Immunopathogenesis of HBV Infection

  • Jun Wu
  • Meihong Han
  • Jia Li
  • Xiaoli Yang
  • Dongliang YangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1179)


More than 95% of adult infected with HBV show acute self-limited infection and eventually eliminate the virus. In contrast, about 90% of people exposed to HBV in early childhood develop chronic infection. The specificity of the virus and the host’s antiviral immune responses together determine the outcome of HBV infection. It is generally believed that viral genome variation, viral titers, and inhibition of viral components against the host immune system are associated with persistent infection and liver damage. The dysfunction of innate immune cells (NK cells, monocyte/macrophages, NKT cells, etc.) and adaptive immune cells (antigen-presenting cells, T cells, B cells) is a key factor leading to virus clearance failure and liver inflammation. In this chapter, we summarize these viral factors and host factors in acute and chronic hepatitis B and update recent understanding of the immune-tolerant phase and pathological mechanisms associated with age and vertical transmission. This will help us to understand more fully the mechanisms of chronic HBV infection and liver injury and to develop combined treatment strategies of direct antiviral drugs for HBV life cycle and immunomodulators.


  1. 1.
    Liang TJ, Hasegawa K, Rimon N, Wands JR, Ben-Porath E (1991) A hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. N Engl J Med 324:1705–1709PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Brunetto MR et al (1990) A new hepatitis B virus strain in patients with severe anti-HBe positive chronic hepatitis B. J Hepatol 10:258–261PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hou JL, Lai W (2015) The guideline of prevention and treatment for chronic hepatitis B: a 2015 update. Zhonghua Gan Zang Bing Za Zhi 23:888–905PubMedPubMedCentralGoogle Scholar
  4. 4.
    Diepolder HM et al (1999) Differential antigen-processing pathways of the hepatitis B virus e and core proteins. Gastroenterology 116:650–657PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Milich DR (1999) Do T cells “see” the hepatitis B core and e antigens differently? Gastroenterology 116:765–768PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Alestig E, Hannoun C, Horal P, Lindh M (2001) Phylogenetic origin of hepatitis B virus strains with precore C-1858 variant. J Clin Microbiol 39:3200–3203PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chacha S et al (2017) Basal core promoter and precore mutations among hepatitis B virus circulating in Brazil and its association with severe forms of hepatic diseases. Mem Inst Oswaldo Cruz 112:626–631PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zhou H et al (2017) Sequence analysis and functional characterization of full-length hepatitis B virus genomes from Korean cirrhotic patients with or without liver cancer. Virus Res 235:86–95PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Norder H et al (2019) High frequency of either altered pre-core startcodon or weakened kozak sequence in the corepromoter region in hepatitis B virus A1 strains from Rwanda. Genes (Basel) 10Google Scholar
  10. 10.
    Zong L et al (2017) Differential regulation of hepatitis B virus core protein expression and genome replication by a small upstream open reading frame and naturally occurring mutations in the precore region. Virology 505:155–161PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Baumert TF et al (2005) Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes. Hepatology 41:247–256PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sterneck M et al (1998) Functional analysis of HBV genomes from patients with fulminant hepatitis. Hepatology 28:1390–1397PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Carman WF et al (1990) Vaccine-induced escape mutant of hepatitis B virus. Lancet 336:325–329PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kalinina T, Iwanski A, Will H, Sterneck M (2003) Deficiency in virion secretion and decreased stability of the hepatitis B virus immune escape mutant G145R. Hepatology 38:1274–1281PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Germer JJ, Charlton MR, Ishitani MB, Forehand CD, Patel R (2003) Characterization of hepatitis B virus surface antigen and polymerase mutations in liver transplant recipients pre- and post-transplant. Am J Transplant 3:743–753PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lorentza MLAT (2003) De novo infection in a renal transplant recipient caused by novel mutants of hepatitis B virus despite the presence of protective anti–hepatitis B surface antibody. J Infect Dis 187:1323–1326CrossRefGoogle Scholar
  17. 17.
    Asabe S et al (2009) The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol 83:9652–9662PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tian Y, Chen WL, Ou JH (2011) Effects of interferon-alpha/beta on HBV replication determined by viral load. PLoS Pathog 7:e1002159PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tian Y, Chen WL, Kuo CF, Ou JH (2012) Viral-load-dependent effects of liver injury and regeneration on hepatitis B virus replication in mice. J Virol 86:9599–9605PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Akcay IM, Katrinli S, Ozdil K, Doganay GD, Doganay L (2018) Host genetic factors affecting hepatitis B infection outcomes: insights from genome-wide association studies. World J Gastroenterol 24:3347–3360PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mbarek H et al (2011) A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum Mol Genet 20:3884–3892PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kamatani Y et al (2009) A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 41:591–595PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Li Y et al (2016) Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese. Nat Commun 7:11664PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Posuwan N et al (2014) Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in thai population. PLoS One 9:e86007PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hu Z et al (2013) New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat Genet 45:1499–1503PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lewis MJ et al (2015) UBE2L3 polymorphism amplifies NF-kappaB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet 96:221–234PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zeller T et al (2010) Genetics and beyond--the transcriptome of human monocytes and disease susceptibility. PLoS One 5:e10693PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kim YJ et al (2013) A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. Hum Mol Genet 22:4233–4238PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Pandey S, Kawai T, Akira S (2014) Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 7:a016246PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cooper A, Tal G, Lider O, Shaul Y (2005) Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J Immunol 175:3165–3176PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Luangsay S et al (2015) Expression and functionality of Toll- and RIG-like receptors in HepaRG cells. J Hepatol 63:1077–1085PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Luangsay S et al (2015) Early inhibition of hepatocyte innate responses by hepatitis B virus. J Hepatol 63:1314–1322PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    van Montfoort N et al (2016) Hepatitis B virus surface antigen activates myeloid dendritic cells via a soluble CD14-dependent mechanism. J Virol 90:6187–6199PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Muta T, Takeshige K (2001) Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem 268:4580–4589PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liu Y et al (2017) Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog 13:e1006296PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sato S et al (2015) The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42:123–132PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Shravanthi GV, Mukherjee RM, Reddy PB, Rao PN, Rao DN (2015) HBV induce cytosolic DNA sensor cGAS but suppress IRF3 to prevent generation of antiviral defense mechanism in infected cell. Mol Cell Biol 5:S4Google Scholar
  38. 38.
    Dunn C et al (2009) Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 137:1289–1300PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ortega-Prieto AM et al (2018) 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun 9:682PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Vanlandschoot P, Van Houtte F, Serruys B, Leroux-Roels G (2007) Contamination of a recombinant hepatitis B virus nucleocapsid preparation with a human B-cell activator. J Virol 81:2535–2536PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Faure-Dupuy S, Lucifora J, Durantel D (2017) Interplay between the hepatitis B virus and innate immunity: from an understanding to the development of therapeutic concepts. Viruses 9:95PubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wieland SF, Chisari FV (2005) Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 79:9369–9380PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wieland S, Thimme R, Purcell RH, Chisari FV (2004) Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 101:6669–6674PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lutgehetmann M et al (2011) Hepatitis B virus limits response of human hepatocytes to interferon-alpha in chimeric mice. Gastroenterology 140. Scholar
  45. 45.
    Zhang E, Lu M (2015) Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection. Med Microbiol Immunol 204:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wang S et al (2013) Hepatitis B virus surface antigen selectively inhibits TLR2 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation. J Immunol 190:5142–5151PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Visvanathan K et al (2007) Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology 45:102–110PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wu J et al (2009) Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49:1132–1140PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Chen J et al (2013) Hepatitis B virus polymerase impairs interferon-alpha-induced STA T activation through inhibition of importin-alpha5 and protein kinase C-delta. Hepatology 57:470–482PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wei C et al (2010) The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol 185:1158–1168PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jiang J, Tang H (2010) Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein Cell 1:1106–1117PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Han Q, Zhang C, Zhang J, Tian Z (2011) Reversal of hepatitis B virus-induced immune tolerance by an immunostimulatory 3p-HBx-siRNAs in a retinoic acid inducible gene I-dependent manner. Hepatology 54:1179–1189PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wang H, Ryu WS (2010) Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion. PLoS Pathog 6:e1000986PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yu S et al (2010) Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKKepsilon and DDX3. J Gen Virol 91:2080–2090PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kakimi K, Guidotti LG, Koezuka Y, Chisari FV (2000) Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 192:921–930PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tian Z, Chen Y, Gao B (2013) Natural killer cells in liver disease. Hepatology 57:1654–1662PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Protzer U, Maini MK, Knolle PA (2012) Living in the liver: hepatic infections. Nat Rev Immunol 12:201–213PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Webster GJ et al (2000) Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32:1117–1124PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yang PL et al (2010) Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci 107:798–802PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Guidotti LG et al (1999) Viral clearance without destruction of infected cells during acute HBV infection. Science 284:825–829PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fisicaro P et al (2009) Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 58:974–982PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Li H et al (2018) Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 67:2035–2044PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Oliviero B et al (2009) Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 137. Scholar
  64. 64.
    Tjwa ET, van Oord GW, Hegmans JP, Janssen HL, Woltman AM (2011) Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 54:209–218PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sun C et al (2012) TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 8:e1002594PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ju Y et al (2010) T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol 52:322–329PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Tjwa ET et al (2012) Restoration of TLR3-activated myeloid dendritic cell activity leads to improved natural killer cell function in chronic hepatitis B virus infection. J Virol 86:4102–4109PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Martinet J et al (2012) Altered functions of plasmacytoid dendritic cells and reduced cytolytic activity of natural killer cells in patients with chronic HBV infection. Gastroenterology 143:1586–1596.e8PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zheng Q et al (2015) Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection. Clin Exp Immunol 180:499–508PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Peppa D et al (2013) Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 210:99–114PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Schuch A et al (2019) NK-cell responses are biased towards CD16-mediated effector functions in chronic hepatitis B virus infection. J Hepatol 70:351–360PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Horton JD, Manning MJ (1974) Lymphoid organ development in Xenopus thymectomized at eight days of age. J Morphol 143:385–396PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Brempelis KJ, Crispe IN (2016) Infiltrating monocytes in liver injury and repair. Clin Transl Immunol 5:e113CrossRefGoogle Scholar
  75. 75.
    Boltjes A, Movita D, Boonstra A, Woltman AM (2014) The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol 61:660–671PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ono K et al (2006) Mannose-binding lectin augments the uptake of lipid A, Staphylococcus aureus, and Escherichia coli by Kupffer cells through increased cell surface expression of scavenger receptor A. J Immunol 177:5517–5523PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Vanlandschoot P et al (2002) LPS-binding protein and CD14-dependent attachment of hepatitis B surface antigen to monocytes is determined by the phospholipid moiety of the particles. J Gen Virol 83:2279–2289PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hosel M et al (2009) Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 50:1773–1782PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Uwatoku R et al (2001) Kupffer cell-mediated recruitment of rat dendritic cells to the liver: roles of N-acetylgalactosamine-specific sugar receptors. Gastroenterology 121:1460–1472PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wu LL et al (2019) Lymphocyte antigen 6 complex, locus C+monocytes and Kupffer cells orchestrate liver immune responses against hepatitis B virus in mice. Hepatology 69(6):2364–2380PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12:7413–7420PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tang TJ et al (2003) The role of intrahepatic immune effector cells in inflammatory liver injury and viral control during chronic hepatitis B infection. J Viral Hepat 10:159–167PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wu J et al (2007) Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology 46:1769–1778PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Hong MH et al (2012) Transforming growth factor-beta1 suppresses hepatitis B virus replication by the reduction of hepatocyte nuclear factor-4alpha expression. PLoS One 7:e30360PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Xu L, Yin W, Sun R, Wei H, Tian Z (2014) Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice. Hepatology 59:443–452PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Li M et al (2015) Kupffer cells support hepatitis B virus-mediated CD8+ T cell exhaustion via hepatitis B Core antigen-TLR2 interactions in mice. J Immunol 195:3100–3109PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Pallett LJ et al (2015) Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 21:591–600PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gill US, Pallett LJ, Kennedy PTF, Maini MK (2018) Liver sampling: a vital window into HBV pathogenesis on the path to functional cure. Gut. 67(4):767–775Google Scholar
  89. 89.
    Kyong-Mi Chang ML (2016) Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics. Curr Opin Pharmacol 30:93–105PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Huang A et al (2014) Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10. J Immunol 193:5461–5469PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Pal S et al (2019) Myeloid-derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy. Aliment Pharmacol Ther 49(10):1346–1359PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Han Q, Hou Z, Yin C, Zhang C, Zhang J (2019) 5′-triphosphate siRNA targeting HBx elicits a potent anti-HBV immune response in pAAV-HBV transfected mice. Antivir Res 161:36–45PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yang F et al (2019) Hepatitis B e antigen induces the expansion of monocytic myeloid-derived suppressor cells to dampen T-cell function in chronic hepatitis B virus infection. PLoS Pathog 15:e1007690PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Baron JL et al (2002) Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583–594PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ito H et al (2008) Role of Valpha14+ NKT cells in the development of hepatitis B virus-specific CTL: activation of Valpha14+ NKT cells promotes the breakage of CTL tolerance. Int Immunol 20:869–879PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Zeissig S et al (2012) Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med 18:1060–1068PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jiang X et al (2011) Restored circulating invariant NKT cells are associated with viral control in patients with chronic hepatitis B. PLoS One 6:e28871PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yang Z, Lei Y, Chen C, Ren H, Shi T (2015) Roles of the programmed cell death 1, T cell immunoglobulin mucin-3, and cluster of differentiation 288 pathways in the low reactivity of invariant natural killer T cells after chronic hepatitis B virus infection. Arch Virol 160:2535–2545PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Xu Y et al (2018) Tim-3 blockade promotes iNKT cell function to inhibit HBV replication. J Cell Mol Med 22:3192–3201PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    van Wilgenburg B et al (2016) MAIT cells are activated during human viral infections. Nat Commun 7:11653PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yong YK et al (2017) Decrease of CD69 levels on TCR Valpha7.2(+)CD4(+) innate-like lymphocytes is associated with impaired cytotoxic functions in chronic hepatitis B virus-infected patients. Innate Immun 23:459–467PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Yong YK et al (2018) Hyper-expression of PD-1 is associated with the levels of exhausted and dysfunctional phenotypes of circulating CD161++TCR iVα7.2+ mucosal-associated invariant T cells in chronic hepatitis B virus infection. Front Immunol 9:472PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Boeijen LL et al (2017) Mucosal-associated invariant T cells are more activated in chronic hepatitis B, but not depleted in blood: reversal by antiviral therapy. J Infect Dis 216:969–976PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Bertoletti A, Ferrari C (2016) Adaptive immunity in HBV infection. J Hepatol 64:S71–S83PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Bertoletti A, Tan A, Gehring A (2009) HBV-specific adaptive immunity. Viruses 1:91–103PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chisari FV, Ferrari C (1995) Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13:29–60PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bertoletti A, Gehring AJ (2006) The immune response during hepatitis B virus infection. J Gen Virol 87:1439–1449PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Lew YY, Michalak TI (2001) In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus. J Virol 75(4):1770–1782PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tavakoli S (2004) Phenotype and function of monocyte derived dendritic cells in chronic hepatitis B virus infection. J Gen Virol 85:2829–2836PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Untergasser A et al (2006) Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. Hepatology 43:539–547PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Wang FS et al (2001) Dysfunction of peripheral blood dendritic cells from patients with chronic hepatitis B virus infection. World J Gastroenterol 7:537–541PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Beckebaum S et al (2002) Reduction in the circulating pDC1/pDC2 ratio and impaired function of ex vivo-generated DC1 in chronic hepatitis B infection. Clin Immunol 104:138–150PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lohr HF et al (2002) Reduced virus specific T helper cell induction by autologous dendritic cells in patients with chronic hepatitis B – restoration by exogenous interleukin-12. Clin Exp Immunol 130:107–114PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    van der Molen RG et al (2004) Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology 40:738–746PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Yonejima A et al (2019) Characteristics of impaired dendritic cell function in patients with hepatitis B virus infection. Hepatology 70(1):25–39PubMedPubMedCentralGoogle Scholar
  117. 117.
    Limmer A et al (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348–1354PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Nakamoto N et al (2009) Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog 5:e1000313PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Crispe IN (2003) Hepatic T cells and liver tolerance. Nat Rev Immunol 3:51–62PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Huang S et al (2018) Local stimulation of liver sinusoidal endothelial cells with a NOD1 agonist activates T cells and suppresses hepatitis B virus replication in mice. J Immunol 200:3170–3179PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Penna A et al (1991) Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen. J Exp Med 174:1565–1570PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Bertoletti A et al (1991) HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen. Proc Natl Acad Sci U S A 88:10445–10449PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jung MC et al (1991) Hepatitis B virus antigen-specific T-cell activation in patients with acute and chronic hepatitis B. J Hepatol 13:310–317PubMedCrossRefGoogle Scholar
  124. 124.
    Nayersina R et al (1993) HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 150:4659–4671PubMedPubMedCentralGoogle Scholar
  125. 125.
    Abbott WG et al (2010) Associations between HLA class I alleles and escape mutations in the hepatitis B virus core gene in New Zealand-resident Tongans. J Virol 84:621–629PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Sobao Y et al (2001) Identification of hepatitis B virus-specific CTL epitopes presented by HLA-A∗2402, the most common HLA class I allele in East Asia. J Hepatol 34:922–929PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Rehermann B et al (1995) The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 181:1047–1058PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Boni C et al (2012) Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology 143:963–73.e9PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Thimme R et al (2003) CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 77:68–76PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Yang PL et al (2010) Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci U S A 107:798–802PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Guidotti LG, Chisari FV (1996) To kill or to cure: options in host defense against viral infection. Curr Opin Immunol 8:478–483PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Franco A, Guidotti LG, Hobbs MV, Pasquetto V, Chisari FV (1997) Pathogenetic effector function of CD4-positive T helper 1 cells in hepatitis B virus transgenic mice. J Immunol 159:2001–2008PubMedPubMedCentralGoogle Scholar
  133. 133.
    Penna A et al (1992) Hepatitis B virus (HBV)-specific cytotoxic T-cell (CTL) response in humans: characterization of HLA class II-restricted CTLs that recognize endogenously synthesized HBV envelope antigens. J Virol 66:1193–1198PubMedPubMedCentralGoogle Scholar
  134. 134.
    Bourgine M et al (2018) Nasal route favors the induction of CD4 + T cell responses in the liver of HBV-carrier mice immunized with a recombinant hepatitis B surface- and core-based therapeutic vaccine. Antivir Res 153:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Bao S, Zheng J, Shi G (2017) The role of T helper 17 cells in the pathogenesis of hepatitis B virus-related liver cirrhosis (Review). Mol Med Rep 16:3713–3719PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zeng Z et al (2016) Interferon-gamma facilitates hepatic antiviral T cell retention for the maintenance of liver-induced systemic tolerance. J Exp Med 213:1079–1093PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Shevach EM (2006) From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25:195–201PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    van Driel IR, Ang DK (2008) Role of regulatory T cells in gastrointestinal inflammatory disease. J Gastroenterol Hepatol 23:171–177PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Franzese O et al (2005) Modulation of the CD8+-T-cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B virus infection. J Virol 79:3322–3328PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Stoop JN et al (2005) Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 41:771–778PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Xu D et al (2006) Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol 177:739–747PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Dietze KK et al (2016) Characterization of the Treg response in the hepatitis B virus hydrodynamic injection mouse model. PLoS One 11:e0151717PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Stross L et al (2012) Foxp3+ regulatory T cells protect the liver from immune damage and compromise virus control during acute experimental hepatitis B virus infection in mice. Hepatology 56:873–883PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Yang B et al (2013) Increased Th17 cells and interleukin-17 contribute to immune activation and disease aggravation in patients with chronic hepatitis B virus infection. Immunol Lett 149:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Publicover J et al (2011) IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J Clin Invest 121:1154–1162PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Li Y et al (2013) Circulating chemokine (C-X-C Motif) receptor 5(+) CD4(+) T cells benefit hepatitis B e antigen seroconversion through IL-21 in patients with chronic hepatitis B virus infection. Hepatology 58:1277–1286PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Wang X et al (2018) Dysregulated response of follicular helper T cells to hepatitis B surface antigen promotes HBV persistence in mice and associates with outcomes of patients. Gastroenterology 154:2222–2236PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Maini MK et al (1999) Direct ex vivo analysis of hepatitis B virus-specific CD8(+) T cells associated with the control of infection. Gastroenterology 117:1386–1396PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Sandalova E et al (2012) Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells. Gastroenterology 143:78–87.e3PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Rehermann B, Ferrari C, Pasquinelli C, Chisari FV (1996) The hepatitis B virus persists for decades after patients’ recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat Med 2:1104–1108PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Maini MK et al (2000) The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med 191:1269–1280PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ferrari C et al (1990) Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J Immunol 145:3442–3449PubMedPubMedCentralGoogle Scholar
  153. 153.
    Bertoletti A et al (1994) Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 180:933–943PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Webster GJ et al (2004) Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol 78:5707–5719PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Boni C et al (2007) Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 81:4215–4225PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Guidotti LG et al (2015) Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 161:486–500PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Fletcher SP et al (2012) Transcriptomic analysis of the woodchuck model of chronic hepatitis B. Hepatology 56:820–830PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77(8):4911–4927PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Fisicaro P et al (2010) Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138:682–693. Scholar
  161. 161.
    Nebbia G et al (2012) Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One 7:e47648PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Wu W et al (2012) Blockade of Tim-3 signaling restores the virus-specific CD8(+) T-cell response in patients with chronic hepatitis B. Eur J Immunol 42:1180–1191PubMedCrossRefGoogle Scholar
  163. 163.
    Schurich A et al (2011) Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53:1494–1503PubMedCrossRefGoogle Scholar
  164. 164.
    Raziorrouh B et al (2010) The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatology 52:1934–1947PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Liu J et al (2014) Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog 10:e1003856PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Gerlich WH (2013) Medical virology of hepatitis B: how it began and where we are now. Virol J 10:239PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Hoofnagle JH, Gerety RJ, Barker LF (1973) Antibody to hepatitis-B-virus core in man. Lancet 2:869–873PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Alberti A, Diana S, Sculard GH, Eddleston AL, Williams R (1978) Detection of a new antibody system reacting with Dane particles in hepatitis B virus infection. Br Med J 2:1056–1058PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Grady GF et al (1978) Hepatitis B immune globulin for accidental exposures among medical personnel: final report of a multicenter controlled trial. J Infect Dis 138:625–638PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Xu L, Yin W, Sun R, Wei H, Tian Z (2013) Liver type I regulatory T cells suppress germinal center formation in HBV-tolerant mice. Proc Natl Acad Sci U S A 110:16993–16998PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Yan H et al (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife 1:e00049PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhang TY et al (2016) Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 65:658–671PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Milich DR, McLachlan A, Thornton GB, Hughes JL (1987) Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature 329:547–549PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Oliviero B et al (2011) Enhanced B-cell differentiation and reduced proliferative capacity in chronic hepatitis C and chronic hepatitis B virus infections. J Hepatol 55:53–60PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Das A et al (2012) IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol 189:3925–3935PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Araki K, Nagashima H, Tsuji T (1982) Detection and characterization of circulating immune complexes during acute exacerbation of chronic viral hepatitis. Clin Exp Immunol 47:520–526PubMedPubMedCentralGoogle Scholar
  177. 177.
    Maruyama T et al (1994) Distinguishing between acute and symptomatic chronic hepatitis B virus infection. Gastroenterology 106:1006–1015PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Burton AR et al (2018) Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest 128:4588–4603PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Salimzadeh L et al (2018) PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J Clin Invest 128:4573–4587PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Kim SY, Kyaw YY, Cheong J (2017) Functional interaction of endoplasmic reticulum stress and hepatitis B virus in the pathogenesis of liver diseases. World J Gastroenterol 23:7657–7665PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Li X et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Shirakata Y, Koike K (2003) Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem 278:22071–22078PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Kim S et al (2007) Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners. J Virol 81:1714–1726PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Sorgato MC, Moran O (1993) Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Rev Biochem Mol Biol 28:127–171PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Rahmani Z, Huh KW, Lasher R, Siddiqui A (2000) Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol 74:2840–2846PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Lee YI et al (2004) Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J Biol Chem 279:15460–15471PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Cho HK, Cheong KJ, Kim HY, Cheong J (2011) Endoplasmic reticulum stress induced by hepatitis B virus X protein enhances cyclo-oxygenase 2 expression via activating transcription factor 4. Biochem J 435:431–439PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Chen J, Siddiqui A (2007) Hepatitis B virus X protein stimulates the mitochondrial translocation of Raf-1 via oxidative stress. J Virol 81:6757–6760PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Kim HJ et al (2008) Hepatitis B virus X protein induces apoptosis by enhancing translocation of Bax to mitochondria. IUBMB Life 60:473–480PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Gorlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29:2715–2723PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Wang HC, Huang W, Lai MD, Su IJ (2006) Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 97:683–688PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Wang HC et al (2003) Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol 163:2441–2449PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Lazar C, Macovei A, Petrescu S, Branza-Nichita N (2012) Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production. PLoS One 7:e34169PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Pollicino T, Cacciola I, Saffioti F, Raimondo G (2014) Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications. J Hepatol 61:408–417PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Kalinina T, Riu A, Fischer L, Will H, Sterneck M (2001) A dominant hepatitis B virus population defective in virus secretion because of several S-gene mutations from a patient with fulminant hepatitis. Hepatology 34:385–394PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Wu C et al (2010) Biological significance of amino acid substitutions in hepatitis B surface antigen (HBsAg) for glycosylation, secretion, antigenicity and immunogenicity of HBsAg and hepatitis B virus replication. J Gen Virol 91:483–492PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Li S et al (2015) HBsAg sT123N mutation induces stronger antibody responses to HBsAg and HBcAg and accelerates in vivo HBsAg clearance. Virus Res 210:119–125PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Fernholz D, Stemler M, Brunetto M, Bonino F, Will H (1991) Replicating and virion secreting hepatitis B mutant virus unable to produce preS2 protein. J Hepatol 13(Suppl 4):S102–S104PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Gerken G et al (1991) Hepatitis B defective virus with rearrangements in the preS gene during chronic HBV infection. Virology 183:555–565PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Zanetti AR et al (1988) Hepatitis B variant in Europe. Lancet 2:1132–1133PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Sterneck M et al (1997) Hepatitis B virus sequence changes evolving in liver transplant recipients with fulminant hepatitis. J Hepatol 26:754–764PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Pollicino T et al (1997) Pre-S2 defective hepatitis B virus infection in patients with fulminant hepatitis. Hepatology 26:495–499PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Bock CT, Tillmann HL, Maschek HJ, Manns MP, Trautwein C (1997) A preS mutation isolated from a patient with chronic hepatitis B infection leads to virus retention and misassembly. Gastroenterology 113:1976–1982PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Bock CT, Kubicka S, Manns MP, Trautwein C (1999) Two control elements in the hepatitis B virus S-promoter are important for full promoter activity mediated by CCAAT-binding factor. Hepatology 29:1236–1247PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Bock CT, Tillmann HL, Manns MP, Trautwein C (1999) The pre-S region determines the intracellular localization and appearance of hepatitis B virus. Hepatology 30:517–525PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Cao L et al (2014) Coexistence of hepatitis B virus quasispecies enhances viral replication and the ability to induce host antibody and cellular immune responses. J Virol 88:8656–8666PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Summers J, Smith PM, Horwich AL (1990) Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J Virol 64:2819–2824PubMedPubMedCentralGoogle Scholar
  212. 212.
    Lenhoff RJ, Luscombe CA, Summers J (1999) Acute liver injury following infection with a cytopathic strain of duck hepatitis B virus. Hepatology 29:563–571PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Summers J, Smith PM, Huang MJ, Yu MS (1991) Morphogenetic and regulatory effects of mutations in the envelope proteins of an avian hepadnavirus. J Virol 65:1310–1317PubMedPubMedCentralGoogle Scholar
  214. 214.
    Naoumov NV, Eddleston AL (1994) Host immune response and variations in the virus genome: pathogenesis of liver damage caused by hepatitis B virus. Gut 35:1013–1017PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Raimondo G et al (2008) Statements from the Taormina expert meeting on occult hepatitis B virus infection. J Hepatol 49:652–657PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Zhu HL, Li X, Li J, Zhang ZH (2016) Genetic variation of occult hepatitis B virus infection. World J Gastroenterol 22:3531–3546PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Candotti D et al (2008) Characterization of occult hepatitis B virus from blood donors carrying genotype A2 or genotype D strains. J Hepatol 49:537–547PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Allain JP et al (2009) Characterization of occult hepatitis B virus strains in South African blood donors. Hepatology 49:1868–1876PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Huang CH et al (2012) Influence of mutations in hepatitis B virus surface protein on viral antigenicity and phenotype in occult HBV strains from blood donors. J Hepatol 57:720–729PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Ye Q, Shang SQ, Li W (2015) A new vaccine escape mutant of hepatitis B virus causes occult infection. Hum Vaccin Immunother 11:407–410PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kwei K et al (2013) Impaired virion secretion by hepatitis B virus immune escape mutants and its rescue by wild-type envelope proteins or a second-site mutation. J Virol 87:2352–2357PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Otsuka M et al (2017) MicroRNAs and liver disease. J Hum Genet 62:75–80PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Takata A et al (2016) Mutual antagonism between hepatitis B viral mRNA and host microRNA let-7. Sci Rep 6:23237PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Lamontagne J, Steel LF, Bouchard MJ (2015) Hepatitis B virus and microRNAs: complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World J Gastroenterol 21:7375–7399PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Wang S et al (2012) Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1) -modulated P53 activity. Hepatology 55:730–741PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Li C et al (2013) Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol 87:2193–2205PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Chen Y et al (2011) A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J 25:4511–4521PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Zeisel MB, Pfeffer S, Baumert TF (2013) miR-122 acts as a tumor suppressor in hepatocarcinogenesis in vivo. J Hepatol 58:821–823PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Liang HW et al (2016) Hepatitis B virus-human chimeric transcript HBx-LINE1 promotes hepatic injury via sequestering cellular microRNA-122. J Hepatol 64:278–291PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Wang Y et al (2013) Hepatitis B viral RNA directly mediates down-regulation of the tumor suppressor microRNA miR-15a/miR-16-1 in hepatocytes. J Biol Chem 288:18484–18493PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Zeng C et al (2015) Identification of a novel TGF-beta-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis. Oncotarget 6:12224–12233PubMedPubMedCentralGoogle Scholar
  232. 232.
    Deng M et al (2016) Hepatitis B virus mRNAs functionally sequester let-7a and enhance hepatocellular carcinoma. Cancer Lett 383:62–72PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Shi Y et al (2016) A novel mutant 10Ala/Arg together with mutant 144Ser/Arg of hepatitis B virus X protein involved in hepatitis B virus-related hepatocarcinogenesis in HepG2 cell lines. Cancer Lett 371:285–291PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Chao CC (2016) Inhibition of apoptosis by oncogenic hepatitis B virus X protein: implications for the treatment of hepatocellular carcinoma. World J Hepatol 8:1061–1066PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Yun C et al (2002) NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival. Cancer Lett 184:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Dai R et al (2017) Hepatitis B virus X protein-induced upregulation of CAT-1 stimulates proliferation and inhibits apoptosis in hepatocellular carcinoma cells. Oncotarget 8:60962–60974PubMedPubMedCentralGoogle Scholar
  237. 237.
    Kondo Y et al (2004) Vigorous response of cytotoxic T lymphocytes associated with systemic activation of CD8 T lymphocytes in fulminant hepatitis B. Liver Int 24:561–567PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Gogoi D, Borkakoty B, Biswas D, Mahanta J (2015) Activation and exhaustion of adaptive immune cells in hepatitis B infection. Viral Immunol 28:348–353PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Su F, Schneider RJ (1997) Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci U S A 94:8744–8749PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Ebert G et al (2015) Cellular inhibitor of apoptosis proteins prevent clearance of hepatitis B virus. Proc Natl Acad Sci U S A 112:5797–5802PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Ebert G et al (2015) Eliminating hepatitis B by antagonizing cellular inhibitors of apoptosis. Proc Natl Acad Sci U S A 112:5803–5808PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Kim H, Lee H, Yun Y (1998) X-gene product of hepatitis B virus induces apoptosis in liver cells. J Biol Chem 273:381–385PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Terradillos O et al (2002) The hepatitis B virus X protein abrogates Bcl-2-mediated protection against Fas apoptosis in the liver. Oncogene 21:377–386PubMedCrossRefGoogle Scholar
  244. 244.
    Liang X et al (2007) Hepatitis B virus sensitizes hepatocytes to TRAIL-induced apoptosis through Bax. J Immunol 178:503–510PubMedCrossRefGoogle Scholar
  245. 245.
    Kong F et al (2015) The enhanced expression of death receptor 5 (DR5) mediated by HBV X protein through NF-kappaB pathway is associated with cell apoptosis induced by (TNF-alpha related apoptosis inducing ligand) TRAIL in hepatoma cells. Virol J 12:192PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7:491–501PubMedCrossRefGoogle Scholar
  247. 247.
    Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:5591–5598PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Kennedy P et al (2012) Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology 143:637–645PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Chang MH, Hwang LY, Hsu HC, Lee CY, Beasley RP (1988) Prospective study of asymptomatic HBsAg carrier children infected in the perinatal period: clinical and liver histologic studies. Hepatology 8:374–377PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Mason WS et al (2016) HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology 151:986–998.e4PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Hsu HC, Lin YH, Chang MH, Su IJ, Chen DS (1988) Pathology of chronic hepatitis B virus infection in children: with special reference to the intrahepatic expression of hepatitis B virus antigens. Hepatology 8:378–382PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Wang HY et al (2010) Distinct hepatitis B virus dynamics in the immunotolerant and early immunoclearance phases. J Virol 84:3454–3463PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Kakimi K et al (2001) Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med 194:1755–1766PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Sitia G et al (2004) MMPs are required for recruitment of antigen-nonspecific mononuclear cells into the liver by CTLs. J Clin Invest 113:1158–1167PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Sitia G et al (2002) Depletion of neutrophils blocks the recruitment of antigen-nonspecific cells into the liver without affecting the antiviral activity of hepatitis B virus-specific cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 99:13717–13722PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Yim HJ, Lok AS (2006) Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology 43:S173–S181PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 7:379–390PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Geginat J, Sallusto F, Lanzavecchia A (2001) Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med 194:1711–1719PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Publicover J et al (2013) Age-dependent hepatic lymphoid organization directs successful immunity to hepatitis B. J Clin Invest 123:3728–3739PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Belkaid Y, Naik S (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14:646–653PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Molloy MJ, Bouladoux N, Belkaid Y (2012) Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol 24:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Chou HH et al (2015) Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A 112:2175–2180PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Tian Y, Kuo CF, Akbari O, Ou JH (2016) Maternal-derived hepatitis B virus e antigen alters macrophage function in offspring to drive viral persistence after vertical transmission. Immunity 44:1204–1214PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Okada K, Kamiyama I, Inomata M, Imai M, Miyakawa Y (1976) e antigen and anti-e in the serum of asymptomatic carrier mothers as indicators of positive and negative transmission of hepatitis B virus to their infants. N Engl J Med 294:746–749PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Wang JS, Zhu QR (2000) Infection of the fetus with hepatitis B e antigen via the placenta. Lancet 355:989PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Milich DR et al (1990) Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A 87:6599–6603PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Yona S et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Lin HH, Hsu HY, Chang MH, Chen PJ, Chen DS (1993) Hepatitis B virus in the colostra of HBeAg-positive carrier mothers. J Pediatr Gastroenterol Nutr 17:207–210PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Hong M et al (2015) Trained immunity in newborn infants of HBV-infected mothers. Nat Commun 6:6588PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jun Wu
    • 1
  • Meihong Han
    • 1
  • Jia Li
    • 1
  • Xiaoli Yang
    • 1
  • Dongliang Yang
    • 1
    Email author
  1. 1.Department of Infectious Diseases, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations