Advertisement

Automatic Recognition of Legal Amount Words of Bank Cheques in Devanagari Script: An Approach Based on Information Fusion at Feature and Decision Level

  • Mohammad Idrees BhatEmail author
  • B. Sharada
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1037)

Abstract

Legal amount word recognition is an essential and challenging task in the domain of automatic Indian bank cheque processing. Further intricacies get accumulated by inherent complexities in Devanagari script besides cursiveness present in handwriting. Due to segmentation ambiguity and variability of constituent parts present in handwritten word analytical approach is inadequate, in contrast, to the holistic paradigm, where the word is taken indivisible entity. Despite the proliferation of various feature representations, it still remains a challenge to get effective representation/description for holistic Devanagari words. In this paper, we made an attempt to exploit robust, most discriminative and computationally inexpensive Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP) for effective characterization of Devanagari legal amount words taking into account different writing styles and cursiveness. Two models are proposed based on fusion strategies for word recognition. In the first model, LBP and HOG features are fused at feature level and in second, fused at decision level. In both models, recognition is performed by the nearest neighbour (NN) and support vector machine (SVM) classifiers. For corroboration of the results, extensive experiments have been carried out on ICDAR 2011 Devanagari Legal amount word dataset. Experimental results reveal that fusion based approaches are more robust than conventional approaches.

Keywords

Analytical and holistic word recognition Writing styles Cursiveness Feature representation Legal amount Feature and decision level fusion 

Notes

Acknowledgement

We thank Prof. Jayadeyan of Department of Information Technology of Pune Institute of Computer Technology (IT-PICT) Pune, India for providing the legal amount word dataset.

References

  1. 1.
    Obaidullah, S.M., Halder, C., Santosh, K.C., et al.: Page-level handwritten document image dataset of 11 official Indic scripts for script identification. Multimed. Tools Appl. 77(2), 1643 (2018).  https://doi.org/10.1007/s11042-017-4373-yCrossRefGoogle Scholar
  2. 2.
    Obaidullah, S., Goswamir, C., Santosh, K.C., et al.: Separating indic scripts with matra for effective handwritten script identification in multi-script documents. Int. J. Pattern Recogn. Artif. Intell. 31(5), 1753003 (2017).  https://doi.org/10.1142/S0218001417530032CrossRefGoogle Scholar
  3. 3.
    Obaidullah, S.M., Santosh, K.C., Das, N., Halder, C., et al.: Handwritten indic script identification in multi script document images. Int. J. Pattern Recogn. Artifi. Intell. 32(10), 1856012 (2018).  https://doi.org/10.1142/S0218001418560128CrossRefGoogle Scholar
  4. 4.
    Santosh, K.C., Wendling, L.: Character recognition based on non-linear multi-projection profiles measure. Front. Comput. Sci. 9, 678 (2015).  https://doi.org/10.1007/s11704-015-3400-2CrossRefGoogle Scholar
  5. 5.
    Santosh, K.C.: Character recognition based on DTW-radon. In: International Conference on Document Analysis and Recognition, 18–21 September 2011.  https://doi.org/10.1109/ICDAR.2011.61
  6. 6.
    Bhat, M.I., Sharada, B.: Recognition of handwritten Devanagari numerals by graph representation and lipschitz embedding. In: Santosh, K.C., Hangarge, M., Bevilacqua, V., Negi, A. (eds.) RTIP2R 2016. CCIS, vol. 709, pp. 102–110. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-4859-3_10CrossRefGoogle Scholar
  7. 7.
    Bhat, M.I., Sharada, B.: Spectral graph-based features for recognition of handwritten characters: a case study on handwritten Devanagari numerals. J. Intell. Syst. (2018).  https://doi.org/10.1515/jisys-2017-0448. Accessed 21 July 2018
  8. 8.
    Jayadevan, R., et al.: Automatic processing of handwritten bank cheque images: a survey. Int. J. Doc. Anal. Recogn. 15(4), 99–110 (2012).  https://doi.org/10.1007/s10032-011-0170-8CrossRefGoogle Scholar
  9. 9.
    Dutta, K., Krishnan, P., Mathew, M., Jawahar, C.V.: Towards accurate handwritten word recognition for hindi and bangla. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds.) NCVPRIPG 2017. CCIS, vol. 841, pp. 470–480. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-13-0020-2_41CrossRefGoogle Scholar
  10. 10.
    Cheriet, M., El Yacoubi, M., Fujisawa, H., Lopresti, D., Lorette, G.: Handwriting recognition research: twenty years of achievement... and beyond. Pattern Recogn. 42(12), 3131–3135 (2009)CrossRefGoogle Scholar
  11. 11.
    Jayadevan, R., et al.: Database development and recognition of handwritten Devanagari legal amount words. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 304–308 (2011).  https://doi.org/10.1109/ICDAR.2011.69
  12. 12.
    Shaw, B., et al.: Offline handwritten Devanagari word recognition: a holistic approach based on directional chain code feature and HMM. In: Proceedings of the 11th International Conference on Information Technology, ICIT 2008, pp. 203–208 (2008).  https://doi.org/10.1109/ICIT.2008.33
  13. 13.
    Roy, P.P., et al.: HMM-based Indic handwritten word recognition using zone segmentation. Pattern Recogn. 60, 1057–1075 (2016).  https://doi.org/10.1016/j.patcog.2016.04.012CrossRefGoogle Scholar
  14. 14.
    Jayadevan, R., Kolhe, S.R., Patil, P.M., Pal, U.: Offline recognition of Devanagari script: a survey. IEEE Trans. Syst. Man. Cybern. Part C Appl. Rev. 41, 782–796 (2011).  https://doi.org/10.1109/TSMCC.2010.2095841CrossRefGoogle Scholar
  15. 15.
    Ojala, T., et al.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996).  https://doi.org/10.1016/0031-3203(95)000674CrossRefGoogle Scholar
  16. 16.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005).  https://doi.org/10.1109/CVPR.2005.177
  17. 17.
    Ojala, T., et al.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002).  https://doi.org/10.1109/TPAMI.2002.1017623CrossRefGoogle Scholar
  18. 18.
    Dey, S., Nicolaou, A., Llados, J., Pal, U.: Local binary pattern for word spotting in handwritten historical document. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 574–583. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49055-7_51CrossRefGoogle Scholar
  19. 19.
    Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472. ACM (2010).  https://doi.org/10.1145/1873951.1874249
  20. 20.
    Ahmed, R., et al.: A survey on handwritten documents word spotting. Int. J. Multimed. Inf. Retrieval 6(1), 31–47 (2017).  https://doi.org/10.1007/s13735-016-0110-yCrossRefGoogle Scholar
  21. 21.
    Xie, Z., et al.: Fusion of LBP and HOG using multiple kernel learning for infrared face recognition. In: Proceedings of the 16th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2017, pp. 81–84 (2017).  https://doi.org/10.1109/ICIS.2017.7959973
  22. 22.
    Kovalchuk, A., et al.: A simple and fast word spotting method. In: Proceedings of the International Conference Frontiers Handwriting Recognition, ICFHR 2014, pp. 3–8 (2014).  https://doi.org/10.1109/ICFHR.2014.9
  23. 23.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms: Combining Pattern Classifiers: Methods and Algorithms (2005). ISBN 978-1-118-31523-1Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Studies in Computer ScienceUniversity of MysoreMysoreIndia

Personalised recommendations