Advertisement

Assessment of Rainfall Pattern Using ARIMA Technique of Pachmarhi Region, Madhya Pradesh, India

  • Papri Karmakar
  • Aniket A. MuleyEmail author
  • Govind Kulkarni
  • Parag U. Bhalchandra
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1037)

Abstract

Rainfall prediction is a crucial event as large portion in India is depends upon it. Since, agriculture is one of the most important constituent on Indian economy and rainfall has an indirect impact on it. In this paper, an attempt has been made to forecast the rainfall activities in terms of pattern matching data analytics work carried over rain fall time series. The major aspect is to study pattern of rainfall over Pachmarhi region. To forecast rainfall of Pachmarhi region data during the years 2000 to 2017 has been collected and Auto Regressive Integrated Moving Average (ARIMA) method was applied to forecast the rainfall for next five years.

Keywords

Time series analysis ARIMA Rainfall Pachmarhi region 

References

  1. 1.
    Ab Razak, N.H., Aris, A.Z., Ramli, M.F., Looi, L.J., Juahir, H.: Temporal flood incidence forecasting for Segamat River (Malaysia) using autoregressive integrated moving average modelling. J. Flood Risk Manage. 11, 794–804 (2018)CrossRefGoogle Scholar
  2. 2.
    Bari, S.H., Rahman, M.T., Hussain, M.M., Ray, S.: Forecasting monthly precipitation in Sylhet City using ARIMA model. Civil Environ. Res. 7(1), 69–77 (2015)Google Scholar
  3. 3.
    Dabral, P.P., Murry, M.Z.: Modelling and forecasting of rainfall time series using SARIMA. Environ. Process. 4(2), 399–419 (2017)CrossRefGoogle Scholar
  4. 4.
    Duangdai, E., Likasiri, C.: Rainfall model investigation and scenario analyses of the effect of government reforestation policy on seasonal rainfalls: a case study from Northern Thailand. Atmos. Res. 185, 1–2 (2017)CrossRefGoogle Scholar
  5. 5.
    Farajzadeh, J., Alizadeh, F.: A hybrid linear-nonlinear approach to predict the monthly rainfall over the Urmia Lake watershed using wavelet-SARIMAX-LSSVM conjugated model. J. Hydroinformatics 20(1), 246–262 (2018)CrossRefGoogle Scholar
  6. 6.
    Graham, A., Mishra, E.P.: Time series analysis model to forecast rainfall for Allahabad region. J. Pharmacognosy Phytochem. 6(5), 1418–1421 (2017)Google Scholar
  7. 7.
    Jain, G., Mallick, B.: A study of time series models ARIMA and ETS. I.J. Mod. Educ. Comput. Sci. 4, 57–63 (2017)CrossRefGoogle Scholar
  8. 8.
    Kalanker, N.V., Somvanshi, V.K., Pandey, O.P., Agrawal, P.K., Prakash, M.R., Chand, R.: Modelling and prediction of rainfall using artificial neural network and ARIMA techniques. J. Ind. Geophys. Union 10(2), 141–151 (2006)Google Scholar
  9. 9.
    Kulkarni, G.E., Muley, A.A., Deshmukh, N.K., Bhalchandra, P.U.: Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India. Model. Earth Syst. Environ. 4(1), 1–10 (2018)CrossRefGoogle Scholar
  10. 10.
    Mehdizadeh, S., Behmanesh, J., Khalili, K.: New approaches for estimation of monthly rainfall based on GEP-ARCH and ANN-ARCH hybrid models. Water Resour. Manage. 32(2), 527–545 (2018)CrossRefGoogle Scholar
  11. 11.
    Meher, J., Jha, R.: Time-series analysis of monthly rainfall data for the Mahanadi River Basin, India. Sci. Cold Arid Reg. (SCAR) 5(1), 73–84 (2013)CrossRefGoogle Scholar
  12. 12.
    Naveen, V., Anu, N.: Time series analysis to forecast air quality indices in Thiruvananthapuram District, Kerala, India. Int. J. Eng. Res. Appl. 7(6), 66–84 (2017)Google Scholar
  13. 13.
    Olatayo, T.O., Taiwo, A.I.: Statistical modelling and prediction of rainfall time series data. Global J. Comput. Sci. Technol. 14(1), 1–9 (2014)Google Scholar
  14. 14.
    Pazvakawambwa, G.T.: A time-series forecasting model for Windhoek Rainfall, Namibia. pp. 1–11 (2017). https://digitalcommons.andrews.edu/cgi/viewcontent.cgi?article=1146&context=arc
  15. 15.
    Rojo, J., Rivero, R., Romero-Morte, J., Fernández-González, F., Pérez-Badia, R.: Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. Int. J. Biometeorol. 61(2), 335–348 (2017)CrossRefGoogle Scholar
  16. 16.
    Sahai, A.K., Soman, M.K., Satyan, V.: All India summer monsoon rainfall prediction using an artificial neural network. Clim. Dyn. 16(4), 291–302 (2000)CrossRefGoogle Scholar
  17. 17.
    Singh, P.: Rainfall and financial forecasting using fuzzy time series and neural networks based model. Int. J. Mach. Learn. Cybern. 9(3), 491–506 (2018)CrossRefGoogle Scholar
  18. 18.
    Uba, E.S., Bakari, H.R.: An application of time series analysis in modeling monthly rainfall data for Maiduguri, North Eastern Nigeria. Math. Theory Model. 5(11), 24–33 (2015)Google Scholar
  19. 19.
    Wang, K.W., Deng, C., Li, J.P., Zhang, Y.Y., Li, X.Y., Wu, M.C.: Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Epidemiol. Infect. 145(6), 1118–1129 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Wang, C., Shi, C., Xiao, B.: Short-term cloud coverage prediction using the ARIMA time series model. Remote Sens. Lett. 9(3), 275–284 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Papri Karmakar
    • 1
  • Aniket A. Muley
    • 2
    Email author
  • Govind Kulkarni
    • 3
  • Parag U. Bhalchandra
    • 3
  1. 1.Department of General and Applied GeographyDr. H. G. Central UniversitySagarIndia
  2. 2.School of Mathematical SciencesS.R.T.M. UniversityNandedIndia
  3. 3.School of Computational ScienceS.R.T.M. UniversityNandedIndia

Personalised recommendations