Advertisement

Feedback Control with Equilibrium Revision for CMG-Actuated Inverted Pendulum

  • Igor Ryadchikov
  • Semyon Sechenev
  • Nikita Mikhalkov
  • Andrey Biryuk
  • Alexander Svidlov
  • Aleksandr GusevEmail author
  • Dmitry Sokolov
  • Evgeny Nikulchev
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 154)

Abstract

The chapter centers around the problem of design a feedback control for the control moment gyroscope (CMG)-actuated inverted pendulum with online equilibrium revision after the center of mass displacement. The methodology for the control synthesis is the linear–quadratic regulator. The equations of motion for the model of the inverted pendulum are derived. The control is synthesized and implemented both in an experimental plant and in a simulation model. The results of the experiment and simulation show the reliability of the synthesized control, which is proved to be able to deal with the center of mass displacement.

Keywords

CMG Inverted pendulum Feedback control Equilibrium revision 

Notes

Acknowledgements

This chapter was supported by the Ministry of Education and Science of the Russian Federation (project no. 8.2321.2017/4.6).

References

  1. 1.
    Ito, S., et al.: Design and adaptive balance control of a biped robot with fewer actuators for slope walking. Mechatronics 49, 56–66 (2018)CrossRefGoogle Scholar
  2. 2.
    Vorochaeva, L.Y., Yatsun, A.S., Jatsun, S.F.: Controlling a quasistatic gait of an exoskeleton on the basis of the expert system. SPIIRAS Proc. 3(52), 70–94 (2017)CrossRefGoogle Scholar
  3. 3.
    Manko, S.V., Shestakov, E.I.: Automatic synthesis of gait scenarios for reconfigurable mechatronic modular robots in the modification of the walking platform. Russ. Technol. J. 6(4), 26–41 (2018)CrossRefGoogle Scholar
  4. 4.
    La Herra, P.X.M., et al.: Stable walking gaits for a three-link planar biped robot with one actuator. IEEE Trans. Robot. 29(3), 589–601 (2013)CrossRefGoogle Scholar
  5. 5.
    Aranovskiy, S., et al: Stabilization of the inverse pendulum with regard to the error in the position sensors. J. Comput. Syst. Sci. Int. 58(2) (2019)CrossRefGoogle Scholar
  6. 6.
    Amengonu, Y.H., Kakad, Y.P., Isenberg, D.R.: The control moment gyroscope inverted pendulum. In: Advances in Systems Science. Advances in Intelligent Systems and Computing, 240 (2014)Google Scholar
  7. 7.
    Chu, T.-D., Chen, C.-K.: Design and implementation of model predictive control for a gyroscopic inverted pendulum. Appl. Sci. 7, 1272 (2017)CrossRefGoogle Scholar
  8. 8.
    Lee, S., Jung, S.: Design of a fuzzy compensator for balancing control of a one-wheel robot. Int. J. Fuzzy Logic Intell Syst 16(3), 188–196 (2016)CrossRefGoogle Scholar
  9. 9.
    Aranovskiy, S., Ortega, R., Romero, J.G., Sokolov, D.: A globally exponentially stable speed observer for a class of mechanical systems: experimental and simulation comparison with high-gain and sliding mode designs. Int. J. Control, 1–14 (2017)Google Scholar
  10. 10.
    Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)zbMATHGoogle Scholar
  11. 11.
    Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice-Hall, Upper Saddle River, USA (1989)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Igor Ryadchikov
    • 1
  • Semyon Sechenev
    • 1
  • Nikita Mikhalkov
    • 1
  • Andrey Biryuk
    • 1
  • Alexander Svidlov
    • 1
  • Aleksandr Gusev
    • 1
    Email author
  • Dmitry Sokolov
    • 2
  • Evgeny Nikulchev
    • 3
  1. 1.Kuban State UniversityKrasnodarRussia
  2. 2.UMR 7503, Université de Lorraine, CNRSVandœuvre-lès-NancyFrance
  3. 3.MIREA—Russian Technological UniversityMoscowRussia

Personalised recommendations