Advertisement

Recognition of Signature Using Neural Network and Euclidean Distance for Bank Cheque Automation

  • S. P. RaghavendraEmail author
  • Ajit Danti
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1037)

Abstract

Handwritten signature recognition plays significant role in automatic document verification system in particularly bank cheque authorization. The proposed method focuses on A novel technique for offline signature recognition approach for bank cheque based on zonal features and regional features. These combined features are used to find genuinety of signature using Euclidean distance as a metric. Extensive experiments are carried out to exhibit the success of the recommended approach.

Keywords

Euclidean distance measure Zonal features Neural network Signature recognition 

References

  1. Boukharouba, A., Bennia, A.: Novel feature extraction technique for the recognition of handwritten digits. Appl. Comput. Inform. 13, 19–26 (2017). 2210–8327 (2017)CrossRefGoogle Scholar
  2. Nasser, A.T., Dogru, N.: Signature recognition by using SIFT and SURF with SVM basic on RBF for voting online. In: ICET2017, Antalya, Turkey. IEEE (2017). ISBN 978-1-5386-1949-0Google Scholar
  3. Jagtap, A.B., Hegadi, R.S.: Offline handwritten signature recognition based on upper and lower envelope using eigen values. In: World Congress on Computing and Communication Technologies (WCCCT). IEEE (2017). ISBN 978-1-5090-5573-9Google Scholar
  4. Pansare, A., Bhatia, S.: Handwritten signature verification using neural network. Int. J. Appl. Inf. Syst. (IJAIS) 1(2) (2012). ISSN 2249-0868CrossRefGoogle Scholar
  5. Suryani, D., Irwansyah, E., Chindra, R.: Offline signature recognition and verification system using effcient fuzzy Kohonen clustering network (EFKCN) algorithm. In: 2nd International Conference on Computer Science and Computational Intelligence, ICCSCI 2017, Bali, Indonesia, 13–14 October 2017, pp. 621–628. Elsevier Science Direct (2017). Procedia Comput. Sci. 116Google Scholar
  6. Justino, E., Bortolozzi, E., Saburin, R.: Off-line signature verification using HMM for random, simple and skilled forgeries. In: ICDAR, vol. 1, pp. 105–110 (2001)Google Scholar
  7. Anand, H., Bhombe, D.L.: Relative study on signature verification and recognition system. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 1(5) (2014). ISSN 2349–2163Google Scholar
  8. Barbantan, I., Vidrighin, C., Borca, R.: An offline system for handwritten signature recognition. IEEE (2009). ISBN 978-1-4244-5007-7Google Scholar
  9. Putz-Leszczynska, J.: Signature verification: a comprehensive study of the hidden signature method. Int. J. Appl. Math. Comput. Sci. 25(3), 659–674 (2015)MathSciNetCrossRefGoogle Scholar
  10. Santosh, K.C., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow detection for labelling regions of interest in biomedical images. Pattern Recognition, Part 2. IEEE (2016). ISSN 1541–1672Google Scholar
  11. Santosh, K.C., Iwata, E.: Stroke-based cursive character recognition. Advances in Character Recognition (2012).  https://doi.org/10.5772/51471Google Scholar
  12. Santosh, K.C.: Character recognition based on DTW-Radon. In: International Conference on Document Analysis and Recognition, pp. 1520–5363. IEEE (2011)Google Scholar
  13. Santosh, K.C., Nattee, C., Lamiroy, B.: Spatial similarity based stroke number and order free clustering. In: 12th International Conference on Frontiers in Handwriting Recognition. IEEE (2010). ISBN 978-0-7695-4221-8Google Scholar
  14. Sisodia, K., Anand, S.M.: Off-line handwritten signature verification using artificial neural network classifier. Int. J. Recent Trends Eng. 2(2), 205–207 (2009)Google Scholar
  15. Radhika, K.S., Gopika, S.: Online and offline signature verification: a combined approach. Procedia Comput. Sci. 46, 1593–1600 (2015). International Conference on Information and Communication Technologies (ICICT 2014)CrossRefGoogle Scholar
  16. Oliveira, L.S., Justino, E., Sabourin, R.: Off-line signature verification using writer-independent approach. In: IJCNN-2007, pp. 2539–2544 (2007)Google Scholar
  17. Kumar, R., Singhal, P.: Review on offline signature verification by SVM. Int. Res. J. Eng. Technol. (IRJET) 4(6) (2017). e-ISSN 2395-0056Google Scholar
  18. Raghavendra, S.P., Danti, A., Suresha, M.: Correlation based template matching for recognition of bank cheque number. Int. J. Comput. Eng. Appl. XII(III) (2018). www.ijcea.com. ISSN 2321–3469
  19. Raghavendra, S.P., Danti, A.: A novel recognition of Indian bank cheque names using binary pattern and feed forward neural network. IOSR J. Comput. Eng. (IOSR JCE) 20(3), 44–59 (2018). e-ISSN: 2278–0661, p-ISSN: 2278–8727Google Scholar
  20. Jayadevan, R., Kolhe, S.R., Patil, P.M., Pal, U.: Automatic processing of handwritten bank cheque images: a survey. IJDAR 15, 267–296 (2011).  https://doi.org/10.1007/s10032-011-0170-8CrossRefGoogle Scholar
  21. Angadi, S.A., Gour, S., Bajantri, G.: Offline signature recognition system using radon transform. In: Fifth International Conference on Signals and Image Processing. IEEE (2013). ISBN 978-0-7695-5100-5Google Scholar
  22. Armand, S., Blumenstein, M., Muthukkumarasamy, V.: Off-line signature verification based on the modified direction feature. In: ICPR-2006, pp. 509–512 (2006)Google Scholar
  23. Ukil, S., Ghosh, S., Obaidullah, S.M., Santosh, K.C., Roy, K., Das, N.: Deep learning for word-level handwritten Indic script identification. arXiv preprint arXiv:1801.01627 (2018)
  24. Chandra, S., Maheskar, S.: Offline signature verification based on geometric feature extraction using artificial neural network. In: 3rd International Conference on Recent Advances in Information Technology—RAIT-2016. IEEE (2016). ISBN 978-1-4799-8579-1Google Scholar
  25. Jagtap, A.B., Hegadi, R.S.: Eigen value based features for offline handwritten signature verification using neural network approach. In: Santosh, K.C., Hangarge, M., Bevilacqua, V., Negi, A. (eds.) RTIP2R 2016. CCIS, vol. 709, pp. 39–48. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-4859-3_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.NES Research Foundation, Department of MCAJNNCEShimogaIndia
  2. 2.Department of Computer Science and EngineeringChrist (Deemed to be university)BangaloreIndia

Personalised recommendations