L., Strelin, J. A., & Lawver, L. A. (2002). Geochemistry of back arc basin volcanism in Bransfield Strait, Antarctica: Subducted contributions and along-axis variations. Journal of Geophysical Research, 107(B8), 2171.  https://doi.org/10.1029/2001JB000444.
  490. Kelley, K. A., Kingsley, R., & Schilling, J.-G. (2013). Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems, 14, 223–242.CrossRefGoogle Scholar
  491. Kelly, P. J., Kyle, P. R., Dunbar, N. W., & Sims, K. W. W. (2008). Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas. Journal of Volcanology and Geothermal Research, 177, 589–605.CrossRefGoogle Scholar
  492. Kempton, P. D., Fitton, J. G., Hawkesworth, C. J., & Ormerod, D. S. (1991). Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. Journal of Geophysical Research, 96, 13713–13735.CrossRefGoogle Scholar
  493. Kepezhinskas, P., McDermott, F., Defant, M. J., Hochstaedter, A., Drummond, M. S., Hawkesworth, C. J., et al. (1997). Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochimica et Cosmochimica Acta, 61, 577–600.CrossRefGoogle Scholar
  494. Keskin, M., Pearce, J. A., & Mitchell, J. G. (1998). Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research, 85, 355–404.CrossRefGoogle Scholar
  495. Kheirkhah, M., Allen, M. B., & Emami, M. (2009). Quaternary syn-collision magmatism from the Iran/Turkey borderlands. Journal of Volcanology and Geothermal Research, 182, 1–12.CrossRefGoogle Scholar
  496. Kim, K. H., Nagao, K., Sumino, H., Tanaka, T., & Hayashi, T. (2008). He–Ar and Nd–Sr isotopic compositions of late Pleistocene felsic plutonic back arc basin rocks from Ulleungdo volcanic island, South Korea: Implications for the genesis of young plutonic rocks in a back arc basin. Chemical Geology, 253, 183–195.CrossRefGoogle Scholar
  497. Kimura, J.-I., & Yoshida, T. (2006). Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc. Journal of Petrology, 47, 2185–2232.CrossRefGoogle Scholar
  498. Kimura, J.-I., Tanji, T., Yoshida, T., & Iizumi, S. (2001). Geology and geochemistry of lavas at Nekoma volcano: Implications for origin of Quaternary low-K andesite in the north-eastern Honshu arc, Japan. The Island Arc, 10, 116–134.CrossRefGoogle Scholar
  499. Kimura, J.-I., Manton, W. I., Sun, C.-H., Iizumi, S., Yoshida, T., & Stern, R. J. (2002). Chemical diversity of the Ueno basalts, Central Japan: Identification of mantle and crustal contributions to arc basalts. Journal of Petrology, 43, 1923–1946.CrossRefGoogle Scholar
  500. Kimura, J.-I., Kent, A. J. R., Rowe, M. C., Katakuse, M., Nakano, F., Hacker, B. R., et al. (2010). Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: Using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochemistry, Geophysics, Geosystems, 11, 1–24.CrossRefGoogle Scholar
  501. Kipf, A., Hauff, F., Werner, R., Gohl, K., van den Bogaard, P., Hoernle, K., et al. (2014). Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism. Gondwana Research, 25, 1660–1679.CrossRefGoogle Scholar
  502. Kirchenbaur, M., Mûnker, C., Schuth, S., Garbe-Schònberg, D., & Marchev, P. (2012). Tectonomagmatic constraints on the sources of Eastern Mediterranean K-rich Lavas. Journal of Petrology, 53, 27–65.CrossRefGoogle Scholar
  503. Kirchner, T. M., & Gillis, K. M. (2012). Mineralogical and strontium isotopic record of hydrothermal processes in the lower ocean crust at and near the East Pacific Rise. Contributions to Mineralogy and Petrology, 164, 123–141.CrossRefGoogle Scholar
  504. Kita, I., Yamamoto, M., Asakawa, Y., Nakagawa, M., Taguchi, S., & Hasegawa, H. (2001). Contemporaneous ascent of within-plate type and island-arc type magmas in the Beppu–Shimabara graben system, Kyushu island, Japan. Journal of Volcanology and Geothermal Research, 111, 99–109.CrossRefGoogle Scholar
  505. Kitagawa, H., Kobayashi, K., Makishima, A., & Nakamura, E. (2008). Multiple pulses of the mantle plume: Evidence from Tertiary Icelandic lavas. Journal of Petrology, 49, 1365–1396.CrossRefGoogle Scholar
  506. Klaver, M., Carey, S., Nomikou, P., Smet, I., Godelitsas, A., & Vroon, P. (2016). A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc. Geochemistry, Geophysics, Geosystems, 17.  https://doi.org/10.1002/2016gc006398.CrossRefGoogle Scholar
  507. Knittel, U., Hegner, E., Bau, M., & Satir, M. (1997). Enrichment processes in the sub-arc mantle: A Sr–Nd–Pb isotopic and REE study of primitive arc basalts from the Philippines. The Canadian Mineralogist, 35, 327–346.Google Scholar
  508. Kohut, E. J., Stern, R. J., Kent, A. J. R., Nielsen, R. L., Bloomer, S. H., & Leybourne, M. (2006). Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions. Contributions to Mineralogy and Petrology, 152, 201–221.CrossRefGoogle Scholar
  509. Kokfelt, T. F., Hoernle, K., Hauff, F., Fiebig, J., Werner, R., & Garbe-Schönberg, D. (2006). Combined trace element and Pb–Nd–Sr–O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. Journal of Petrology, 47, 1705–1749.CrossRefGoogle Scholar
  510. Koloskov, A. V., Fedorov, P. I., & Rashidov, V. A. (2016). New data on the composition of products of Quaternary volcanism at the Northwestern margin of the South China Sea shelf zone and the problem of asthenospheric diapirism. Russian Journal of Pacific Geology, 10, 79–104.Google Scholar
  511. Koloskov, A. V., & Khubunaya, S. A. (2013). New petrological data on the volcanic rocks of the Chichinautzin region: The sources of the magmatic melts and the origin of the Trans-Mexican Volcanic Belt. Russian Journal of Pacific Geology, 7, 247–261.CrossRefGoogle Scholar
  512. Košler, J., Magna, T., Micoch, B., Mixa, P., Nývlt, D., & Holub, F. V. (2009). Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical Geology, 258, 207–218.CrossRefGoogle Scholar
  513. Krienitz, M.-S., Haase, K. M., Mezger, K., & Shaikh-mashail, M. A. (2007). Magma genesis and mantle dynamics at the Harrat Ash Shamah volcanic field (southern Syria). Journal of Petrology, 48, 1513–1542.CrossRefGoogle Scholar
  514. Krienitz, M. S., Haase, K. M., Mezger, K., van den Bogaard, P., Thiemann, V., & Shaikh-Mashail, M. A. (2009). Tectonic events, continental intraplate volcanism, and mantle plume activity in northern Arabia: Constraints from geochemistry and Ar–Ar dating of Syrian lavas. Geochemistry, Geophysics, Geosystems, 10, 1–26.  https://doi.org/10.1029/2008GC002254.CrossRefGoogle Scholar
  515. Kudo, A. M., Jackson, M. E., & Husler, J. W. (1985). Phase chemistry of recent andesite, dacite, and rhyodacite of Volcan Pico de Orizaba, Mexican Volcanic Belt: Evidence for xenolitic contamination. Geofísica Internacional, 24, 679–689.Google Scholar
  516. Kudo, T., Sasaki, M., Uchiyama, Y., Nozawa, A., Sasaki, H., Tokizawa, T., et al. (2007). Petrological variation of large-volume felsic magmas from Hakkoda-Towada caldera cluster: Implications for the origin of high-K felsic magmas in the northeast Japan Arc. Island Arc, 16, 133–155.CrossRefGoogle Scholar
  517. Kuritani, T., Kitagawa, H., & Nakamura, E. (2005). Assimilation and fractional crystallization controlled by transport process of crustal melt: Implications from an alkali basalt–dacite suite from Rishiri Volcano, Japan. Journal of Petrology, 46, 1421–1442.CrossRefGoogle Scholar
  518. Kuritani, T., Yokoyama, T., & Nakamura, E. (2007). Rates of thermal and chemical evolution of magmas in a cooling magma chamber: A chronological and theoretical study on basaltic and andesitic lavas from Rishiri Volcano, Japan. Journal of Petrology, 48, 1295–1319.CrossRefGoogle Scholar
  519. Kuritani, T., Yokoyama, T., & Nakamura, E. (2008). Generation of rear-arc magmas induced by influx of slab-derived supercritical liquids: Implications from alkali basalt lavas from Rishiri Volcano, Kurile arc. Journal of Petrology, 49, 1319–1342.CrossRefGoogle Scholar
  520. Kuritani, T., Kimura, J.-I., Ohtani, E., Miyamoto, H., & Furuyama, K. (2013). Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos, 56–159.Google Scholar
  521. Kuritani, A., Yamaguchi, A., Fukumitsu, S., Nakagawa, M., Matsumoto, A., & Yokoyama, T. (2018). Magma plumbing system at Izu-Oshima volcano, Japan: Constraints from petrological and geochemical analyses. Frontiers in Earth Science, 6, Art. 178.  https://doi.org/10.3389/feart.2018.00178.
  522. Kürkçüoglu, B., Sen, E., Aydar, E., Gourgaud, A., & Gündogdu, N. (1998). Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85, 473–494.CrossRefGoogle Scholar
  523. Kurt, M. D., & Geist, D. (1999). Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochimica et Cosmochimica Acta, 63, 4139–4156.CrossRefGoogle Scholar
  524. Kyle, P. R., Moore, J. A., & Thirlwall, M. F. (1992). Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. Journal of Petrology, 33, 849–875.CrossRefGoogle Scholar
  525. La Femina, P. C., Connor, C. B., Hill, B. E., Strauch, W., & Saballos, J. A. (2004). Magma-tectonic interactions in Nicaragua: The 1999 seismic swarm and eruption of Cerro Negro volcano. Journal of Volcanology and Geothermal Research, 137, 187–199.CrossRefGoogle Scholar
  526. Lacasse, C., Sigurdsson, H., Carey, S. N., Jóhannesson, H., Thomas, L. E., & Rogers, N. W. (2007). Bimodal volcanism at the Katla subglacial caldera, Iceland: Insight into the geochemistry and petrogenesis of rhyolitic magmas. Bulletin of Volcanology, 69, 373–399.CrossRefGoogle Scholar
  527. Landi, P., Francalanci, L., Pompilio, M., Rosi, M., Corsaro, R. A., Petrone, C. M., et al. (2006). The December 2002–July 2003 effusive event at Stromboli volcano, Italy: Insights into the shallow plumbing system by petrochemical studies. Journal of Volcanology and Geothermal Research, 155, 263–284.CrossRefGoogle Scholar
  528. Lange, R., & Carmichael, I. S. E. (1990). Hydrous basaltic andesites associated with minette and related lavas in western Mexico. Journal of Petrology, 31, 1225–1259.CrossRefGoogle Scholar
  529. Lange, R. A., & Carmichael, I. S. E. (1991). A potassic volcanic front in western Mexico: The lamprophyric and related lavas of San Sebastian. Geological Society of America Bulletin, 103, 928–940.CrossRefGoogle Scholar
  530. Lange, A. E., Nielsen, R. L., Tepley, III, F. J., & Kent, A. J. R. 2013. The petrogenesis of plagioclase-phyric basalts at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 14, 3282–3296.Google Scholar
  531. Larocque, A. C. L., Stimac, J. A., & Siebe, C. (1998). Metal-residence sites in lavas and tuffs from Volcán Popocatépetl, Mexico: Implications for metal mobility in the environment. Environmental Geology, 33, 197–208.CrossRefGoogle Scholar
  532. Larrea, P., Galé, C., Ubide, T., Widom, E., Lago, M., & França, Z. (2014). Magmatic evolution of Graciosa (Azores, Portugal). Journal of Petrology, 55, 2125–2154.CrossRefGoogle Scholar
  533. Lassiter, J. C., Blichert-Toft, J., Hauri, E. H., & Barsczus, H. G. (2003). Isotope and trace element variations in lavas from Raivavae and Rapa, Cook-Austral islands: Constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology, 202, 115–138.CrossRefGoogle Scholar
  534. Layer, P. W., García-Palomo, A., Jones, D., Macías, J. L., Arce, J. L., & Mora, J. C. (2009). El Chichón volcanic complex, Chiapas, México: Stages of evolution based on field mapping and 40Ar/39Ar geochronology. Geofísica Internacional, 48, 33–54.Google Scholar
  535. Le Bas, M. J. (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41, 1467–1470.CrossRefGoogle Scholar
  536. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.CrossRefGoogle Scholar
  537. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., et al. (1989). A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Oxford: Blackwell Scientific Publications.Google Scholar
  538. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., et al. (2002). Igneous rocks. A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  539. Le Pennec, J. L., Ruiz, A. G., Eissen, J. P., Hall, M. L., & Fornari, M. (2011). Identifying potentially active volcanoes in the Andes: Radiometric evidence for late Pleistocene-early Holocene eruptions at Volcán Imbabura, Ecuador. Journal of Volcanology and Geothermal Research, 206, 121–135.CrossRefGoogle Scholar
  540. Le Roex, A. P. (1985). Geochemistry, mineralogy and magmatic evolution of the basaltic and trachytic lavas from Gough Island, South Atlantic. Journal of Petrology, 26, 149–186.CrossRefGoogle Scholar
  541. Le Roex, A. P., & Dick, H. J. B. (1981). Petrography and geochemistry of basaltic rocks from the Conrad fracture zone on the America-Antarctica Ridge. Earth and Planetary Science Letters, 54, 117–138.CrossRefGoogle Scholar
  542. Le Roex, A. P., & Erlank, A. J. (1982). Quantitative evaluation of fractional crystallization in Bouvet Island lavas. Journal of Volcanology and Geothermal Research, 13, 309–338.CrossRefGoogle Scholar
  543. Le Roex, A. P., Dick, H. J. B., Gulen, L., Reid, A. M., & Erlank, A. J. (1987). Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54.5° S and 51° S: Evidence for geochemical enrichment. Geochimica et Cosmochimica Acta, 51, 541–555.CrossRefGoogle Scholar
  544. Le Roex, A. P., Späth, A., & Zartman, R. E. (2001). Lithospheric thickness beneath the southern Kenya rift: Implications from basalt geochemistry. Contributions to Mineralogy and Petrology, 142, 89–106.CrossRefGoogle Scholar
  545. Le Roex, A. P., Chevallier, L., Verwoerd, W. J., & Barends, R. (2012). Petrology and geochemistry of Marion and Prince Edward Islands, Southern Ocean: Magma chamber processes and source region characteristics. Journal of Volcanology and Geothermal Research, 223–224, 11–28.CrossRefGoogle Scholar
  546. Le Roux, P., Le Roex, A., & Schilling, J.-G. (2002a). MORB melting processes beneath the southern Mid-Atlantic Ridge (40° S–55° S): A role for mantle plume-derived pyroxenite. Contributions to Mineralogy and Petrology, 144, 206–229.CrossRefGoogle Scholar
  547. Le Roux, P. J., Le Roex, A. P., Schilling, J.-G., Shimizu, N., Perkins, W. W., & Pearce, N. J. G. (2002b). Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: Trace element evidence for contamination of ambient asthenospheric mantle. Earth and Planetary Science Letters, 203, 479–498.CrossRefGoogle Scholar
  548. Leat, P. T., Thompson, R. N., Dickin, A. P., Morrison, M. A., & Hendry, G. L. (1989). Quaternary volcanism in northwestern Colorado: Implications for the roles of asthenosphere and lithosphere in the genesis of continental basalts. Journal of Volcanology and Geothermal Research, 37, 291–310.CrossRefGoogle Scholar
  549. Lebedev, V. A., Chugaev, A. V., Ünal, E., Sharkov, E. V., & Keskin, M. (2016). Late Pleistocene Tendürek Volcano (Eastern Anatolia, Turkey). II. Geochemistry and petrogenesis of the rocks. Petrology, 24, 234–270.CrossRefGoogle Scholar
  550. Lebti, P. P., Thouret, J.-C., Wörner, G., & Fornari, M. (2006). Neogene and Quaternary ignimbrites in the area of Arequipa, southern Peru: Stratigraphical and petrological correlations. Journal of Volcanology and Geothermal Research, 154, 251–275.CrossRefGoogle Scholar
  551. Lee, D.-C., Halliday, A. N., Fitton, J. G., & Poli, G. (1994). Isotopic variations with distance and time in the volcanic islands of the Cameroon line: Evidence for a mantle plume origin. Earth and Planetary Science Letters, 123, 119–138.CrossRefGoogle Scholar
  552. Leeman, W. P., Smith, D. R., Hildreth, W., Palacz, Z., & Rogers, N. (1990). Compositional diversity of late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism. Journal of Geophysical Research, 95, 19561–19582.CrossRefGoogle Scholar
  553. Leeman, W. P., Lewis, J. F., Evarts, R. C., Conrey, R. M., & Streck, M. J. (2005). Petrologic constraints on the thermal structure of the Cascades arc. Journal of Volcanology and Geothermal Research, 140, 67–105.CrossRefGoogle Scholar
  554. Leo, G. W., Hedge, C. E., & Marvin, R. F. (1980). Geochemistry, strontium isotope data, and potassium-argon ages of the andesite-rhyolite association in the Padang area, west Sumatra. Journal of Volcanology and Geothermal Research, 7, 139–156.CrossRefGoogle Scholar
  555. Leslie, R. A. J., Danyushevsky, L. V., Crawford, A. J., & Verbeeten, A. C. (2009). Primitive shoshonites from Fiji: Geochemistry and source components. Geochemistry, Geophysics, Geosystems, 10, Q07001.  https://doi.org/10.1029/2008GC002326.CrossRefGoogle Scholar
  556. Lewis-Kenedi, C. B., Lange, R. A., Hall, C. M., & Delgado Granados, H. (2005). The eruptive history of the Tequila volcanic field, western Mexico: Ages, volumes, and relative proportions of lava types. Bulletin Volcanologique, 67, 391–414.CrossRefGoogle Scholar
  557. Limón-Hernández, C. G. (2011). Estratografía y morfología de los flujos de lava y depósitos asociados a la actividad efusiva del Volcán Tacaná, México-Guatemala. In Posgrado en Ciencias de la Tierra (p. 125). Mexico City: Universidad Nacional Autónoma de México.Google Scholar
  558. Lin, P.-N., Stern, R. J., & Bloomer, S. H. (1989). Shoshonitic volcanism in the northern Mariana arc. 2. Large-ion lithophile and rare earth element abundances: Evidence for the source of incompatible element enrichments in intraoceanic arcs. Journal of Geophysical Research, 94, 4497–4514.CrossRefGoogle Scholar
  559. Lindsay, J. M., Trumbull, R. B., & Siebel, W. (2005). Geochemistry and petrogenesis of late Pleistocene to Recent volcanism in southern Dominica, Lesser Antilles. Journal of Volcanology and Geothermal Research, 148, 253–394.CrossRefGoogle Scholar
  560. Liotard, J. M., Barsczus, H. G., Dupuy, C., & Dostal, J. (1986). Geochemistry and origin of basaltic lavas from Marquesas Archipelago, French Polynesia. Contributions to Mineralogy and Petrology, 92, 260–268.CrossRefGoogle Scholar
  561. Lipman, P. W. (1967). Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan. Contributions to Mineralogy and Petrology, 16, 300–327.CrossRefGoogle Scholar
  562. Lipman, P. W., Rhodes, R. M., & Dalrymple, G. B. (1990). The Ninole Basalt—Implications for the structural evolution of Mauna Loa volcano, Hawaii. Bulletin of Volcanology, 53, 1–19.CrossRefGoogle Scholar
  563. Liu, C.-Q., Masuda, A., & Xie, G.-H. (1992). Isotope and trace-element geochemistry of alkali basalts and associated megacrysts from the Huangyishan volcano, Kuandian, Liaoning, NE China. Chemical Geology, 97, 219–231.CrossRefGoogle Scholar
  564. Liu, C.-Q., Masuda, A., & Xie, G.-H. (1994). Major- and trace-element compositions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chemical Geology, 114, 19–42.CrossRefGoogle Scholar
  565. Long, G. L., & Winefordner, J. D. (1983). Limit of detection. A closer look at the IUPAC definition. Analytical Chemistry, 55, 712–724.CrossRefGoogle Scholar
  566. Lonsdale, P., Blum, N., & Puchelt, H. (1992). The RRR triple junction at the southern end of the Pacific-Cocos East Pacific Rise. Earth and Planetary Science Letters, 109, 73–85.CrossRefGoogle Scholar
  567. Lopes, R. P. (2002). O vulcanismo do Arquipélago de Fernando de Noronha, PE: Química mineral e geoquímica. In Instituto de Geociências (p. 168). São Paulo: Universidade de São Paulo.Google Scholar
  568. López Hernández, A. (2009). Evolución volcánica del complejo Tulancingo–Acoculco y su sistema hidrotermal, estados de Hidalgo y Puebla, México. In Posgrado en Ciencias de la Tierra (p. 170). México, D.F.: Universidad Nacional Autónoma de México.Google Scholar
  569. Lopez-Escobar, L., Vergara, M., & Frey, F. A. (1981). Petrology and geochemistry of lavas from Antuco volcano, a basaltic volcano of the Southern Andes (37°25′ S). Journal of Volcanology and Geothermal Research, 11, 329–352.CrossRefGoogle Scholar
  570. López-Escobar, L., Tagiri, M., & Vergara, M. (1991). Geochemical features of Southern Andes Quaternary volcanics between 41°5′ and 43°00′ S. Geological Society of America Special Paper, 265, 45–56.CrossRefGoogle Scholar
  571. López-Escobar, L., Kilian, R., Kempton, P. D., & Tagiri, M. (1993). Petrography and geochemistry of Quaternary rocks from the southern volcanic zone of the Andes between 41°30′ and 46°00′ S, Chile. Revista Geológica de Chile, 20, 33–35.Google Scholar
  572. Lowenstern, J. B., Charlier, B. L. A., Clynne, M. A., & Wooden, J. L. (2006). Extreme U–Th disequilibrium in rift-related basalts, rhyolites and granophyric granite and the timescale of rhyolite generation, intrusion and crystallization at Alid volcanic center, Eritrea. Journal of Petrology, 47, 2105–2122.CrossRefGoogle Scholar
  573. Luhr, J. F. (1993). Petrology and geochemistry of stage-I andesites and dacites from the caldera wall of Volcán Colima, Mexico. Geofísica Internacional, 32, 591–603.Google Scholar
  574. Luhr, J. F. (1997). Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Canadian Mineralogist, 35, 473–500.Google Scholar
  575. Luhr, J. F. (2000). The geology and petrology of Volcán San Juan (Nayarit, México) and the compositionally zoned Tepic Pumice. Journal of Volcanology and Geothermal Research, 95, 109–156.CrossRefGoogle Scholar
  576. Luhr, J. F. (2001). Glass inclusions and melt volatile contents at Paricutin Volcano, Mexico. Contributions to Mineralogy and Petrology, 142, 261–283.CrossRefGoogle Scholar
  577. Luhr, J. F. (2002). Petrology and geochemistry of the 1991 and 1998–1999 lava flows from Volcán de Colima, México: Implications for the end of the current eruptive cycle. Journal of Volcanology and Geothermal Research, 117, 169–194.CrossRefGoogle Scholar
  578. Luhr, J. F., & Carmichael, I. S. E. (1980). The Colima volcanic complex, Mexico. I. Post-caldera andesites from Volcán Colima. Contributions to Mineralogy and Petrology, 71, 343–372.CrossRefGoogle Scholar
  579. Luhr, J. F., & Carmichael, I. S. E. (1981). The Colima volcanic complex, Mexico: Part II. Late-Quaternary cinder cones. Contributions to Mineralogy and Petrology, 76, 127–147.CrossRefGoogle Scholar
  580. Luhr, J. F., & Carmichael, I. S. E. (1982). The Colima volcanic complex, Mexico: III. Ash- and scoria-fall deposits from the upper slopes of Volcán Colima. Contributions to Mineralogy and Petrology, 80, 262–275.CrossRefGoogle Scholar
  581. Luhr, J. F., & Carmichael, I. S. E. (1985). Jorullo Volcano, Michoacán, México (1759–1774): The earliest stages of fractionation in calc-alkaline magmas. Contributions to Mineralogy and Petrology, 90, 142–161.CrossRefGoogle Scholar
  582. Luhr, J. F., & Carmichael, I. S. E. (1990a). Geology of Volcán de Colima. Universidad Nacional Autónoma de México, Instituto de Geologia Boletín, 107, p. 101.Google Scholar
  583. Luhr, J. F., & Carmichael, I. S. E. (1990b). Petrological monitoring of cyclical eruptive activity at Volcán Colima, Mexico. Journal of Volcanology and Geothermal Research, 42, 235–260.CrossRefGoogle Scholar
  584. Luhr, J. F., & Haldar, D. (2006). Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research, 149, 177–212.CrossRefGoogle Scholar
  585. Luhr, J. F., & Lazaar, P. (1985). The southern Guadalajara volcanic chain, Jalisco, Mexico. Geofísica Internacional, 24, 691–700.Google Scholar
  586. Luhr, J. F., Carmichael, I. S. E., & Varekamp, J. C. (1984). The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: Mineralogy and petrology of the anhydrite-bearing pumices. Journal of Volcanology and Geothermal Research, 23, 69–108.CrossRefGoogle Scholar
  587. Luhr, J. F., Allan, J. F., Carmichael, I. S. E., Nelson, S. A., & Hasenaka, T. (1989). Primitive calc-alkaline and alkaline rock types from the western Mexican Volcanic Belt. Journal of Geophysical Research, 94, 4515–4530.CrossRefGoogle Scholar
  588. Luhr, J. F., Aranda-Gómez, J. J., & Housh, T. B. (1995). San Quintín volcanic field, Baja California Norte, México: Geology, petrology, and geochemistry. Journal of Geophysical Research, 100, 10353–10380.CrossRefGoogle Scholar
  589. Luhr, J. F., Navarro-Ochoa, C., & Savov, I. P. (2010). Tephrochronology, petrology and geochemistry of late-Holocene pyroclastic deposits from Volcán de Colima, Mexico. Journal of Volcanology and Geothermal Research, 197, 1–32.CrossRefGoogle Scholar
  590. Lundstrom, C. C., Hoernle, K., & Gill, J. (2003). U-series disequilibria in volcanic rocks from the Canary Islands: Plume versus lithospheric melting. Geochimica et Cosmochimica Acta, 67, 4153–4177.CrossRefGoogle Scholar
  591. Lustrino, M., Melluso, L., & Morra, V. (2007). The geochemical peculiarity of “Plio-Quaternary” volcanic rocks of Sardinia in the circum-Mediterranean area. In L. Beccaluva, G. Bianchini, & M. Wilson (Eds.), Cenozoic volcanism in the Mediterranean area (pp. 277–301). Geological Society of America Special Paper.Google Scholar
  592. Lustrino, M., Keskin, M., Mattioli, M., Lebedev, V. A., Chugaev, A., Sharkov, E., et al. (2010). Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadag, SE Turkey. European Journal of Mineralogy, 22, 343–362.CrossRefGoogle Scholar
  593. Ma, G. S.-K., Malpas, J., Xenophontos, C., & Chan, G. H.-N. (2011). Petrogenesis of latest Miocene-Quaternary continental intraplate volcanism along the northern Dead Sea fault system (Al Ghab-Homs Volcanic Field), Western Syria: Evidence for lithosphere–asthenosphere interaction. Journal of Petrology, 52, 401–430.CrossRefGoogle Scholar
  594. Macdonald, R., Davies, G. R., Upton, B. G. J., Denkley, P. N., Smith, M., & Leat, P. T. (1995). Petrogenesis of Silali volcano, Gregory rift, Kenya. Journal of the Geological Society of London, 152, 703–720.CrossRefGoogle Scholar
  595. Macdonald, R., Belkin, H. E., Fitton, J. G., Rogers, N. W., Nejbert, K., Tindle, A. G., et al. (2008). The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile–melt interactions in the genesis of young basalt–peralkaline rhyolite suite, the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 49, 1515–1547.CrossRefGoogle Scholar
  596. Machida, S., Ishii, T., Kimura, J.-I., Awaji, S., & Kato, Y. (2008). Petrology and geochemistry of cross-chains in the Izu-Bonin back arc: Three mantle components with contributions of hydrous liquids from a deeply subducted slab. Geochemistry, Geophysics, Geosystems, 9, Q05002.  https://doi.org/10.1029/2007GC001641.CrossRefGoogle Scholar
  597. Macías, J. L., Espíndola, J. M., García-Palomo, A., Scott, K. M., Hughes, S., & Mora, J. C. (2000). Late Holocene Peléan-style eruption at Tacana-volcano, Mexico and Guatemala: Past, present, and future hazards. Geological Society of America Bulletin, 112, 1234–1249.CrossRefGoogle Scholar
  598. Macías, J. L., Arce, J. L., Mora, J. C., Espíndola, J. M., Saucedo, R., & Manetti, P. (2003). A 550-year-old Plinian eruption at El Chichón volcano, Chiapas, Mexico: Explosive volcanism linked to reheating of the magma reservoir. Journal of Geophysical Research, 108, 2569.  https://doi.org/10.1029/2003JB002551.CrossRefGoogle Scholar
  599. Macías, J. L., Arce, J. L., García-Palomo, A., Mora, J. C., Layer, P. W., & Espíndola, J. M. (2010). Late-Pleistocene flank collapse triggered by dome growth at Tacaná volcano, México-Guatemala, and its relationship to the regional stress regime. Bulletin of Volcanology, 72, 33–53.CrossRefGoogle Scholar
  600. Maclennan, J., McKenzie, D., Gronvold, K., & Slater, L. (2001). Crustal accretion under northern Iceland. Earth and Planetary Science Letters, 191, 295–310.CrossRefGoogle Scholar
  601. Macpherson, C. G., Hilton, D. R., Day, J. M. D., Lowry, D., & Grfnvold, K. (2005). High-3He/4He, depleted mantle and low-δ18O, recycled oceanic lithosphere in the source of central Iceland magmatism. Earth and Planetary Science Letters, 233, 411–427.CrossRefGoogle Scholar
  602. Macpherson, C. G., Dreher, S. T., & Thirlwall, M. (2006). Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243, 581–593.CrossRefGoogle Scholar
  603. Madureira, P., Mata, J., Mattielli, N., Queiroz, G., & Silva, P. (2011). Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores Archipelago): Constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos, 126, 402–418.CrossRefGoogle Scholar
  604. Maeno, F., & Taniguchi, H. (2006). Silicic lava dome growth in the 1934–1935 Showa Iwo-jima eruption, Kikai caldera, south of Kyushu, Japan. Bulletin of Volcanology, 68, 673–688.CrossRefGoogle Scholar
  605. Mahoney, J., Le Roex, A. P., Peng, Z., Fisher, R. L., & Natland, J. H. (1992). Southwestern limits of Indian Ocean ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: Isotope systematics of the central southwestern Indian Ridge (17°–50° E). Journal of Geophysical Research, 97, 19771–19790.CrossRefGoogle Scholar
  606. Mahood, G. A. (1977). A preliminary report on the comenditic dome and ash flow complex of Sierra La Primavera, Jalisco, Mexico. Revista del Instituto de Geología UNAM, 1, 177–190.Google Scholar
  607. Mahood, G. A. (1981). Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México. Contributions to Mineralogy and Petrology, 77, 129–149.CrossRefGoogle Scholar
  608. Mahood, G. A., & Halliday, A. N. (1988). Generation of high-silica rhyolite: A Nd, Sr, and O isotopic study of Sierra La Primavera, Mexican Neovolcanic Belt. Contributions to Mineralogy and Petrology, 100, 183–191.CrossRefGoogle Scholar
  609. Maldonado, F., Budahn, J. R., Peters, L., & Unruh, D. M. (2006). Geology, geochronology, and geochemistry of basaltic flows of the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra, central New Mexico. Canadian Journal of Earth Sciences, 43, 1251–1268.CrossRefGoogle Scholar
  610. Maldonado-Sánchez, G., & Schaaf, P. (2005). Geochemical and isotope data from the Acatlán volcanic field, western Trans-Mexican Volcanic Belt: Origin and evolution. Lithos, 82, 455–470.CrossRefGoogle Scholar
  611. Marcelot, G., Dupuy, C., Dostal, J., Rançon, J. P., & Pouclet, A. (1989). Geochemistry of mafic volcanic rocks from the Lake Kivu (Zaire and Rwanda) section of the western branch of the African rift. Journal of Volcanology and Geothermal Research, 39, 73–88.CrossRefGoogle Scholar
  612. Maria, A. H., & Luhr, J. F. (2008). Lamprophyres, basanites, and basalts of the western Mexican Volcanic Belt: Volatile contents and a vein-wallrock melting relationship. Journal of Petrology, 49, 2123–2156.CrossRefGoogle Scholar
  613. Marques, L. S., Ulbrich, M. N. C., Ruberti, E., & Tassinari, C. G. (1999). Petrology, geochemistry and Sr–Nd isotopes of the Trindade and Martin Vaz volcanic rocks (southern Atlantic Ocean). Journal of Volcanology and Geothermal Research, 93, 191–216.CrossRefGoogle Scholar
  614. Marshall, A. S., Macdonald, R., Rogers, N. W., Fitton, J. G., Tindle, A. G., Nejbert, K., & HInton, R. W. (2009). Fractionation of peralkaline silicic magmas: The Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50, 323–359.Google Scholar
  615. Marske, J. P., Garcia, M. O., Pietruszka, A. J., Rhodes, J. M., & Norman, M. D. (2008). Geochemical variations during Kilauea’s Pu’u ‘O’o eruption reveal a fine-scale mixture of mantle heterogeneities within the Hawaiian plume. Journal of Petrology, 49, 1297–1318.CrossRefGoogle Scholar
  616. Martin del Pozzo, A. L. (1989). Geoquímica y paleomagnetismo de la Sierra Chichinautzin. In Facultad de Ciencias (p. 148). Mexico, D.F.: U.N.A.M.Google Scholar
  617. Martin del Pozzo, A. L., Romero, V. H., & Ruiz Kitcher, R. E. (1987). Los flujos piroclásticos del volcán de Colima, México. Geofísica Internacional, 26, 291–307.Google Scholar
  618. Martin, A. P., Cooper, A. F., & Price, R. C. (2013). Petrogenesis of Cenozoic, alkalic volcanic lineages at Mount Morning, West Antarctica and their entrained lithospheric mantle xenoliths: Lithospheric versus asthenospheric mantle sources. Geochimica et Cosmochimica Acta, 122, 127–152.CrossRefGoogle Scholar
  619. Martínez-Serrano, R. G., Schaaf, P., Solís-Pichardo, G., Hernández-Bernal, M. S., Hernández-Treviño, T., Morales-Contreras, J. J., et al. (2004). Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango volcanic field, Mexico. Journal of Volcanology and Geothermal Research, 138, 77–110.CrossRefGoogle Scholar
  620. Martynov, A. Y., Kimura, J.-I., Martynov, Y. A., & Rybin, A. V. (2010). Geochemistry of late Cenozoic lavas on Kunashir Island, Kurile arc. Island Arc, 19, 86–104.CrossRefGoogle Scholar
  621. Massaferro, G. I., Haller, M. J., D’Orazio, M., & Alric, V. I. (2006). Sub-recent volcanism in northern Patagonia: A tectonomagmatic approach. Journal of Volcanology and Geothermal Research, 155, 227–243.CrossRefGoogle Scholar
  622. Matsumoto, A., & Nakagawa, M. (2010). Formation and evolution of silicic magma plumbing system: Petrology of the volcanic rocks of Usu volcano, Hokkaido, Japan. Journal of Volcanology and Geothermal Research, 196, 185–207.CrossRefGoogle Scholar
  623. Matsumoto, A., Hasegawa, T., & Nakagawa, M. (2018). Petrology of the 120 ka caldera-forming eruption of Kutcharo volcano, Eastern Hokkaido, Japan: Coexistence of multiple silicic magmas and their relationship with mafic magmas. Journal of Petrology, 59, 771–793.CrossRefGoogle Scholar
  624. Mattioli, M., Renzulli, A., Menna, M., & Holm, P. M. (2006). Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollagüe region): Evidence from a nearly aphyric high-K andesite with skeletal olivines. Journal of Volcanology and Geothermal Research, 158, 87–105.CrossRefGoogle Scholar
  625. Mattioli, M., Renzulli, A., Agostini, S., & Lucidi, R. (2016). Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: Evidence from Isla El Tigre volcano (Honduras, Central America). Lithos, 240–243, 1–15.CrossRefGoogle Scholar
  626. Mattsson, H. B., & Oskarsson, N. (2005). Petrogenesis of alkaline basalts at the tip of a propagating rift: Evidence from the Heimaey volcanic centre, south Iceland. Journal of Volcanology and Geothermal Research, 147, 245–267.CrossRefGoogle Scholar
  627. Mazzeo, F. C., D’Antonio, M., Arienzo, I., Aulinas, M., Renzo, V. D., & Gimeno, D. (2014). Subduction-related enrichment of the Neapolitan volcanoes (Southern Italy) mantle source: New constraints on the characteristics of the slab-derived components. Chemical Geology, 386, 165–183.CrossRefGoogle Scholar
  628. McBirney, A. R., Taylor, H. P., & Armstrong, R. L. (1987). Paricutin re-examined: A classical example of crustal assimilation in calc-alkaline magma. Contributions to Mineralogy and Petrology, 95, 4–20.CrossRefGoogle Scholar
  629. McDermott, F., Delfin, F. G., Jr., Defant, M. J., Turner, S., & Maury, R. (2005). The petrogenesis of volcanics from Mt. Bulusan and Mt. Mayon in the Bicol arc, the Philippines. Contributions to Mineralogy and Petrology, 150, 652–670.CrossRefGoogle Scholar
  630. McGee, J. J., Tilling, R. I., & Duffield, W. A. (1987). Petrologic characteristics of the 1982 and pre-1982 eruptive products of el Chichon volcano, Chiapas, Mexico. Geofísica Internacional, 26, 85–108.Google Scholar
  631. McGee, L. E., Millet, M.-A., Smith, I. E. M., Németh, K., & Lindsay, J. M. (2012). The inception and progression of melting in a monogenetic eruption: Motukorea volcano, the Auckland volcanic field, New Zealand. Lithos, 155, 360–374.CrossRefGoogle Scholar
  632. McGee, L. E., Smith, I. E. M., Millet, M.-A., Handley, H. K., & Lindsay, J. M. (2013). Asthenospheric control of melting processes in a monogenetic basaltic system: A case study of the Auckland volcanic field, New Zealand. Journal of Petrology, 54, 2125–2153.CrossRefGoogle Scholar
  633. McMillan, N. J., Dickin, A. P., & Haag, D. (2000). Evolution of magma source regions in the Rio Grande rift, southern New Mexico. Geological Society of America Bulletin, 112, 1582–1593.CrossRefGoogle Scholar
  634. Melluso, L., Tucker, R. D., Cucciniello, C., Roex, A. P. L., Morra, V., Zanetti, A., & Rakotoson, R. L. (2018). The magmatic evolution and genesis of the Quaternary basanite-trachyphonolite suite of Itasy (Madagascar) as inferred by geochemistry, Sr–Nd–Pb isotopes and trace element distribution in coexisting phases. Lithos, 310–311, 50–64.Google Scholar
  635. Mercado, R., & Rose, W. I. (1992). Reconocimiento geológico y evaluación preliminar de peligrosidad del Volcán Tacaná, Guatemala/México. Geofísica Internacional, 31, 205–237.Google Scholar
  636. Meriggi, L., Macías, J. L., Tommasini, S., Capra, L., & Conticelli, S. (2008). Heterogeneous magmas of the Quaternary Sierra Chichinautzin volcanic field (central Mexico): The role of an amphibole-bearing mantle and magmatic evolution processes. Revista Mexicana de Ciencias Geológicas, 25, 197–216.Google Scholar
  637. Métrich, N., Allard, P., Aiuppa, A., Bani, P., Bertagnini, A., Shinohara, H., et al. (2011). Magma and volatile supply to post-collapse volcanism and block resurgence in Siwi caldera (Tanna Island, Vanuatu arc). Journal of Petrology, 52, 1077–1105.CrossRefGoogle Scholar
  638. Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed.). Essex, England: Pearson Prentice Hall.Google Scholar
  639. Millet, M. A., Tutt, C. M., Handler, M. R., & Baker, J. A. (2014). Processes and time scales of dacite magma assembly and eruption at Tauhara volcano, Taupo Volcanic Zone, New Zealand. Geochemistry, Geophysics, Geosystems, 15, 213–237.CrossRefGoogle Scholar
  640. Mirnejad, H., & Bell, K. (2006). Origin and source evolution of the Leucite Hills lamproites: Evidence from Sr–Nd–Pb–O isotopic compositions. Journal of Petrology, 47, 2463–2489.CrossRefGoogle Scholar
  641. Misra, K. C. (2012). Introduction to geochemistry: Principles and applications. Chichester: Wiley.Google Scholar
  642. Miyoshi, M., Fukuoka, T., Sano, T., & Hasenaka, T. (2008). Subduction influence of Philippine Sea plate on the mantle beneath northern Kyushu, SW Japan: An examination of boron contents in basaltic rocks. Journal of Volcanology and Geothermal Research, 171, 73–87.CrossRefGoogle Scholar
  643. Miyoshi, M., Shinmura, T., Sumino, H., Sano, T., Miyabuchi, Y., Mori, Y., et al. (2013). Lateral magma intrusion from a caldera-forming magma chamber: Constraints from geochronology and geochemistry of volcanic products from lateral cones around the Aso caldera, SW Japan. Chemical Geology, 352, 202–210.CrossRefGoogle Scholar
  644. Mollel, G. F., Swisher, III, C. C., Feigenson, M. D., & Carr, M. J. (2008). Geochemical evolution of Ngorongoro Caldera, Northern Tanzania: Implications for crust–magma interaction. Earth and Planetary Science Letters, 271, 337–347.Google Scholar
  645. Monsalve, M. L., DaríoOrtiz, I., & Norini, G. (2017). El Escondido, a newly identified silicic Quaternary volcano in the NE region of the northern volcanic segment (Central Cordillera of Colombia). Journal of Volcanology and Geothermal Research, in press.Google Scholar
  646. Monzier, M., Danyushevsky, L. V., Crawford, A. J., Bellon, H., & Cotten, J. (1993). High-Mg andesites from the southern termination of the New Hebrides island arc (SW Pacific). Journal of Volcanology and Geothermal Research, 57, 193–217.CrossRefGoogle Scholar
  647. Monzier, M., Robin, C., Eissen, J.-P., & Cotten, J. (1997). Geochemistry vs. seismo-tectonics along the volcanic New Hebrides central chain (Southwest Pacific). Journal of Volcanology and Geothermal Research, 78, 1–29.CrossRefGoogle Scholar
  648. Moore, N. E., & DeBari, S. M. (2012). Mafic magmas from Mount Baker in the northern Cascade arc, Washington: Probes into mantle and crustal processes. Contributions to Mineralogy and Petrology, 163, 521–546.CrossRefGoogle Scholar
  649. Moore, G., Marone, C., Carmichael, I. S. E., & Renne, P. (1994). Basaltic volcanism and extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt. Geological Society of America Bulletin, 106, 383–394.CrossRefGoogle Scholar
  650. Mora, J. C., Macías, J. L., Saucedo, R., Orlando, A., Manetti, P., & Vaselli, O. (2002). Petrology of the 1998–2000 products of Volcán de Colima, México. Journal of Volcanology and Geothermal Research, 117, 195–212.CrossRefGoogle Scholar
  651. Mora, J. C., Macías, J. L., García-Palomo, A., Arce, J. L., Espíndola, J. M., Manetti, P., et al. (2004). Petrology and geochemistry of the Tacaná Volcanic complex, Mexico-Guatemala: Evidence for the last 40 000 yr of activity. Geofísica Internacional, 43, 331–359.Google Scholar
  652. Mora, J. C., Jaimes-Viera, M. C., Garduño-Monroy, V. H., Layer, P. W., Pompa-Mera, V., & Godinez, M. L. (2007). Geology and geochemistry characteristics of the Chiapanecan volcanic arc (central area), Chiapas Mexico. Journal of Volcanology and Geothermal Research, 162, 43–72.CrossRefGoogle Scholar
  653. Mora, J. C., Gardner, J. E., Macías, J. L., Meriggi, L., & Santo, A. P. (2013). Magmatic controls on eruption dynamics of the 1950 yr BP eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico–Guatemala. Journal of Volcanology and Geothermal Research, 262, 134–152.CrossRefGoogle Scholar
  654. Morales Berrera, W. V. (2009). Estudio geológico de un depósito ignimbrítico en la región de Xalapa, Veracruz: Distribución, estratigrafía, petrografía, y geoquímica. In Posgrado en Ciencias de la Tierra (p. 132). México, D.F.: Universidad Nacional Autónoma de México.Google Scholar
  655. Morgado, E., Parada, M. A., Contreras, C., Castruccio, A., Gutiérrez, F., & McGee, L. E. (2015). Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle small eruptive centers and Villarrica volcano, Southern Chile. Journal of Volcanology and Geothermal Research, 306, 1–16.CrossRefGoogle Scholar
  656. Moriguti, T., Shibata, T., & Nakamura, E. (2004). Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: Mineralogical controls on slab-derived fluid composition. Chemical Geology, 212, 81–100.CrossRefGoogle Scholar
  657. Morrison, M. A., & Thompson, R. N. (1983). Alteration of basalt: Deep Sea Drilling Project Legs 64 and 65. In Deep Sea Drilling Project (pp. 643–660). Washington.Google Scholar
  658. Mortazavi, M., & Sparks, R. S. J. (2004). Origin of rhyolite and rhyodacite lavas and associated mafic inclusions of Cape Akrotiri, Santorini: The role of wet basalt in generating calcalkaline silicic magmas. Contributions to Mineralogy and Petrology, 146, 397–413.CrossRefGoogle Scholar
  659. Mortimer, N., Gans, P. B., & Mildenhall, D. C. (2008). Middle-late Quaternary age for the adakitic arc volcanics of Hautere (Solander Island), Southern Ocean. Journal of Volcanology and Geothermal Research, 178, 701–707.CrossRefGoogle Scholar
  660. Moune, S., Gauthier, P.-J., Gislason, S. R., & Sigmarsson, O. (2006). Trace element degassing and enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. Geochimica et Cosmochemica Acta, 70, 461–479.CrossRefGoogle Scholar
  661. Mullen, E. K., & Mccallum, I. S. (2014). Origin of basalts in a hot subduction setting: Petrological and geochemical insights from Mt. Baker, northern Cascade arc. Journal of Petrology, 55, 241–281.CrossRefGoogle Scholar
  662. Mullen, E. K., & Weis, D. (2015). Evidence for trench-parallel mantle flow in the northern Cascade arc from basalt geochemistry. Earth and Planetary Science Letters, 414, 100–107.CrossRefGoogle Scholar
  663. Murphy, D. T., Collerson, K. D., & Kamber, B. S. (2002). Lamproites from Gaussberg, Antarctica: Possible transition zone melts of Archaean subducted sediments. Journal of Petrology, 43, 981–1001.CrossRefGoogle Scholar
  664. Murton, B. J., & Parson, L. M. (1993). Segmentation, volcanism and deformation of oblique spreading centres: A quantitative study of the Reykjanes Ridge. Tectonophysics, 222, 237–257.CrossRefGoogle Scholar
  665. Murton, B. J., Taylor, R. N., & Thirlwall, M. F. (2002). Plume-ridge interaction: A geochemical perspective from the Reykjanes Ridge. Journal of Petrology, 43, 1987–2012.CrossRefGoogle Scholar
  666. Myers, J. D., Marsh, B. D., & Sinha, A. K. (1985). Strontium isotopic and selected trace element variations between two Aleutian volcanic centers (Adak and Atka): Implications for the development of arc volcanic plumbing systems. Contributions to Mineralogy and Petrology, 91, 221–234.CrossRefGoogle Scholar
  667. Myers, J. D., Marsh, B. D., Frost, C. D., & Linton, J. A. (2002). Petrologic constraints on the spatial distribution of crustal magma chambers, Atka volcanic center, central Aleutian arc. Contributions to Mineralogy and Petrology, 143, 567–586.CrossRefGoogle Scholar
  668. Nairn, I. A., Shane, P. R., Cole, J. W., Leonard, G. J., Self, S., & Pearson, N. (2004). Rhyolite magma processes of the ~AD 1315 Kaharoa eruption episode, Tarawera volcano, New Zealand. Journal of Volcanology and Geothermal Research, 131, 265–294.CrossRefGoogle Scholar
  669. Nakada, S., Matsushima, T., Yoshimoto, M., Sugimoto, T., Kato, T., Watanabe, T., et al. (2005). Geological aspects of the 2003–2004 eruption of Anatahan volcano, northern Mariana Islands. Journal of Volcanology and Geothermal Research, 146, 226–240.CrossRefGoogle Scholar
  670. Nakagawa, M., Nairn, I. A., & Kobayashi, T. (1998). The ~10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand: Part 2. Petrological insights into magma storage and transport during regional extension. Journal of Volcanology and Geothermal Research, 86, 45–65.CrossRefGoogle Scholar
  671. Nakagawa, M., Ishizuka, Y., Kudo, T., Yoshimoto, M., Hirose, W., Ishizaki, Y., et al. (2002). Tyatya volcano, southwestern Kuril arc: Recent eruptive activity inferred from widespread tephra. The Island Arc, 11, 236–254.CrossRefGoogle Scholar
  672. Naumann, T., Geist, D., & Kurz, M. (2002). Petrology and geochemistry of Volcán Cerro Azul: Petrologic diversity among the western Galápagos volcanoes. Journal of Petrology, 48, 859–883.CrossRefGoogle Scholar
  673. Nauret, F., Snow, J. E., Hellebrand, E., & Weis, D. (2011). Geochemical composition of K-rich lavas from the Lena Trough (Arctic Ocean). Journal of Petrology, 52, 1185–1206.CrossRefGoogle Scholar
  674. Nauret, F., Hémond, C., Maury, R. C., Aguillon-Robles, A., Guillou, H., & Faouder, A. L. (2012). Extreme 230Th excesses in magnesian andesites from Baja California. Lithos, 146–147, 143–151.CrossRefGoogle Scholar
  675. Needham, A. J., Lindsay, J. M., Smith, I. E. M., Augustinus, P., & Shane, P. A. (2011). Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland volcanic field, New Zealand. Journal of Volcanology and Geothermal Research, 201, 126–142.CrossRefGoogle Scholar
  676. Negendank, J. F. W. (1972a). Volcanics of the Valley of Mexico. Description of some Mexican volcanic rocks with special consideration of the opaques. Part I: Petrography of the volcanics. Neues Jahrbuch für Mineralogie-Abhandlungen, 116, 308–320.Google Scholar
  677. Negendank, J. F. W. (1972b). Volcanics of the Valley of Mexico. Part II: The opaque mineralogy. Neues Jahrbuch für Mineralogie-Abhandlungen, 117, 183–195.Google Scholar
  678. Negendank, J. F. W., Emmermann, R., Krawczyk, R., Mooser, F., Tobschall, H., & Werle, D. (1985). Geological and geochemical investigations on the eastern Trans Mexican Volcanic Belt. Geofísica Internacional, 24, 477–575.Google Scholar
  679. Neill, I., Meliksetian, K., Allen, M. B., Navarsardyan, G., & Karapetyan, S. (2013). Pliocene-Quaternary volcanic rocks of NW Armenia: Magmatism and lithospheric dynamics within an active orogenic plateau. Lithos, 180–181, 200–215.CrossRefGoogle Scholar
  680. Neill, I., Meliksetian, K., Allen, M. B., Navasardyan, G., & Kuiper, K. (2015). Petrogenesis of mafic collision zone magmatism: The Armenian sector of the Turkish–Iranian Plateau. Chemical Geology, 403, 24–41.CrossRefGoogle Scholar
  681. Nelson, S. A. (1980). Geology and petrology of Volcán Ceboruco, Nayarit, Mexico. Geological Society of America Bulletin, 91, 2290–2431.CrossRefGoogle Scholar
  682. Nelson, S. A. (1986). Geología del Volcán Ceboruco, Nayarit, con una estimación de riesgos de erupciones futuras. Revista del Instituto de Geología, UNAM, 6, 243–258.Google Scholar
  683. Nelson, S. A., & Gonzalez-Caver, E. (1992). Geology and K–Ar dating of the Tuxtla volcanic field, Veracruz, Mexico. Bulletin of Volcanology, 55, 85–96.CrossRefGoogle Scholar
  684. Nelson, S. A., & Livieres, R. A. (1986). Contemporaneous calc-alkaline and alkaline volcanism at Sanganguey volcano, Nayarit, Mexico. Geological Society of America Bulletin, 97, 798–808.CrossRefGoogle Scholar
  685. Nelson, S. A., Gonzalez-Caver, E., & Kyser, T. K. (1995). Constraints on the origin of alkaline and calc-alkaline magmas from the Tuxtla Volcanic Field, Veracruz, Mexico. Contributions to Mineralogy and Petrology, 122, 191–211.CrossRefGoogle Scholar
  686. Nielsen, S. G., Prytulak, J., Blusztajn, J., Shua, Y., Auro, M., Regelous, M., et al. (2017). Thallium isotopes as tracers of recycled materials in subduction zones: Review and new data for lavas from Tonga-Kermadec and Central America. Journal of Volcanology and Geothermal Research, 339, 23–40.CrossRefGoogle Scholar
  687. Nieto, J., Delgado, L., & Damon, P. E. (1985). Geochronologic, petrologic, and structural data related to large morphologic features between the Sierra Madre Occidental and the Mexican Volcanic Belt. Geofísica Internacional, 24, 623–663.Google Scholar
  688. Nikogosian, I., & van Bergen, M. J. (2010). Heterogeneous mantle sources of potassium-rich magmas in central-southern Italy: Melt inclusion evidence from Roccamonfina and Ernici (Mid Latina Valley). Journal of Volcanology and Geothermal Research, 197, 279–302.CrossRefGoogle Scholar
  689. Niu, Y., Waggoner, D. G., Sinton, J. M., & Mahoney, J. J. (1996). Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18°–19° S. Journal of Geophysical Research, 101, 27711–27733.CrossRefGoogle Scholar
  690. Nixon, G. T. (1988). Petrology of the younger andesites and dacites of Iztaccíhuatl volcano, Mexico: II. Chemical stratigraphy, magma mixing, and the composition of basaltic magma influx. Journal of Petrology, 29, 265–303.CrossRefGoogle Scholar
  691. Nixon, G. T. (1989). The geology of Iztaccíhuatl volcano and adjacent areas of the Sierra Nevada and Valley of Mexico. Geological Society of America Special Paper, 219, 58.Google Scholar
  692. Nonnotte, P., Benoit, M., Le Gall, B., Hémond, C., Rolet, J., Cotten, J., et al. (2011). Petrology and geochemistry of alkaline lava series, Kilimanjaro, Tanzania: New constraints on petrogenetic processes. In L. Beccaluva (Ed.), Volcanism and evolution of the African lithosphere (pp. 127–158). Boulder, Colorado: The Geological Society of America.CrossRefGoogle Scholar
  693. Notsu, K., Fujitani, T., Ui, T., Matsuda, J., & Ercan, T. (1995). Geochemical features of collision-related volcanic rocks in central and Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 64, 171–192.CrossRefGoogle Scholar
  694. Nye, C. J., & Reid, M. R. (1986). Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: Implications for arc magmagenesis. Journal of Geophysical Research, 91, 10271–10287.CrossRefGoogle Scholar
  695. Nye, C. J., & Turner, D. L. (1990). Petrology, geochemistry, and age of the Spurr volcanic complex, eastern Aleutian arc. Bulletin Volcanologique, 52, 205–226.CrossRefGoogle Scholar
  696. Ohba, T., Kimura, Y., & Fujimaki, H. (2007). High-magnesian andesite produced by two-stage magma mixing: A case study from Hachimantai, northern Honshu, Japan. Journal of Petrology, 48, 627–645.CrossRefGoogle Scholar
  697. Ohba, T., Matsuoka, K., Kimura, Y., Ishikawa, H., & Fujimaki, H. (2009). Deep crystallization differentiation of arc tholeiite basalt magmas from Northern Honshu arc, Japan. Journal of Petrology, 50, 1025–1046.CrossRefGoogle Scholar
  698. Orozco-Esquivel, T., Petrone, C. M., Ferrari, L., Tagami, T., & Manetti, P. (2007). Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: Slab detachment in a subduction zone with varying dip. Lithos, 93, 149–174.CrossRefGoogle Scholar
  699. Ownby, S. E., Lange, R. A., & Hall, C. M. (2008). The eruptive history of the Mascota volcanic field, western Mexico: Age and volume constraints on the origin of andesite among a diverse suite of lamprophyric and calc-alkaline lavas. Journal of Volcanology and Geothermal Research, 117, 1077–1091.CrossRefGoogle Scholar
  700. Oyan, V. (2018). Petrogenesis of the Quaternary mafic alkaline volcanism along the African-Anatolian plates boundary in Turunçlu-Delihalil (Osmaniye) region in southern Turkey. Lithos, 314–315, 630–645.CrossRefGoogle Scholar
  701. Özdemir, Y., Blundy, J., & Güleç, N. (2011). The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan stratovolcano, Eastern Anatolia, Turkey. Contributions to Mineralogy and Petrology, 162, 573–597.CrossRefGoogle Scholar
  702. Pabst, S., Wörner, G., Civetta, L., & Tesoro, R. (2008). Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bulletin of Volcanology, 70, 961–976.CrossRefGoogle Scholar
  703. Pal, T., & Bhattacharya, A. (2011). Block-and-ash flow deposit of the Narcondam volcano: Product of dacite–andesite dome collapse in the Burma–Java subduction complex. Island Arc, 20, 520–534.CrossRefGoogle Scholar
  704. Pal, T., Mitra, S. K., Sengupta, S., Katari, A., Bandopadhyay, P. C., & Bhattacharya, A. K. (2007). Dacite–andesites of Narcondam volcano in the Andaman Sea—An imprint of magma mixing in the inner arc of the Andaman–Java subduction system. Journal of Volcanology and Geothermal Research, 168, 93–113.CrossRefGoogle Scholar
  705. Palacz, Z. A., & Saunders, A. D. (1986). Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, Southwest Pacific. Earth and Planetary Science Letters, 79, 270–280.CrossRefGoogle Scholar
  706. Palacz, Z. A., & Wolff, J. A. (1989). Strontium, neodymium and lead isotope characteristics of the Granadilla Pumice, Tenerife: A study of the causes of strontium isotope disequilibrium in felsic pyroclastic deposits. Geological Society of London, Special Publications, 42, 147–159.CrossRefGoogle Scholar
  707. Pallares, C., Bellon, H., Benoit, M., Maury, R. C., Aguillón-Robles, A., Calmus, T., et al. (2008). Temporal geochemical evolution of Neogene volcanism in northern Baja California (27°–30° N): Insights on the origin of post-subduction magnesian andesites. Lithos, 105, 162–180.CrossRefGoogle Scholar
  708. Pallister, J. S., Trusdell, F. A., Brownfield, I. K., Siems, D. F., Budahn, J. R., & Sutley, S. F. (2005). The 2003 phreatomagmatic eruptions of Anatahan volcano—Textural and petrological features of deposits at an emergent island volcano. Journal of Volcanology and Geothermal Research, 146, 208–225.CrossRefGoogle Scholar
  709. Kushendratno, Pallister, J. S., Kristianto, Bina, F. R., McCausland, W., Carn, S., et al. (2012). Recent explosive eruptions and volcano hazards at Soputan volcano—A basalt stratovolcano in north Sulawesi, Indonesia. Bulletin of Volcanology, 74, 1581–1609.CrossRefGoogle Scholar
  710. Pandarinath, K., Dulski, P., Torres-Alvarado, I. S., & Verma, S. P. (2008). Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics, 37, 53–72.CrossRefGoogle Scholar
  711. Pang, K. N., Chung, S.-L., Zarrinkoub, M. H., Wang, F., Kamenetsky, V. S., & Lee, H.-Y. (2015). Quaternary high-Mg ultrapotassic rocks from the Qal’eh Hasan Ali maars, southeastern Iran: Petrogenesis and geodynamic implications. Contributions of Mineralogy and Petrology, 170:27,  https://doi.org/10.1007/s00410-015-1183-y.
  712. Panter, K. S., Hart, S. R., Kyle, P., Blusztanjn, J., & Wilch, T. (2000). Geochemistry of late Cenozoic basalts from the Crary Mountains: Characterization of mantle sources in Marie Byrd Land, Antarctica. Chemical Geology, 165, 215–241.CrossRefGoogle Scholar
  713. Paone, A. (2004). Evidence of crustal contamination, sediment, and fluid components in the campanian volcanic rocks. Journal of Volcanology and Geothermal Research, 138, 1–26.CrossRefGoogle Scholar
  714. Paone, A. (2006). The geochemical evolution of the Mt. Somma-Vesuvius volcano. Mineralogy and Petrology, 87, 53–80.CrossRefGoogle Scholar
  715. Pappalardo, L., Ottolini, L., & Mastrolorenzo, G. (2008). The Campanian Ignimbrite (southern Italy) geochemical zoning: Insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contributions to Mineralogy and Petrology, 156, 1–26.CrossRefGoogle Scholar
  716. Pardo, N., Avellán, D. R., Macías, J. L., Scolamacchia, T., & Rodríguez, D. (2008). The ~1245 yr BP Asososca maar: New advances on recent volcanic stratigraphy of Managua (Nicaragua) and hazard implications. Journal of Volcanology and Geothermal Research, 176, 493–512.CrossRefGoogle Scholar
  717. Pardo, N., Macias, J. L., Giordano, G., & Cianfarra, P. (2009). The ~1245 yr BP Asososca maar eruption: The youngest event along the Nejapa-Miraflores volcanic fault, western Managua, Nicaragua. Journal of Volcanology and Geothermal Research, 184, 292–312.CrossRefGoogle Scholar
  718. Park, S.-H., Lee, S.-M., & Arculus, R. J. (2006). Geochemistry of basalt from the Ayu Trough, equatorial western Pacific. Earth and Planetary Science Letters, 248, 700–714.CrossRefGoogle Scholar
  719. Parlak, O., Kop, A., Ünlügenç, U. C., & Demirkol, C. (1998). Geochronology and Geochemistry of Basaltic Rocks in The Karasu Graben Around Kýrýkhan (Hatay), S. Turkey. Turkish Journal of Earth Sciences, 7, 53–61.Google Scholar
  720. Paslick, C., Halliday, a., James, D. & Dawson, J. B. 1995. Enrichment of the continental lithosphere by OIB melts: Isotopic evidence from the volcanic province of northern Tanzania. Earth and Planetary Science Letters, 130, 109–126.Google Scholar
  721. Passmore, E., Maclennan, J., Fitton, G., & Thordarson, T. (2012). Mush disaggregation in basaltic magma chambers: Evidence from the AD 1783 Laki Eruption. Journal of Petrology, 53, 2593–2623.CrossRefGoogle Scholar
  722. Patino, L. C., Carr, M. J., & Feigenson, M. D. (1997). Cross-arc geochemical variations in volcanic fields in Honduras C.A.: Progressive changes in source with distance from the volcanic front. Contributions to Mineralogy and Petrology, 129, 341–351.CrossRefGoogle Scholar
  723. Patino, L. C., Carr, M. J., & Feigenson, M. D. (2000). Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138, 265–283.CrossRefGoogle Scholar
  724. Paul, D., White, W. M., & Blichert-Toft, J. (2005). Geochemistry of Mauritius and the origin of rejuvenescent volcanism on oceanic island volcanoes. Geochemistry, Geophysics, Geosystems, 6, Q06007.  https://doi.org/10.1029/2004GC000883.CrossRefGoogle Scholar
  725. Paul, D., Kamenetsky, V. S., Hofmann, A. W., & Stracke, A. (2007). Compositional diversity among primitive lavas of Mauritius, Indian Ocean: Implications for mantle sources. Journal of Volcanology and Geothermal Research, 164, 76–94.CrossRefGoogle Scholar
  726. Pearce, J. A., Bender, J. F., Long, S. E. D., Kidd, W. S. F., Low, P. J., Guner, Y., et al. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44, 189–229.CrossRefGoogle Scholar
  727. Peate, D. W., Pearce, J. A., Hawkesworth, C. J., Colley, H., Edwards, C. M. H., & Hirose, K. (1997). Geochemical variations in Vanuatu arc lavas: The role of subducted material and a variable mantle wedge composition. Journal of Petrology, 38, 1331–1358.CrossRefGoogle Scholar
  728. Peate, D. W., Baker, J. A., Jakobsson, S. P., Waight, T. E., Kent, A. J. R., Grassineau, N. V., et al. (2009). Historic magmatism on the Reykjanes Peninsula, Iceland: A snap-shot of melt generation at a ridge segment. Contributions to Mineralogy and Petrology, 157, 359–382.CrossRefGoogle Scholar
  729. Peate, D. W., Breddam, K., Baker, J. A., Kurz, M. D., Barker, A. K., Prestvik, T., et al. (2010). Compositional characteristics and spatial distribution of enriched Icelandic mantle components. Journal of Petrology, 51, 1447–1475.CrossRefGoogle Scholar
  730. Peccerillo, A., Barberio, M. R., Yirgu, G., Ayalew, D., Barbieri, M., & Wu, T. W. (2003). Relationships between mafic and peralkaline silicic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. Journal of Petrology, 44, 2003–2032.CrossRefGoogle Scholar
  731. Peng, Z. C., Zartman, R. E., Futa, K., & Chen, D. G. (1986). Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chemical Geology, 59, 3–33.CrossRefGoogle Scholar
  732. Pe-Piper, G., & Moulton, B. (2008). Magma evolution in the Pliocene-Pleistocene of Kos, South Aegean arc (Greece). Lithos, 106, 110–124.CrossRefGoogle Scholar
  733. Pérez R., J., Pal, S., Terrell, D. J., Urrutia F., J. & López M., M. 1979. Preliminary report on the analysis of some “in-house” geochemical reference samples from Mexico. Geofísica Internacional, 18, 197–209.Google Scholar
  734. Perfit, M. R., Saunders, A. D. & Fornari, D. J. 1982. Phase chemistry, fractional crystallization, and magma mixing in basalts from the Gulf of California, Deep Sea Drilling Project Leg 64. In: Initial Reports of the Deep Sea Drilling Project (Ed. by Curray, J. R., Moore, D. G. & al., e.), pp. 649–666. Washington, D. C.: U. S. Government Printing Office.Google Scholar
  735. Perini, G., & Conticelli, S. (2002). Crystallization conditions of leucite-bearing magmas and their implications on the magmatological evolution of ultrapotassic magmas: The Vico volcano, Central Italy. Mienralogy and Petrology, 74, 253–276.CrossRefGoogle Scholar
  736. Perini, G., Conticelli, S., Francalanci, L., & Davidson, J. P. (2000). The relationship between potassic and calc-alkaline post-orogenic magmatism at Vico volcano, central Italy. Journal of Volcanology and Geothermal Research, 95, 247–272.CrossRefGoogle Scholar
  737. Perini, G., Francalanci, L., Davidson, J. P., & Conticelli, S. (2004). Evolution and genesis of magmas from Vico volcano, central Italy: Multiple differentiation pathways and variable parental magmas. Journal of Petrology, 45, 139–157.CrossRefGoogle Scholar
  738. Perlingeiro, G., Vasconcelos, P. M., Knesel, K. M., Thiede, D. S., & Cordani, U. G. (2013). 40Ar/39Ar geochronology of the Fernando de Noronha Archipelago and implications for the origin of alkaline volcanism in the NE Brazil. Journal of Volcanology and Geothermal Research, 249, 140–154.CrossRefGoogle Scholar
  739. Perry, F. V., Baldridge, W. S., DePaolo, D. J., & Shafiqullah, M. (1990). Evolution of a magmatic system during continental extension: The mount Taylor volcanic field, New Mexico. Journal of Geophysical Research, 95, 19327–19348.CrossRefGoogle Scholar
  740. Peters, T. J., Menzies, M., Thirlwall, M., & Kyle, P. R. (2008). Zuni-Bandera volcanism, Rio Grande, USA—Melt formation in garnet- and spinel-facies mantle straddling the asthenosphere–lithosphere boundary. Lithos, 102, 295–312.CrossRefGoogle Scholar
  741. Petrinovic, I. A., Riller, U., Brod, J. A., Alvarado, G., & Arnosio, M. (2006). Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina. Journal of Volcanology and Geothermal Research, 152, 240–252.CrossRefGoogle Scholar
  742. Petrone, C. M. (2010). Relationship between monogenetic magmatism and stratovolcanoes in western Mexico: The role of low-pressure magmatic processes. Lithos, 119, 585–606.CrossRefGoogle Scholar
  743. Petrone, C. M., Tagami, T., Francalanci, L., Matsumura, A., & Sudo, M. (2001). Volcanic systems in the San Pedro-Ceboruco graben (Nayarit, Mexico) in the light of new K-Ar geochronological data. Geochemical Journal, 35, 77–88.CrossRefGoogle Scholar
  744. Petrone, C. M., Francalanci, L., Carlson, R. W., Ferrari, L., & Conticelli, S. (2003). Unusual coexistence of subduction-related and intraplate-type magmatism: Sr, Nd and Pb isotope and trace element data from the magmatism of the San Pedro-Ceboruco graben (Nayarit, Mexico). Chemical Geology, 193, 1–24.CrossRefGoogle Scholar
  745. Petrone, C. M., Francalanci, L., Ferrari, L., Schaaf, P., & Conticelli, S. (2006). The San Pedro-Cerro Grande volcanic complex (Nayarit, México): Inferences on volcanology and magma evolution. Geological Society of America Special Paper, 402, 65–98.Google Scholar
  746. Petterson, M. G., Haldane, M. I., Smith, D. J., Billy, D., & Jordan, N. J. (2011). Geochemistry and petrogenesis of the Gallego Volcanic field, Solomon Islands, SW Pacific and geotectonic implications. Lithos, 125, 915–927.CrossRefGoogle Scholar
  747. Pier, J. G., Luhr, J. F., Podosek, F. A., & Aranda-Gomez, J. J. (1992). The La Breña—El Jaguey Maar Complex, Durango, Mexico: II. Petrology and geochemistry. Bulletin of Volcanology, 54, 405–428.CrossRefGoogle Scholar
  748. Plesner, S., Holm, P. M., & Wilson, J. R. (2002). 40Ar-39Ar geochronology of Santo Antao, Cape Verde Islands. Journal of Volcanology and Geothermal Research, 120, 103–121.CrossRefGoogle Scholar
  749. Polat, A., Kerrich, R., & Casey, J. F. (1997). Geochemistry of Quaternary basalts erupted along the east Anatolian and Dead Sea fault zone of southern Turkey: Implications for mantle sources. Lithos, 40, 55–68.CrossRefGoogle Scholar
  750. Poli, S., Chiesa, S., Gillot, P.-Y., Gregnanin, A. & 1, F. G. 1987. Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples, Italy): Evidence of successive magmatic cycles. Contrib Mineral Petrol, 95, 322–335.Google Scholar
  751. Pollock, M. A., Klein, E. M., Karson, J. A. & Coleman, D. S. 2009. Compositions of dikes and lavas from the Pito Deep Rift: Implications for crustal accretion at superfast spreading centers. Journal of Geophysical Research, 114,  https://doi.org/10.1029/2007jb005436.
  752. Pollock, M., Edwards, B., Hauksdóttir, S., Alcorn, R., & Bowman, L. (2014). Geochemical and lithostratigraphic constraints on the formation of pillow-dominated tindars fromUndirhlíðar quarry, Reykjanes Peninsula, southwest Iceland. Lithos, 200–201, 317–333.CrossRefGoogle Scholar
  753. Portnyagin, M., Duggen, S., Hauff, F., Mironov, N., Bindeman, I., Thirlwall, M., et al. (2015). Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems. Journal of Volcanology and Geothermal Research, 307, 133–155.CrossRefGoogle Scholar
  754. Pradal, E., & Robin, C. (1994). Long-lived magmatic phases at Los Azufres volcanic center, Mexico. Journal of Volcanology and Geothermal Research, 63, 201–215.CrossRefGoogle Scholar
  755. Prægel, N.-O., & Holm, P. M. (2006). Lithospheric contributions to high-MgO basanites from the Cumbre Vieja volcano, La Palma, Canary Islands and evidence for temporal variation in plume influence. Journal of Volcanology and Geothermal Research, 149, 213–239.CrossRefGoogle Scholar
  756. Prelevic, D., Akal, C., Foley, S. F., Romer, R. L., Stracke, A., & Van Den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: The case of Southwestern Anatolia, Turkey. Journal of Petrology, 53, 1019–1055.CrossRefGoogle Scholar
  757. Price, R. C., Kennedy, A. K., Riggs-Sneeringer, M., & Frey, F. A. (1986). Geochemistry of basalts from the Indian Ocean triple junction: Implications for the generation and evolution of Indian Ocean ridge basalts. Earth and Planetary Science Letters, 78, 379–396.CrossRefGoogle Scholar
  758. Price, R. C., Maillet, P., McDougall, I., & Dupont, J. (1991). The geochemistry of basalts from the Wallis Islands, Northern Melanesian Borderland: Evidence for a lithospheric origin for Samoan-type basaltic magmas? Journal of Volcanology and Geothermal Research, 45, 267–288.CrossRefGoogle Scholar
  759. Price, R. C., Gray, C. M., & Frey, F. A. (1997). Strontium isotopic and trace element heterogeneity in the Plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochimica et Cosmochimica Acta, 61, 171–192.CrossRefGoogle Scholar
  760. Price, R. C., Stewart, R. B., Woodhead, J. D., & Smith, I. E. M. (1999). Petrogenesis of High-K Arc Magmas: Evidence from Egmont Volcano, North Island, New Zealand. Journal of Petrology, 40, 167–197.CrossRefGoogle Scholar
  761. Pritchard, C. J. 2011. Post-caldera volcanism in yellowstone national park: Petrogenesis of the intracaldera upper basin member of the plateau rhyolite and extra-caldera mingled magma complexes. In: School of Earth and Environmental Sciences, pp. 339. Washington: Washington State University.Google Scholar
  762. Pritchard, C. J., & Larson, P. B. (2012). Genesis of the post-caldera eastern upper basin member rhyolites, Yellowstone, WY: From volcanic stratigraphy, geochemistry, and radiogenic isotope modeling. Contributions to Mineralogy and Petrology, 164, 205–228.CrossRefGoogle Scholar
  763. Pritchard, C. J., Larson, P. B., Spell, T. L., & Tarbert, K. D. (2013). Eruption-triggered mixing of extra-caldera basalt and rhyolite complexes along the East Gallatin-Washburn fault zone, Yellowstone National Park, WY, USA. Lithos, 175–176, 163–177.CrossRefGoogle Scholar
  764. Prytulak, J., Avanzinelli, R., Koetsier, G., Kreissig, K., Beier, C., & Elliott, T. (2014). Melting versus contamination effects on 238U-230Th-226Ra and 235U-231 Pa disequilibria in lavas from São Miguel, Azores. Chemical Geology, 381, 94–109.CrossRefGoogle Scholar
  765. Putirka, K. D., Kuntz, M. A., Unruh, D. M., & Vaid, N. (2009). Magma evolution and ascent at the craters of the Moon and neighboring volcanic fields, southern Idaho, USA: Implications for the evolution of polygenetic and monogenetic volcanic fields. Journal of Petrology, 50, 1639–1665.CrossRefGoogle Scholar
  766. Pyle, D. G., Christie, D. M., Mahoney, J. J., & Duncan, R. A. (1995). Geochemistry and geochronology of ancient southeast Indian and Southwest Pacific seafloor. Journal of Geophysical Research, 100, 22261–22282.CrossRefGoogle Scholar
  767. Quidelleur, X., Gillot, P.-Y., Filoche, G., & Lefèvre, J.-C. (2005). Fast geochemical changes and rapid lava accumulation at Stromboli Island (Italy) inferred from K–Ar dating and paleomagnetic variations recorded at 60 and 40 ka. Journal of Volcanology and Geothermal Research, 141, 177–193.Google Scholar
  768. Radivojeviæ, M. A., Toljic, M., Turki, S. M., Bojic, Z., Šaric, K., & Cvetkovic, V. (2015). Neogene to Quaternary basalts of the Jabal Eghei (Nuqay) area (south Libya): Two distinct volcanic events or continuous volcanism with gradual shift in magma composition? Journal of Volcanology and Geothermal Research, 293, 57–74.CrossRefGoogle Scholar
  769. Rafferty, W. J., & Heming, R. F. (1979). Quaternary alkalic and sub-alkalic volcanism in South Auckland, New Zealand. Contributions to Mineralogy and Petrology, 71, 139–150.CrossRefGoogle Scholar
  770. Ragland, P. C. (1989). Basic analytical petrology. New York: Oxford University Press.Google Scholar
  771. Raju, K. K. A., Ray, D., Mudholkar, A., Murty, G. P. S., Gahalaut, V. K., Samudrala, K., et al. (2012). Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea. Journal of Asian Earth Sciences, 56, 42–53.CrossRefGoogle Scholar
  772. Ramsey, M. H., Potts, P. J., Webb, P. C., Watkins, P., Watson, J. S., & Coles, B. J. (1995). An objective assessment of analytical method precision: Comparison of ICP-AES and XRF for the analysis of silicate rocks. Chemical Geology, 124, 1–19.CrossRefGoogle Scholar
  773. Raos, A. M., & Crawford, A. J. (2004). Basalts from the Efate Island Group, central section of the Vanuatu arc, SW Pacific: Geochemistry and petrogenesis. Journal of Volcanology and Geothermal Research, 134, 35–64.CrossRefGoogle Scholar
  774. Rasoazanamparany, C., Widom, E., Valentine, G. A., Smith, E. I., Cortés, J. A., Kuentz, D., et al. (2015). Origin of chemical and isotopic heterogeneity in a mafic, monogenetic volcanic field: A case study of the Lunar Crater Volcanic Field, Nevada. Chemical Geology, 397, 76–93.CrossRefGoogle Scholar
  775. Rasoazanamparany, C., Widom, E., Siebe, C., Guilbaud, M.-N., Spicuzza, M. J., Valley, J. W., et al. (2016). Temporal and compositional evolution of Jorullo volcano, Mexico: Implications for magmatic processes associated with a monogenetic eruption. Chemical Geology, 434, 62–80.CrossRefGoogle Scholar
  776. Rasskazov, S. V., Yasnygina, T. A., Fefelov, N. N., & Saranina, E. V. (2010). Geochemical evolution of Middle—Late Cenozoic magmatism in the northern part of the Rio Grande Rift, Western United States. Russian Journal of Pacific Geology, 4, 13–40.CrossRefGoogle Scholar
  777. Ray, D., Iyer, S. D., Banerjee, R., Misra, S., & Widdowson, M. (2007). A petrogenetic model of basalts from the northern Central Indian Ridge: 3–11° S. Acta Geologica Sinica, 81, 99–112.Google Scholar
  778. Ray, D., Misra, S., Banerjee, R., & Weis, D. (2011). Geochemical implications of gabbro from the slow-spreading northern Central Indian Ocean Ridge, Indian Ocean. Geological Magazine, 148, 404–422.CrossRefGoogle Scholar
  779. Reagan, M. K., & Gill, J. B. (1989). Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: Implications for residual titanates in arc magma sources. Journal of Geophysical Research, 94, 4619–4633.CrossRefGoogle Scholar
  780. Reagan, M. K., Sims, K. W. W., Erich, J., Thomas, R. B., Cheng, H., Edwards, R. L., et al. (2003). Time-scales of differentiation from mafic parents to rhyolite in North American continental arcs. Journal of Petrology, 44, 1703–1726.CrossRefGoogle Scholar
  781. Regelous, M., Niu, Y., Wendt, J. I., Batiza, R., Greig, A., & Collerson, K. D. (1999). Variations in the geochemistry of magmatism on the East Pacific Rise at 10°30′ N since 800 ka. Earth and Planetary Science Letters, 168, 45–63.CrossRefGoogle Scholar
  782. Regelous, M., Turner, S., Falloon, T. J., Taylor, P., Gamble, J., & Green, T. (2008). Mantle dynamics and mantle melting beneath Niuafo’ou Island and northern Lau back-arc basin. Contributions to Mineralogy and Petrology, 156, 103–108.CrossRefGoogle Scholar
  783. Regelous, M., Niu, Y., Abouchami, W., & Castillo, P. R. (2009). Shallow origin for South Atlantic Dupal anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26° S. Lithos, 112, 57–72.CrossRefGoogle Scholar
  784. Reiners, P. W., Hammond, P. E., McKenna, J. M., & Duncan, R. A. (2000). Young basalts of the central Washington Cascades, flux melting of the mantle, and trace element signatures of primary arc magmas. Contributions to Mineralogy and Petrology, 138, 249–264.CrossRefGoogle Scholar
  785. Ren, Z.-Y., Takahashi, E., Orihashi, Y., & Johnson, K. T. M. (2004). Petrogenesis of tholeiitic lavas from the submarine Hana ridge, Haleakala volcano, Hawaii. Journal of Petrology, 45, 2067–2099.CrossRefGoogle Scholar
  786. Ren, M., Omenda, P. A., Anthony, E. Y., White, J. C., Macdonald, R., & Bailey, D. K. (2006). Application of the QUILF thermobarometer to the peralkaline trachytes and pantellerites of the Eburru volcanic complex, East African Rift, Kenya. Lithos, 91, 109–124.CrossRefGoogle Scholar
  787. Ren, Z.-Y., Hanyu, T., Miyazaki, T., Chang, Q., Kawabata, H., Takahashi, T., et al. (2009). Geochemical differences of the Hawaiian shield lavas: Implications for melting process in the heterogeneous Hawaiian plume. Journal of Petrology, 8, 1553–1573.CrossRefGoogle Scholar
  788. Renzulli, A., Moro, S. D., Menna, M., Landi, P., & Piermattei, M. (2009). Transient processes in Stromboli’s shallow basaltic system inferred from dolerite and magmatic breccia blocks erupted during the 5 April 2003 paroxysm. Bulletin of Volcanology, 71, 795–813.CrossRefGoogle Scholar
  789. Reubi, O., Nicholls, I. A., & Kamenetsky, V. S. (2002). Early mixing and mingling in the evolution of basaltic magmas: Evidence from phenocryst assemblages, Slamet Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research, 119, 255–274.CrossRefGoogle Scholar
  790. Reubi, O., Bourdon, B., Dungan, M. A., Koornneef, J. M., Selles, D., Langmuir, C. H., et al. (2011). Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcan Llaima, Chile. Earth and Planetary Science Letters, 303, 37–47.CrossRefGoogle Scholar
  791. Révillon, S., Arndt, N. T., Hallot, E., Kerr, A. C., & Tarney, J. (1999). Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos, 49, 1–21.CrossRefGoogle Scholar
  792. Rhodes, J. M. (2015). Major-element and isotopic variations in Mauna Loa magmas over 600 ka. In R. Carey, V. Cayol, M. Poland, & D. Weis (Eds.), Hawaiian volcanoes: From source to surface (pp. 59–78). Hoboken, NJ: Wiley.Google Scholar
  793. Rhodes, J. M., & Vollinger, M. J. (2004). Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types. Geochemistry, Geophysics, Geosystems, 5, 1–38.Google Scholar
  794. Rhodes, J. M., Huang, S. W., Frey, F. A., Pringle, M., & Xu, G. (2012). Compositional diversity of Mauna Kea shield lavas recovered by the Hawaii Scientific Drilling Project: Inferences on source lithology, magma supply, and the role of multiple volcanoes. Geochemistry, Geophysics, Geosystems, 13, 2–28.CrossRefGoogle Scholar
  795. Ribeiro, J. M., Stern, R. J., Kelley, K. A., Martinez, F., Ishizuka, O., Manton, W. I., et al. (2013). Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift. Geochemistry, Geophysics, Geosystems, 14, 4585–4607.CrossRefGoogle Scholar
  796. Richards, J. P., & Villeneuve, M. (2001). The Llullaillaco volcano, northwest Argentina: Construction by Pleistocene volcanism and destruction by sector collapse. Journal of Volcanology and Geothermal Research, 105, 77–105.CrossRefGoogle Scholar
  797. Richards, J. P., & Villeneuve, M. (2002). Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, northwest Argentina. Journal of Volcanology and Geothermal Research, 116, 161–200.CrossRefGoogle Scholar
  798. Richards, P. J., Ullrich, T., & Kerrich, R. (2006). The late Miocene-Quaternary Antofalla volcanic complex, southern Puna, NW Argentina: Protracted history, diverse petrology, and economic potential. Journal of Volcanology and Geothermal Research, 152, 197–239.CrossRefGoogle Scholar
  799. Richardson-Bunbury, J. M. (1992). The basalts of Kula and their relation to extension in Western Turkey. University of Cambridge.Google Scholar
  800. Ridley, W. I. (1970). The petrology of the Las Canadas volcanoes, Tenerife, Canary Islands. Contributions to Mineralogy and Petrology, 26, 124–160.CrossRefGoogle Scholar
  801. Righter, K., & Carmichael, I. S. E. (1992). Hawaiites and related lavas in the Atenguillo graben, western Mexican Volcanic Belt. Geological Society of America Bulletin, 104, 1592–1607.CrossRefGoogle Scholar
  802. Righter, K., & Rosas-Elguera, J. (2001). Alkaline lavas in the volcanic front of the western Mexican Volcanic Belt: Geology and petrology of the Ayutla and Tapalpa volcanic fields. Journal of Petrology, 42, 2333–2361.CrossRefGoogle Scholar
  803. Righter, K., Carmichael, I. S. E., Becker, T. A., & Renne, P. R. (1995). Pliocene-Quaternary volcanism and faulting at the intersection of the Gulf of California and the Mexican Volcanic Belt. Geological Society of America Bulletin, 107, 612–626.CrossRefGoogle Scholar
  804. Risso, C., & Aparicio, A. (2014). Estructuras de segregación en lavas basáltico-andesíticas en isla Decepción (Antártida). GeoActa, 39, 68–77.Google Scholar
  805. Robin, C. (1984). Le Volcan Popocatepetl (Mexique): Structure, evolution pétrologique et risques. Bulletin of Volcanology, 47, 1–23.CrossRefGoogle Scholar
  806. Robin, C., & Potrel, A. (1993). Multi-stage magma mixing in the pre-caldera series of Fuego de Colima volcano. Geofísica Internacional, 32, 605–615.Google Scholar
  807. Robin, C., Camus, G., Cantagrel, J. M., Gourgaud, A., Mossand, P., Vincent, P. M., et al. (1984). Les volcanes de Colima (Mexique). Bulletin P.I.R.P.S.E.V., 87, 98.Google Scholar
  808. Robin, C., Komorowski, J.-C., Boudal, C., & Mossand, P. (1990). Mixed-magma pyroclastic surge deposits associated with debris avalanche deposits at Colima volcanoes, Mexico. Bulletin of Volcanology, 52, 391–403.CrossRefGoogle Scholar
  809. Robin, C., Camus, G., & Gourgaud, A. (1991). Eruptive and magmatic cycles at Fuego de Colima volcano (Mexico). Journal of Volcanology and Geothermal Research, 45, 209–225.CrossRefGoogle Scholar
  810. Robin, C., Eissen, J.-P., Samaniego, P., Martin, H., Hall, M., & Cotten, J. (2009). Evolution of the late Pleistocene Mojanda-Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bulletin of Volcanology, 71, 233–258.CrossRefGoogle Scholar
  811. Robin, C., Samaniego, P., Le Pennec, J.-L., Fornari, M., Mothes, P., & van der Plicht, J. (2010). New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador). Bulletin of Volcanology, 72, 1109–1129.CrossRefGoogle Scholar
  812. Rodriguez-Losada, J. A., Eff-Darwich, A., Hernandez, L. E., Vinas, R., Perez, N., Hernandez, P., et al. (2015). Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes. Journal of African Earth Sciences, 102, 41–49.CrossRefGoogle Scholar
  813. Rodríguez, S. R., Siebe, C., Komorowski, J.-C., & Abrams, M. (2002). The Quetzalapa pumice: A voluminous late Pleistocene rhyolite deposit in the eastern Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 113, 177–212.CrossRefGoogle Scholar
  814. Rodríguez, C., Sellés, D., Dungan, M., Langmuir, C., & Leeman, W. (2007). Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2° S; Andean southern volcanic zone, central Chile). Journal of Petrology, 18, 2033–2061.CrossRefGoogle Scholar
  815. Rodríguez, S. R., Morales-Barrera, W., Layer, P., & González-Mercado, E. (2010). A Quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican Volcanic Belt: Geology, distribution and morphology of the volcanic event. Journal of Volcanology and Geothermal Research, 197, 149–166.CrossRefGoogle Scholar
  816. Rodríguez Badiola, E., Torrado-Pérez, F. J., Carracedo, J. C., & Guillou, H. (2008). Petrografía y geoquímica del edificio volcánico Teide-Pico Viejo y las dorsales noreste y noroeste de Tenerife. In J. C. Carracedo (Ed.), Los Volcanes del Parque Nacional del Teide (pp. 129–188). Madrid, Spain: Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente.Google Scholar
  817. Rodríguez-Elizarrarás, S. R. (1995). Estratigrafía y estructura del Volcán de Colima, México. Revista Mexicana de Ciencias Geológicas, 12, 22–46.Google Scholar
  818. Rogers, N. W., & Setterfield, T. N. (1994). Potassium and incompatible-element enrichment in shoshonitic lavas from the Tavua volcano, Fiji. Chemical Geology, 118, 43–62.CrossRefGoogle Scholar
  819. Rogers, G., Saunders, A. D., Terrell, D. J., Verma, S. P., & Marriner, G. F. (1985). Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315, 389–392.CrossRefGoogle Scholar
  820. Rogers, N., Macdonald, R., Fitton, J. G., George, R., Smith, M., & Barreiro, B. (2000). Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya rift basalts. Earth and Planetary Science Letters, 176, 387–400.CrossRefGoogle Scholar
  821. Rogers, N. W., Evans, P. J., Blake, S., Scott, S. C., & Hawkesworth, C. J. (2004). Rates and timescales of fractional crystallization from 238U–230Th–226Ra disequilibria in trachyte lavas from Longonot volcano, Kenya. Journal of Petrology, 45, 1747–1776.CrossRefGoogle Scholar
  822. Rogers, N. W., Thomas, L. E., Macdonald, R., Hawkesworth, C. J., & Mokadem, F. (2006). 238U–230Th disequilibrium in recent basalts and dynamic melting beneath the Kenya rift. Chemical Geology, 234, 148–168.CrossRefGoogle Scholar
  823. Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Essex: Longman Scientific Technical.Google Scholar
  824. Romick, J. D., Perfit, M. R., Swanson, S. E., & Shuster, R. D. (1990). Magmatism in the eastern Aleutian arc: Temporal characteristic of igneous activity on Akutan Island. Contributions to Mineralogy and Petrology, 104, 700–721.CrossRefGoogle Scholar
  825. Ronga, F., Lustrino, M., Marzoli, A., & Melluso, L. (2010). Petrogenesis of a basalt-comendite-pantellerite rock suite: The Boseti volcanic complex (Main Ethiopian Rift). Mineralogy and Petrology, 98, 227–243.CrossRefGoogle Scholar
  826. Rooney, T., Furman, T., Bastow, I., Ayalew, D., & Yirgu, G. (2007). Lithospheric modification during crustal extension in the Main Ethiopian Rift. Journal of Geophysical Research, 112, B10201.  https://doi.org/10.1029/2006JB004916.CrossRefGoogle Scholar
  827. Rooney, T. O., Hanan, B. B., Graham, D. W., Furman, T., Blichert-toft, J., & Schilling, J.-G. (2012). Upper mantle pollution during Afar plume-continental rift interaction. Journal of Petrology, 53, 365–389.CrossRefGoogle Scholar
  828. Rosales-Rivera, M., Díaz-González, L., & Verma, S. P. (2019). Evaluation of nine USGS reference materials for quality control through Univariate Data Analysis System, UDASys3. Arabian Journal of Geosciences, 12, 40.  https://doi.org/10.1007/s12517-018-4220-0.CrossRefGoogle Scholar
  829. Rose, W. I., Jr., Bronhorst, T. J., Halsor, S. P., Capaul, W. A., Plumley, P. S., De la Cruz-Reyna, S., et al. (1984). Volcán El Chichon, Mexico: Pre-1982 S-rich eruptive activity. Journal of Volcanology and Geothermal Research, 23, 147–167.CrossRefGoogle Scholar
  830. Rossotti, A., Carrasco-Núñez, G., Rosi, M., & Di Muro, A. (2006). Eruptive dynamics of the “Citlaltépetl pumice” at Citlaltépetl volcano, eastern Mexico. Journal of Volcanology and Geothermal Research, 158, 401–429.CrossRefGoogle Scholar
  831. Rotolo, S. G., & Castorina, F. (1998). Transition from mildly-tholeiitic to calc-alkaline suite: The case of Chichontepec volcanic centre, El Salvador, Central America. Journal of Volcanology and Geothermal Research, 86, 117–136.CrossRefGoogle Scholar
  832. Rowe, M. C., Peate, D. W., & Peate, I. U. (2011). An investigation into the nature of the magmatic plumbing system at Paricutin volcano, Mexico. Journal of Petrology, 52, 2187–2220.CrossRefGoogle Scholar
  833. Rudek, E. A., Fodor, R. V., & Bauer, G. R. (1992). Petrology of ultramafic and mafic xenoliths in picrite of Kahoolawe Island, Hawaii. Bulletin of Volcanology, 55, 74–84.CrossRefGoogle Scholar
  834. Ruprecht, P., Bergantz, G. W., Cooper, K. M., & Hildreth, W. (2012). The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. Journal of Petrology, 53, 801–840.CrossRefGoogle Scholar
  835. Ryder, C. H., Gill, J. B., Tepley, F., III, Ramos, F., & Reagan, M. (2006). Closed- to open-system differentiation at Arenal volcano (1968–2003). Journal of Volcanology and Geothermal Research, 157, 75–93.CrossRefGoogle Scholar
  836. Saal, A. E., Kurz, M. D., Hart, S. R., Blusztajn, J. S., Blichert-Toft, J., Liang, Y., et al. (2007). The role of lithospheric gabbros on the composition of Galapagos lavas. Earth and Planetary Science Letters, 257, 391–406.CrossRefGoogle Scholar
  837. Saginor, I., Gazel, E., Condie, C., & Carr, M. J. (2013). Evolution of geochemical variations along the Central American volcanic front. Geochemistry, Geophysics, Geosystems, 14, 4504–4522.CrossRefGoogle Scholar
  838. Sajona, F. G., Maury, R. C., Bellon, H., Cotten, J., & Defant, M. (1996). High field strength element enrichment of Pliocene-Pleistocene Island Arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37, 693–726.Google Scholar
  839. Sakuyama, M., & Nesbitt, R. W. (1986). Geochemistry of the Quaternary volcanic rocks of the northeast Japan arc. Journal of Volcanology and Geothermal Research, 29, 413–450.CrossRefGoogle Scholar
  840. Samaniego, P., Martin, H., Monzier, M., Robin, C., Fornari, M., Eissen, J.-P., et al. (2005). Temporal evolution of magmatism in the northern volcanic zone of the Andes: The geology and petrology of Cayambe volcanic complex (Ecuador). Journal of Petrology, 46, 2225–2252.CrossRefGoogle Scholar
  841. Samaniego, P., Le Pennec, J.-L., Robin, C., & Hidalgo, S. (2011). Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador). Journal of Volcanology and Geothermal Research, 199, 69–84.CrossRefGoogle Scholar
  842. Sano, T., Hasenaka, T., Shimaoka, A., Yonesawa, C., & Fukuoka, T. (2001). Boron contents of Japan trench sediments and Iwate basaltic lavas, northeast Japan arc: Estimation of sediment-derived fluid contribution in mantle wedge. Earth and Planetary Science Letters, 186, 187–198.CrossRefGoogle Scholar
  843. Sano, T., Shirao, M., Tani, K., Tsutsumi, Y., Kiyokawa, S., & Fujii, T. (2016). Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin arc, Japan. Journal of Volcanology and Geothermal Research, 319, 52–65.CrossRefGoogle Scholar
  844. Santoyo, E., & Verma, S. P. (2003). Determination of lanthanides in synthetic standards by reversed-phase high-performance liquid chromatography with the aid of a weighted least-squares regression model: Estimation of method sensitivities and detection limits. Journal of Chromatography A, 997, 171–182.CrossRefGoogle Scholar
  845. Santoyo, E., Guevara, M., & Verma, S. P. (2006). Determination of lanthanides in international geochemical reference materials by reversed-phase high-performance liquid chromatography using error propagation theory to estimate total analysis uncertainties. Journal of Chromatography A, 1118, 73–81.CrossRefGoogle Scholar
  846. Santoyo, E., García, R., Galicia-Alanis, K. A., Verma, S. P., Aparicio, A., & Santoyo-Castelazo, A. (2007). Separation and quantification of lanthanides in synthetic standards by capillary electrophoresis: A new experimental evidence of the systematic “odd-even” pattern observed in sensitivities and detection limits. Journal of Chromatography A, 1149, 12–19.CrossRefGoogle Scholar
  847. Saucedo, R., Macias, J. L., Gavilanes, J. C., Arce, J. L., Komorowski, J. C., Gardner, J. E., et al. (2010). Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 Plinian eruption of Volcán de Colima, México. Journal of Volcanology and Geothermal Research, 191, 149–166.CrossRefGoogle Scholar
  848. Saunders, A. D. (1983). Geochemistry of basalts recovered from the Gulf of California during Leg 65 of the Deep Sea Drilling Project. In Deep Sea Drilling Project (pp. 591–621). Washington.Google Scholar
  849. Saunders, A. D., Fornari, D. J., Tarney, J., & Treuil, M. (1982). Geochemistry of basic igneous rocks, Gulf of California, Deep Sea Drilling Project Leg 64. In J. R. Curray & D. G. Moore (Eds.), Initial reports of the Deep Sea Drilling Project, 64 (pp. 595–642). Washington: U.S. Government Printing Office.