Advertisement

Impact of Dimensionality Reduction Techniques on Endmember Identification in Hyperspectral Imagery

  • Mahesh M. SolankarEmail author
  • Hanumant R. GiteEmail author
  • Rupali R. SuraseEmail author
  • Dhananjay B. NalawadeEmail author
  • Karbhari V. KaleEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1037)

Abstract

The image derived hyperspectral endmembers fulfil the requirement of ground truth information required for supervised classification and spectral unmixing of the hyperspectral scenes. In hyperspectral images endmembers are very difficult to identify by visual inspection, since their population within the scene is significantly low. There are several algorithms (PPI, ATGP, NFINDR, CCA, VCA and SGA) developed for endmember identification. Most of these algorithms begins with MNF transformation based data dimensionality reduction, even though there other dimensionality reduction algorithms are available in the literature. This paper critically evaluates the comparative performances of NFINDR and ATGP endmember finding algorithms using original hyperspectral scene and PCA, MNF and ICA transformed data sets separately. The experimental outcomes are evaluated using two important parameters. First parameters compares the execution time of EM identification algorithms. Second parameter compares the spatial coordinates and their corresponding spectral signatures of NFINDR and ATGP identified endmembers. The comparative experimental analysis showcase that the execution time of NFINDR and ATGP algorithms is significantly improved with ICA transformed principle components.

Keywords

Hyperspectral image Dimensionality reduction Endmember extraction PCA MNF ICA NFINDR ATGP 

Notes

Acknowledgment

The Authors acknowledge to DST, GOI, for financial support under major research project (No. BDID/01/23/2014-HSRS/35 (ALG-V)) and for providing AVIRIS-NG data. The authors also extend sincere thanks to UGC SAP for providing lab facilities to the Department of Comp. Science and IT, Dr. B. A. M. University, Aurangabad-(MS), India.

References

  1. 1.
    Kale, K.V., Solankar, M.M., Nalawade, D.B., Dhumal, R.K., Gite, H.R.: A research review on hyperspectral data processing and analysis algorithms. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87(4), 541–555 (2017)CrossRefGoogle Scholar
  2. 2.
    Nandibewoor, A., Hegadi, R.: A novel SMLR-PSO model to estimate the chlorophyll content in the crops using hyperspectral satellite images. Cluster Comput., 1–8 (2018)Google Scholar
  3. 3.
    Solankar, M.M., Gite, H.R., Dhumal, R.K., Surase, R.R., Nalawade, D., Kale, K.V.: Recent advances and challenges in automatic hyperspectral endmember extraction. In: Krishna, C.R., Dutta, M., Kumar, R. (eds.) Proceedings of 2nd International Conference on Communication, Computing and Networking. LNNS, vol. 46, pp. 445–455. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-1217-5_44CrossRefGoogle Scholar
  4. 4.
    Boardman, J.W., Kruse, F.A., Green, R.O.: Mapping target signatures via partial unmixing of AVIRIS data (1995)Google Scholar
  5. 5.
    Ifarraguerri, A., Chang, C.I.: Multispectral and hyperspectral image analysis with convex cones. IEEE Trans. Geosci. Remote Sens. 37(2), 756–770 (1999)CrossRefGoogle Scholar
  6. 6.
    Winter, M.E.: N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, pp. 266–275 (1999)Google Scholar
  7. 7.
    Nascimento, J.M., Dias, J.M.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)CrossRefGoogle Scholar
  8. 8.
    Chang, C.I., Wu, C.C., Liu, W., Ouyang, Y.C.: A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 44(10), 2804–2819 (2006)CrossRefGoogle Scholar
  9. 9.
    Plaza, A., Chang, C.I.: Impact of initialization on design of endmember extraction algorithms. IEEE Trans. Geosci. Remote Sens. 44(11), 3397–3407 (2006)CrossRefGoogle Scholar
  10. 10.
    Chang, C.I., Chen, S.Y., Li, H.C., Chen, H.M., Wen, C.H.: Comparative study and analysis among ATGP, VCA, and SGA for finding endmembers in hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4280–4306 (2016)CrossRefGoogle Scholar
  11. 11.
    Phillips, R.D., Watson, L.T., Blinn, C.E., Wynne, R.H.: An adaptive noise reduction technique for improving the utility of hyperspectral data. In: Proceedings of the 17th William T. Pecora Memorial Remote Sensing Symposium, pp. 16–20 (2008)Google Scholar
  12. 12.
    Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 62(2), 115 (2002)Google Scholar
  13. 13.
    Wang, J., Chang, C.I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)CrossRefGoogle Scholar
  14. 14.
    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000)CrossRefGoogle Scholar
  15. 15.
    Green, R., Landeen, S., McCubbin, I., Thompson, D., Bue, B.: Airborne visible/infrared imaging spectrometer next generation (AVIRIS-NG), 1st edn. [PDF] JPL, California Institute of Technology (2015). http://vedas.sac.gov.in:8080/aviris/pdf/20150726_AVRISINGDataGuide_v4.pdf. Accessed 1 July 2017

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science and ITDr. B. A. M. UniversityAurangabadIndia

Personalised recommendations