Advertisement

Unique Microorganisms Inhabit Extreme Soils

  • Maria-Guadalupe Sánchez-Otero
  • Rodolfo Quintana-Castro
  • Jorge Guillermo Domínguez-Chávez
  • Carolina Peña-Montes
  • Rosa María Oliart-RosEmail author
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 16)

Abstract

Natural extreme soils are widely distributed on the Earth in all types of ecosystems; the permafrost, the cold soils of the poles, the dry sands of the deserts, the saline soils of marshes, the hot areas associated to volcanoes and hot springs, acidic solfatara fields, soda lakes, hydrothermal marine vents, or mud pots are the habitat of extraordinary organisms, capable to withstand the harsh physicochemical conditions that prevail in those extreme environments, namely, high or low temperatures, acidic or alkaline pH, high salt concentration, and the presence of heavy metals, among others. Those organisms are named extremophiles and constitute a potential and promising source of biomolecules such as polymers, antibiotics, and enzymes; the latter are called extremozymes and are able to perform their natural activity and other interesting reactions under industrial process conditions. Due to their endurance, biomolecules produced by extremophiles are also potential candidates to be used in soil bioremediation.

Keywords

Extremophiles Extremozymes Oil degradation Waste treatment Extreme soils 

Notes

Acknowledgments

We thank Manuel Juárez-Arias for his help schematizing the geographical location of the main extreme environments in the world; we also thank Francisco Romero Ríos for kindly providing the picture of Guerrero Negro Salt Marches in Baja California Sur, México.

References

  1. Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101:3628–3634.  https://doi.org/10.1016/j.biortech.2009.12.107 CrossRefPubMedGoogle Scholar
  2. Al-Mailem DM, Al-Awadhi H, Sorkhoh NA, Eliyas M, Radwan SS (2011) Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions. Extremophiles 15:39–44.  https://doi.org/10.1007/s00792-010-0335-2 CrossRefPubMedGoogle Scholar
  3. Al-Mailem DM, Al-Deieg M, Eliyas M, Radwan SS (2017) Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. J Environ Manag 193:576–583.  https://doi.org/10.1016/j.jenvman.2017.02.054 CrossRefGoogle Scholar
  4. Al-Sayegh A, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S (2015) Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field. Microb Cell Factories 14:141–152.  https://doi.org/10.1186/s12934-015-0330-5 CrossRefGoogle Scholar
  5. Álvarez-Guzmán CL, Oceguera-Contreras E, Ornelas-Salas JT, Balderas-Hernández VE, de León-Rodríguez A (2016) Biohydrogen production by the psychrophilic G088 strain using single carbohydrates as substrate. Int J Hydrog Energy 41:8092–8100. https://doi.org/10.1016/j.ijhydene.2015.11.189 CrossRefGoogle Scholar
  6. Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xiao M, Li WJ (2017) Diversity and distribution of thermophilic bacteria in Hot Springs of Pakistan. Microb Ecol 74:116–127.  https://doi.org/10.1007/s00248-017-0930-1 CrossRefPubMedGoogle Scholar
  7. Anders H, Power J, MacKenzie A, Lagutin K, Vyssotski M, Hanssen E, Moreau J, Stott M (2015) Limisphaera ngatamarikiensis gen. nov., sp. nov., a thermophilic, pink-pigmented coccus isolated from subaqueous mud of a geothermal hot spring. Int J Syst Evol Microbiol 65:1114–1121.  https://doi.org/10.1099/ijs.0.000063 CrossRefPubMedGoogle Scholar
  8. Ansorge WJ (2016) Next generation DNA sequencing (II): techniques, applications. J Next Generat Sequenc Appl S1:0005.  https://doi.org/10.4172/2469-9853.S1-005 CrossRefGoogle Scholar
  9. Aracil-Gisbert S, Torregrosa-Crespo J, Martínez-Espinosa RM (2018) Recent trend on bioremediation of polluted salty soils and waters using Haloarchaea. Adv Bioremed Phytoremed:74–77.  https://doi.org/10.5772/intechopen.70802 Google Scholar
  10. Asoodeh A, Emtenani S, Emtenani S, Jalal R, Housaindokht MR (2014) Molecular cloning and biochemical characterization of a thermoacidophilic, organic-solvent tolerant α-amylase from a Bacillus strain in Escherichia coli. J Mol Cat B Enzym 99:114–120.  https://doi.org/10.1016/j.molcatb.2013.10.025 CrossRefGoogle Scholar
  11. Awasthi MK, Selvam A, Chan MT, Wong JWC (2018) Bio-degradation of oily food waste employing thermophilic bacterial strains. Bioresour Technol 248:141–147.  https://doi.org/10.1016/j.biortech.2017.06.115 CrossRefPubMedGoogle Scholar
  12. Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing Bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 9:1–15.  https://doi.org/10.3389/fmicb.2018.01986 CrossRefGoogle Scholar
  13. Azúa-Bustos A, Urrejola C, Vicuña R (2012) Life at the dry edge: microorganisms of the Atacama Desert. FEBS Lett 586:2939–2945.  https://doi.org/10.1016/j.febslet.2012.07.025 CrossRefPubMedGoogle Scholar
  14. Babu P, Chandel AK, Singh OV (2015) Extremophiles and their applications in medical processes. Springer, Cham/HeidelbergCrossRefGoogle Scholar
  15. Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo Y, Zhang W (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 131:1473–1478.  https://doi.org/10.1016/j.foodchem.2011.10.036 CrossRefGoogle Scholar
  16. Baker BJ, Dick GJ (2013) Omic approaches in microbial ecology: charting the unknown. Microbe 8:353–360.  https://doi.org/10.1128/microbe.8.353.1 CrossRefGoogle Scholar
  17. Barbato RA, Foley KL, Toro-Zapata JA, Jones RM, Reynolds CM (2017) The power of soil microbes: sustained power production in terrestrial microbial fuel cells under various temperature regimes. Appl Soil Ecol 109:14–22.  https://doi.org/10.1016/j.apsoil.2016.10.001 CrossRefGoogle Scholar
  18. Bertoldo C, Dock C, Antranikian G (2004) Thermoacidophilic microorganisms and their novel biocatalysts. Eng Life Sci 4:521–531.  https://doi.org/10.1002/elsc.200402155 CrossRefGoogle Scholar
  19. Bhardwaj KK, Saun NK, Gupta R (2017) Immobilization of lipase from Geobacillus sp. and its application in synthesis of methyl salicylate. J Oleo Sci 66:391–398.  https://doi.org/10.5650/jos.ess16153 CrossRefPubMedGoogle Scholar
  20. Bonete MJ, Bautista V, Esclapez-Espliego JM, García-Bonete MJ, Pire C, Camacho M, Martínez-Espinosa RM (2015) New uses of haloarchaeal species in bioremediation processes. Adv Bioremed Phytoremed:23–49.  https://doi.org/10.5772/60667 Google Scholar
  21. Bornscheuer UT, Kazlauskas RJ (2006) Hydrolases in organic synthesis: regio- and stereoselective biotransformations, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  22. Bosma EF, van de Weijer AHP, Daas MJA, van der Oost J, de Vos WM, van Kranenburg R (2015) Isolation and screening of thermophilic bacilli from compost for electrotransformation and fermentation: characterization of Bacillus smithii ET138 as a new biocatalyst. Appl Environ Microbiol 81:1874–1883.  https://doi.org/10.1128/AEM.03640-14 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483.  https://doi.org/10.1128/AEM.69.5.2463-2483.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98(1):289–297PubMedPubMedCentralGoogle Scholar
  25. Cannio R, Di Prizito N, Rossi M, Morana A (2004) A xylan-degrading strain of Sulfolobus solfataricus : isolation and characterization of the xylanase activity. Extremophiles 8:117–124. doi:  https://doi.org/10.1007/s00792-003-0370-3 PubMedCrossRefPubMedCentralGoogle Scholar
  26. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381.  https://doi.org/10.1016/j.tim.2010.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Castro DJ, Cerezo I, Sampedro I, Martínez-Checa F (2018) Roseovarius ramblicola sp. nov., a moderately halophilic bacterium isolated from saline soil in Spain. Int J Syst Evol Microbiol 68:1851–1856.  https://doi.org/10.1099/ijsem.0.002744 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Champdoré MD, Staiano M, Rossi R, D'Auria S (2007) Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 4:183–191.  https://doi.org/10.1098/rsif.2006.0174 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chattopadhyay AN, Dey A, Roy P, Chatterjee S, Saha P, Mukhopadhyay SK (2014) Cold active extracellular hydrolytic enzyme producing culturable heterotrophic Bacteria from NY-ÅLESUND, Arctic. Int J Adv Biotechnol Res 5:271–278Google Scholar
  30. Chen GQ, Jiang XR (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 50:94–100.  https://doi.org/10.1016/j.copbio.2017.11.016 CrossRefPubMedGoogle Scholar
  31. Cowan DA, Ramond J-B, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102.  https://doi.org/10.1016/j.mib.2015.05.005 CrossRefPubMedGoogle Scholar
  32. Dagdag EEA, Asthervina WP (2015) Isolation and characterization of isolate thermophilic bacteria from water and solid sediment of Lapindo Mud. Resour Environ 5:66–71.  https://doi.org/10.5923/j.re.20150502.03 CrossRefGoogle Scholar
  33. Daiha KG, Angeli R, de Oliveira SD, Almeida RV (2015) Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS One 10:e0131624.  https://doi.org/10.1371/journal.pone.0131624 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Damiano VB, Ward R, Gomes E, Alves-Prado HF, Da Silva R (2006) Purification and characterization of two xylanases from alkalophilic and thermophilic Bacillus licheniformis 77-2. Appl Biochem Biotechnol 129:289–302PubMedCrossRefGoogle Scholar
  35. Dashti N, Ali N, Salamah S, Khanafer M, Al-Shamy G, Al-Awadhi H, Radwan SS (2018) Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation. Microbiol Open.  https://doi.org/10.1002/mbo3.630 PubMedPubMedCentralCrossRefGoogle Scholar
  36. de Castro ME, Rodríguez-Belmonte E, González-Siso MI (2016) Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front Microbiol 7:1–21. https://doi.org/10.3389/fmicb.2016.01521
  37. De Pascale D, De Santi C, Fu J, Landfald B (2012) The microbial diversity of polar environments is a fertile ground for bioprospecting. Mar Genomics 8:15–22.  https://doi.org/10.1016/j.margen.2012.04.004 CrossRefPubMedGoogle Scholar
  38. de Santi C, Altermark B, Pierechod MM, Ambrosino L, de Pascale D, Willassen NP (2016) Characterization of a cold-active and salt tolerant esterase identified by functional screening of Arctic metagenomic libraries. BMC Biochem 17:1–13.  https://doi.org/10.1186/s12858-016-0057-x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Delgado-García M, De La Garza-Rodríguez I, Cruz-Hernández MA, Balagurusamy N, Aguilar C, Rodríguez-Herrera R (2013) Characterization and selection of halophilic microorganisms isolated from mexican soils. ARPN J Agric Biol Sci 8:457–458Google Scholar
  40. Dheeman DS, Frias JM, Henehan GTM (2010) Influence of cultivation conditions on the production of a thermostable extracellular lipase from Amycolatopsis mediterranei DSM 43304. J Ind Microbiol Biot 37:1–17.  https://doi.org/10.1007/s10295-009-0643-7 CrossRefGoogle Scholar
  41. Ding X, Tang XL, Zheng RC, Zheng YG (2018) Efficient biocatalytic synthesis of chiral intermediate of Pregabalin using immobilized Talaromyces thermophilus lipase. Biomed Res Int 2018:1–8.  https://doi.org/10.1155/2018/6192059 CrossRefGoogle Scholar
  42. Domínguez de María P, Carboni-Oerlemans C, Tuin B, Bargeman G, van der Meer A, van Gemert R (2005) Biotechnological applications of Candida Antarctica lipase: state-of-the-art. J Mol Catal B Enzym 37:36–46.  https://doi.org/10.1016/j.molcatb.2005.09.001 CrossRefGoogle Scholar
  43. Dunaj SJ, Vallino JJ, Hines ME, Gay M, Kobyljanec C, Rooney-Varga JN (2012) Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environ Sci Technol 46:1914–1922.  https://doi.org/10.1021/es2032532 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123.  https://doi.org/10.1016/j.copbio.2014.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Essoussi I, Ghodhbane-Gtari F, Amairi H, Sghaier H, Jaouani A, Brusetti L, Boadabous A, Gtari M (2010) Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara Desert stones and monuments. J Appl Microbiol 108:1723–1732.  https://doi.org/10.1111/j.1365-2672.2009.04580.x CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214.  https://doi.org/10.1016/j.mib.2007.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat 58:295–311Google Scholar
  48. Foster JA, Bunge J, Gilbert JA, Moore JH (2012) Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life. Brief Bioinform 13(4):420–429.  https://doi.org/10.1093/bib/bbr080 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes--past, present and future. Environ Technol 31:845–856.  https://doi.org/10.1080/09593331003762807 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Furhan J, Sharma S (2014) Microbial alkaline proteases: findings and applications. Int J Inv Pharm Sci 2:823–834Google Scholar
  51. Fusek M, Lin XL, Tang J (1990) Enzymatic properties of thermopsin. J Biol Chem 265:1496–1501PubMedPubMedCentralGoogle Scholar
  52. García-Echauri SA, Gidekel M, Gutiérrez-Moraga A, Santos L, De León-Rodríguez A (2011) Isolation and phylogenetic classification of culturable psychrophilic prokaryotes from the Collins glacier in the Antarctica. Folia Microbiol 56:209–214.  https://doi.org/10.1007/s12223-011-0038-9 CrossRefGoogle Scholar
  53. García-Moyano A, González-Toril E, Aguilera Á, Amils R, Aguilera A (2012) Comparative microbial ecology study of the sediments and the water column of Río Tinto, an extreme acidic environment. FEMS Microbiol Ecol 81:303–314.  https://doi.org/10.1111/j.1574-6941.2012.01346.x CrossRefPubMedGoogle Scholar
  54. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trend Biotechnol 18:103–107CrossRefGoogle Scholar
  55. Gogliettino M, Riccio A, Cocca E, Rossi M, Palmieri G, Balestrieri M (2014) A new pepstatin-insensitive thermopsin-like protease overproduced in peptide-rich cultures of Sulfolobus solfataricus. Int J Mol Sci 15:3204–3219.  https://doi.org/10.3390/ijms15023204 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gołębiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wróbel B (2014) 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol 67:635–647.  https://doi.org/10.1007/s00248-013-0344-7 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotech 42:223–225Google Scholar
  58. Gong BL, Mao RQ, Xiao Y, Jia ML, Zhong XL, Liu Y, Xu PL, Li G (2017) Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzym Microb Technol 106:97–105.  https://doi.org/10.1016/j.enzmictec.2017.06.015 CrossRefGoogle Scholar
  59. Gorlach-Lira K, Coutinho HDM (2007) Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of Northeastern Brazil. Braz J Microbiol 38:135–141.  https://doi.org/10.1590/S1517-83822007000100028 CrossRefGoogle Scholar
  60. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond Ser B Biol Sci 359:1249–1267.  https://doi.org/10.1098/rstb.2004.1502 CrossRefGoogle Scholar
  61. Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241.  https://doi.org/10.1016/j.mycres.2009.09.002 CrossRefPubMedGoogle Scholar
  62. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781.  https://doi.org/10.1007/s00253-004-1568-8 CrossRefPubMedGoogle Scholar
  63. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34.  https://doi.org/10.1016/S0960-8524(03)00033-6 CrossRefPubMedGoogle Scholar
  64. Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS (2013) The limits for life under multiple extremes. Trends Microbio 21:204–212.  https://doi.org/10.1016/j.tim.2013.01.006 CrossRefGoogle Scholar
  65. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme and Microb Technol 39:235–251.  https://doi.org/10.1016/j.enzmictec.2005.10.016 CrossRefGoogle Scholar
  66. Hedlund BP, Dodsworth JA, Murugapiran SK, Rinke C, Woyke T (2014) Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter”. Extremophiles 18:865–875.  https://doi.org/10.1007/s00792-014-0664-7 CrossRefPubMedGoogle Scholar
  67. Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364.  https://doi.org/10.1007/s00792-008-0139-9 CrossRefPubMedGoogle Scholar
  68. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21(3):374–383PubMedCrossRefGoogle Scholar
  69. Horikoshi K (1971a) Production of alkaline enzymes by alkalophilic microorganisms. II. Alkaline amylase produced by Bacillus No. A-40–2. Agric Biol Chem 35:1783–1791.  https://doi.org/10.1271/bbb1961.35.1783 CrossRefGoogle Scholar
  70. Horikoshi K (1971b) Production of alkaline enzymes by alkalophilic microorganisms. I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 35:1407–1414.  https://doi.org/10.1080/00021369.1971.10860094 CrossRefGoogle Scholar
  71. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750. doi:1092-2172/99/$04.0010PubMedPubMedCentralGoogle Scholar
  72. Huang Y, Krauss G, Cottaz H, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588.  https://doi.org/10.1042/BJ20041388 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ito S (2011) Alkaline Enzymes in Current Detergency. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Berlín, pp 230–251Google Scholar
  74. Ito S, Shikata S, Ozaki K, Kawai S, Okamoto KI, Takei A, Ohta Y, Satoh T (1989) Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281.  https://doi.org/10.1080/00021369.1989.10869489 CrossRefGoogle Scholar
  75. Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2(3):185–190PubMedCrossRefGoogle Scholar
  76. Jardine JL, Stoychev S, Mavumengwana V, Ubomba-Jaswa E (2018) Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography – tandem mass spectrometry (Lc-Ms/Ms). J Environ Manag 223:787–796.  https://doi.org/10.1016/j.jenvman.2018.06.089 CrossRefGoogle Scholar
  77. Javaux EJ (2006) Extreme life on Earth—past, present and possibly beyond. Res Microbiol 157:37–48.  https://doi.org/10.1016/j.resmic.2005.07.008 CrossRefPubMedGoogle Scholar
  78. Jiménez DJ, Montaña JS, Álvarez D, Álvarez D, Baena S (2012) A novel cold active esterase derived from Colombian high Andean forest soil metagenome. World J Microbiol Biotechnol 28:361–370.  https://doi.org/10.1007/s11274-011-0828-x CrossRefPubMedGoogle Scholar
  79. Johnson DB, Quatrini R (2011) Acidophile microbiology in space and time In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Norfolk, pp 3–16CrossRefGoogle Scholar
  80. Joseph B, Pramod W, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48Google Scholar
  81. Joshi S, Satyanarayana T (2013) Biotechnology of cold-active proteases. Biology (Basel) 2:755–783.  https://doi.org/10.3390/biology2020755 CrossRefPubMedCentralPubMedGoogle Scholar
  82. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569.  https://doi.org/10.1016/j.procbio.2012.01.011 CrossRefGoogle Scholar
  83. Kaur R, Rajesh C, Sharma R, Boparai JK, Sharma PK (2018) Metagenomic investigation of bacterial diversity of hot spring soil from Manikaran, Himachal Pradesh. India Ecol Genet Genom 6:16–21.  https://doi.org/10.1016/j.egg.2017.11.003 CrossRefGoogle Scholar
  84. Kim SJ, Shin SC, Hong SG, Lee YM, Choi IG, Park H (2012) Genome sequence of a novel member of the genus Psychrobacter isolated from Antarctic soil. J Bacteriol 194:2403–2403.  https://doi.org/10.1128/JB.00234-12 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kim J, Jang SH, Lee C (2013) An organic solvent-tolerant alkaline lipase from cold-adapted Pseudomonas mandelii: cloning, expression, and characterization. Biosci Biotechnol Biochem 77:320–323.  https://doi.org/10.1271/bbb.120733 CrossRefPubMedGoogle Scholar
  86. Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai IS (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481PubMedCrossRefGoogle Scholar
  87. Kocabayak S, Ozel H (2007) An extracellular-Pepstatin insensitive acid protease produced by Thermoplasma volcanium. Bioresour Technol 98:112–117.  https://doi.org/10.1016/j.biortech.2005.11.016 CrossRefGoogle Scholar
  88. Kojima M, Kanai M, Tominaga M, Kitazume S, Inoue A, Horikoshi K (2006) Isolation and characterization of a feather degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10:229–235.  https://doi.org/10.1007/s00792-005-0491-y CrossRefPubMedGoogle Scholar
  89. Komiyama M, Terao K (2008) Applied technology of cyclodextrin. CMC Publishing, TokyoGoogle Scholar
  90. Krüger A, Schäfers C, Schröder C, Antranikian G (2018) Towards a sustainable biobased industry – highlighting the impact of extremophiles. New Biotechnol 40:144–153.  https://doi.org/10.1016/j.nbt.2017.05.002 CrossRefGoogle Scholar
  91. Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55:1294–1301.  https://doi.org/10.1139/w09-089 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kuddus M, Ramteke PW (2012) Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 38:330–338.  https://doi.org/10.3109/1040841X.2012.678477 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135.  https://doi.org/10.3923/biotech.2011.121.135 CrossRefGoogle Scholar
  94. Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL, Anfinsen CB (1993) The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 268:24394–24301PubMedGoogle Scholar
  95. Larios A, García HS, Oliart RM, Valerio-Alfaro G (2004) Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl Microbiol Biotechnol 65:373–376.  https://doi.org/10.1007/s00253-004-1602-x CrossRefPubMedGoogle Scholar
  96. Lasón E, Ogonowski J (2010) Lipase - characterization, applications and methods of immobilization. CHEMIK 64:97–102Google Scholar
  97. Läuchli A, Grattan S (2012) Soil pH Extremes. In: Shabala S (ed) Plant stress physiology chapter: soil pH extremes. CAB International, Boston, pp 194–209CrossRefGoogle Scholar
  98. Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708.  https://doi.org/10.1016/j.soilbio.2006.09.020 CrossRefGoogle Scholar
  99. Li WJ, Park DJ, Tang SK, Wang D, Lee JC, Xu LH, Kim CJ, Jiang CL (2004) Nocardiopsis salina sp. nov., a novel halophilic actinomycete isolated from saline soil in China. Int J Syst Evol Microbiol 54:1805–1809.  https://doi.org/10.1099/ijs.0.63127-0 CrossRefPubMedGoogle Scholar
  100. Li XT, Jiang ZQ, Li LT, Yang QS, Feng WY, Fan JY, Kusakabe I (2005) Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresour Technol 96:1370–1379.  https://doi.org/10.1016/j.biortech.2004.11.006 CrossRefPubMedGoogle Scholar
  101. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113:5970–5975.  https://doi.org/10.1073/pnas.1521291113 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lu H, Zhang H, Shi P, Luo H, Wang Y, Yang P, Yao B (2013) A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl Microbiol Biotechnol 97:8121–8128.  https://doi.org/10.1007/s00253-012-4656-1 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981.  https://doi.org/10.1128/AEM.01868-10 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276:82–87PubMedCrossRefPubMedCentralGoogle Scholar
  105. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganisms. Pearson, BostonGoogle Scholar
  106. Mahajan GB, Balachandran L (2017) Sources of antibiotics: hot springs. Biochem Pharmacol 134:35–41.  https://doi.org/10.1016/j.bcp.2016.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Mahbub KR, Krishnan K, Megharaj M, Naidu R (2016) Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere 144:330–337.  https://doi.org/10.1016/j.chemosphere.2015.08.061 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Mander P, Yoo HY, Kim SW, Choi YH, Cho SS, Yoo JC (2013) Transesterification of waste cooking oil by an organic solvent-tolerant alkaline lipase from Streptomyces sp. CS273. Appl Biochem Biotechnol 172:1377–1389.  https://doi.org/10.1007/s12010-013-0610-7 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Margesin R, Zhang DC, Frasson D, Brouchkov A (2016) Glaciimonas frigoris sp. nov., a psychrophilic bacterium isolated from ancient Siberian permafrost sediment, and emended description of the genus Glaciimonas. Int J Syst Evol Microbiol 66:744–748.  https://doi.org/10.1099/ijsem.0.000783 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Martínez-Espinosa R, Richardson D, Bonete M (2015) Characterization of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochim Biophys Acta 1850:587–594.  https://doi.org/10.1016/j.bbagen.2014.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Matzke J, Schwermann B, Bakker EP (1997) Acidostable and acidophilic proteins: the example of the α-amylase from Alicyclobacillus acidocaldarius. Comp Biochem Physiol A Physiol 118:475–479PubMedCrossRefGoogle Scholar
  112. Mesbah NM, Wiegel J (2010) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Environ Technol 31:845–856.  https://doi.org/10.1080/09593331003762807 CrossRefGoogle Scholar
  113. Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149.  https://doi.org/10.1016/j.copbio.2016.01.017 CrossRefPubMedGoogle Scholar
  114. Mishra SK, Khan MH, Misra S, Dixit VK, Khare P, Srivastava S, Chauhan PS (2017) Characterization of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil. Antonie Van Leeuwenhoek 110:253–270.  https://doi.org/10.1007/s10482-016-0796-0 CrossRefPubMedGoogle Scholar
  115. Montanier CY, Chabot N, Emond S, Guieysse D, Remaud-Siméon M, Peruchb F, André I (2017) Engineering of Candida antarctica lipase B for poly(ε-caprolactone) synthesis. Eur Polym J 95:809–819.  https://doi.org/10.1016/j.eurpolymj.2017.07.029 CrossRefGoogle Scholar
  116. Nájera-Fernández C, Zafrilla B, Bonete M, Martínez-Espinosa R (2012) Role of the denitrifying haloarchaea in the treatment of nitrite-brines. Int Microbiol 15:111–119.  https://doi.org/10.2436/20.1501.01.164 CrossRefPubMedGoogle Scholar
  117. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2017) Microbial diversity and soil functions. Eur J Soil Sci 68:12–26.  https://doi.org/10.1111/ejss.4_12398 CrossRefGoogle Scholar
  118. Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46:363–371.  https://doi.org/10.4067/S0716-97602013000400008 CrossRefPubMedGoogle Scholar
  119. Nies D (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4:77–82.  https://doi.org/10.1007/s007920050140 CrossRefPubMedGoogle Scholar
  120. Nontembiso P, Sekelwa C, Leonard MV, Anthony OI (2011) Assessment of bioflocculant production by Bacillus sp. Gilbert, a marine bacterium isolated from the bottom sediment of Algoa Bay. Mar Drugs 9:1232–1242.  https://doi.org/10.3390/md9071232 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Norashirene MJ, Sarah HU, Khairiyah MHS, Nurdiana S (2013) Biochemical characterization and 16S rDNA sequencing of lipolytic thermophiles from Selayang Hot Spring, Malaysia. IERI Procedia 5:258–264.  https://doi.org/10.1016/j.ieri.2013.11.101 CrossRefGoogle Scholar
  122. Norman JS, King GM, Friesen ML (2017) Rubrobacter spartanus sp. nov., a moderately thermophilic oligotrophic bacterium isolated from volcanic soil. Int J Syst Evol Microbiol 67:3597–3602.  https://doi.org/10.1099/ijsem.0.002175 CrossRefPubMedGoogle Scholar
  123. Oliart-Ros RM, Manresa-Presas A, Sanchez-Otero MG (2016) Utilización de microorganismos de ambientes extremos y sus productos en el desarrollo biotecnológico. CienciaUAT 11(1):79–90CrossRefGoogle Scholar
  124. Olsen HS, Falholt P (1998) The role of enzymes in modern detergency. J Surfact Deterg 1:555–566.  https://doi.org/10.1007/s11743-998-0058-7 CrossRefGoogle Scholar
  125. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 15:1–13.  https://doi.org/10.1186/1746-1448-4-2 CrossRefGoogle Scholar
  126. Oren A (2011) Alkaline Enzymes in Current Detergency. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Berlín, pp 230–251Google Scholar
  127. Orhan F, Gulluce M (2015) Isolation and characterization of salt-tolerant bacterial strains in salt-affected soils of Erzurum, Turkey. Geomicrobiol J 32:521–529.  https://doi.org/10.1080/01490451.2014.962674 CrossRefGoogle Scholar
  128. Otohinoyi DA, Omodele I (2015) Prospecting microbial extremophiles as valuable resources of biomolecules for biotechnological applications. Int J Sci Res 4:1042–1059Google Scholar
  129. Panda MK, Sahu MK, Tayung K (2013) Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iran J Microbiol 5:159–165PubMedPubMedCentralGoogle Scholar
  130. Parashar D, Satyanarayana T (2018) An insight into ameliorating production, catalytic efficiency, thermostability and starch saccharification of acid-stable α-amylases from acidophiles. Front Bioeng Biotechnol 28:1–14.  https://doi.org/10.3389/fbioe.2018.00125 CrossRefGoogle Scholar
  131. Park I, Cho J (2011) Productions of an extracellular protease by an Antarctic bacterial isolate (Bacillus sp. JSP1) as a potential feed additive. Rev Colomb Cienc Pecu 24:3–10Google Scholar
  132. Park C, Park W (2018) Survival and energy producing strategies of alkane degraders under extreme conditions and their biotechnological potential. Front Microbiol 9:1–15.  https://doi.org/10.3389/fmicb.2018.01081 CrossRefGoogle Scholar
  133. Paulino-Lima IG, Fujishima K, Navarrete JU, Galante D, Rodrigues F, Azúa-Bustos A, Rothschild LJ (2016) Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations. J Photochem Photobiol B 163:327–336.  https://doi.org/10.1016/j.jphotobiol.2016.08.017 CrossRefPubMedGoogle Scholar
  134. Pearce DA, Newsham KK, Thorne MA, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM (2012) Metagenomic analysis of a southern maritime Antarctic soil. Front Microbiol 3:403.  https://doi.org/10.3389/fmicb.2012.00403 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Pednekar P, Jain R, Mahajan G (2011) Anti-infective potential of hot-spring bacteria. J Glob Infect Dis 3:241–245.  https://doi.org/10.4103/0974-777X.83529 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Perera I, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M (2018) Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Appl Microbiol Biotechnol 102:7351–7363.  https://doi.org/10.1007/s00253-018-9192-1 CrossRefPubMedGoogle Scholar
  137. Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, Nikolaev EN, Rivkina EM (2016) Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol Ecol 92:fiw046.  https://doi.org/10.1093/femsec/fiw046 CrossRefPubMedGoogle Scholar
  138. Phoenix VR, Bennett PC, Engel AS, Tyler SW, Ferris FG (2006) Chilean high-altitude hot-spring sinters: a model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology 4:15–28.  https://doi.org/10.1111/j.1472-4669.2006.00063.x CrossRefGoogle Scholar
  139. Plaza G, Otero-Cabada M, Torres N, Velásquez M, Corbalan E, Rodríguez T (2001) Biorremediación en suelos contaminados con hidrocarburos. Av energ renov medio ambiente 5:163–167Google Scholar
  140. Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic Bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 3:1–16.  https://doi.org/10.3389/fbioe.2015.00075 CrossRefGoogle Scholar
  141. Putri SP, Kinoshita H, Ihara F, Igarashi Y, Nihira T (2010) Ophiosetin, a new tetramic acid derivative from the mycopathogenic fungus, Elahocordyceps ophioglossoides. J Antibiot 63:195–198.  https://doi.org/10.1038/ja.2010.8 CrossRefPubMedGoogle Scholar
  142. Quatrini R, Johnson DB (2018) Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 43:139–147.  https://doi.org/10.1016/j.mib.2018.01.011 CrossRefPubMedGoogle Scholar
  143. Quintana ET, Flores-Badillo R, Maldonado LA (2013) Characterization of the first actinobacterial group isolated from a Mexican extremophile environment. Antonie Van Leeuwenhoek 104:63–70.  https://doi.org/10.1007/s10482-013-9926-0 CrossRefPubMedGoogle Scholar
  144. Rabbani M, Bagherinejad MR, Sadeghi HM, Shariat ZS, Etemadifar Z, Moazen F, Rahbari M, Mafakher L, Zaghian S (2014) Isolation and characterization of novel thermophilic lipase-secreting bacteria. Braz J Microbiol 44:1113–1119PubMedPubMedCentralCrossRefGoogle Scholar
  145. Raddadi N, Cherif A, Daffonchio D, Fava F (2013) Halo-alkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara Desert, Tunisia. Bioresour Technol 150:121–128.  https://doi.org/10.1016/j.biortech.2013.09.089 CrossRefPubMedGoogle Scholar
  146. Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913.  https://doi.org/10.1007/s00253-015-6874-9 CrossRefPubMedGoogle Scholar
  147. Rahman RN, Geok LP, Wong CF, Basri M, Salleh AB (2010) Molecular investigation of a gene encoding organic solvent- tolerant alkaline protease from Pseudomonas aeruginosa strain K. J Basic Microbiol 50:143–149.  https://doi.org/10.1002/jobm.200900133 CrossRefPubMedGoogle Scholar
  148. Rai SK, Roy JK, Mukherjee AK (2010) Characterization of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol 85:1437–1450.  https://doi.org/10.1007/s00253-009-2145-y CrossRefPubMedGoogle Scholar
  149. Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485.  https://doi.org/10.3390/life3030482 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Rawat N, Joshi GK (2018) Bacterial community structure analysis of a hot spring soil by next generation sequencing of ribosomal RNA. Genomics.  https://doi.org/10.1016/j.ygeno.2018.06.008 PubMedCrossRefGoogle Scholar
  151. Reddy G, Pradhan S, Manorama R, Shivaji S (2010) Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. Int J Syst Evol Microbiol 60:866–870.  https://doi.org/10.1099/ijs.0.011775-0 CrossRefPubMedGoogle Scholar
  152. Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea 2013:1–14.  https://doi.org/10.1155/2013/373275 CrossRefGoogle Scholar
  153. Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1980) Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 9:535–538Google Scholar
  154. Romano I, Poli A, Lama L, Gambacorta A, Nicolaus B (2005) Geobacillus thermoleovorans subsp. stromboliensis subsp. nov., isolated from the geothermal volcanic environment. J Gen Appl Microbiol 51:183–189PubMedCrossRefGoogle Scholar
  155. Romdhane BB, Romdhane ZB, Gargouri A (2011) Belghith H esterification activity and stability of Talaromyces thermophilus lipase immobilized onto chitosan. J Mol Catal B Enzym 68:230–239.  https://doi.org/10.1016/j.molcatb.2010.11.010 CrossRefGoogle Scholar
  156. Rosales CM, Sowinski SC (2011) Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30:7123–7130.  https://doi.org/10.3402/polar.v30i0.7123 CrossRefGoogle Scholar
  157. Rothschild LJ, Mancinnelli RL (2001) Life in extreme environments. Nature 409:1092–1101.  https://doi.org/10.1038/35059215 CrossRefPubMedGoogle Scholar
  158. Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2016) Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 225:48–56.  https://doi.org/10.1016/j.jbiotec.2016.03.040 CrossRefPubMedGoogle Scholar
  159. Sam S, Kucukasik F, Yenigun O, Nicolaus B, Oner ET, Yukselen MA (2011) Flocculating performances of exopolysaccharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. Bioresour Technol 102:1788–1794PubMedCrossRefGoogle Scholar
  160. Sánchez San Fulgencio N, Suárez-Estrella F, López MJ, Jurado MM, López-González JA, Moreno J (2018) Biotic aspects involved in the control of damping-off producing agents: the role of the thermotolerant microbiota isolated from composting of plant waste. Biol Control 124:82–91.  https://doi.org/10.1016/j.biocontrol.2018.04.015 CrossRefGoogle Scholar
  161. Saraswat R, Bhushan I, Gupta P, Kumar V, Verma V (2018) Production and purification of an alkaline lipase from Bacillus sp. for enantioselective resolution of (±)-Ketoprofen butyl ester. 3Biotech 8:1–12.  https://doi.org/10.1007/s13205-018-1506-6 CrossRefGoogle Scholar
  162. Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790.  https://doi.org/10.1007/s10295-011-0968-x CrossRefPubMedGoogle Scholar
  163. Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:1–15.  https://doi.org/10.3389/fbioe.2015.00148 CrossRefGoogle Scholar
  164. Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90. https://doi.org/10.1038/35059215}CrossRefGoogle Scholar
  165. Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20(12):515–521.  https://doi.org/10.1016/S0167-7799(02)02073-5 CrossRefPubMedGoogle Scholar
  166. Seckbach J, Rampelotto PR (2015) Polyextremophiles. In: Bakermans C (ed) Microbial evolution under extreme conditions, Life in extreme environments, vol 2. De Gruyter, Berlin, pp 154–170Google Scholar
  167. Serour E, Antranikian G (2002) Novel thermoactive glucamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leewenhock 81:73–83CrossRefGoogle Scholar
  168. Shaieb FM, Elghazawani AH, Issa A (2015) Studies on crude oil-degrading bacteria isolated from Libyan desert. Int J Curr Microbiol Appl Sci 4:920–927Google Scholar
  169. Sharma A, Satyanarayana T (2010) High maltose-forming, Ca2+−independent and acid-stable α-amylase from a novel acidophilic bacterium, Bacillus acidicola. Biotechnol Lett 32:1503–1507.  https://doi.org/10.1007/s10529-010-0322-9 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19.  https://doi.org/10.1007/s00792-011-0402-3 CrossRefPubMedGoogle Scholar
  171. Sharma A, Parashar D, Satyanarayana T (2016) Acidophilic microbes: biology and applications. In: Rampelotto PH (ed) Biotechnology of extremophiles, Grand challenges in biology and biotechnology. Springer Cham, Heidelberg, pp 215–241Google Scholar
  172. Shivaji S, Ray MK, Rao NS, Saisree L, Jagannadham MV, Kumar GS, Reddy GSN, Bhargava PM (1992) Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher oasis, Antarctica. Int J Syst Evol Microbiol 42:102–106Google Scholar
  173. Siddiqui KS (2015) Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 33:1912–1922.  https://doi.org/10.1016/j.biotechadv.2015.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. Struct Biol 11:1–12.  https://doi.org/10.1186/1472-6807-11-50 CrossRefGoogle Scholar
  175. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Internat 51:59–72.  https://doi.org/10.1016/j.envint.2012.10.007 CrossRefGoogle Scholar
  176. Tarafdar JC, Rao AV, Bala K (1988) Production of phosphatates by fungi isolated from desert soils. Folia Microbiol 33:453–457.  https://doi.org/10.1007/BF02925770 CrossRefGoogle Scholar
  177. Torsvik V, Øvreås L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils, Soil biology, vol 13. Springer, Berlin, pp 15–43CrossRefGoogle Scholar
  178. Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296:1064–1066.  https://doi.org/10.1126/science.1071698 CrossRefPubMedGoogle Scholar
  179. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:1–23CrossRefGoogle Scholar
  180. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33:633–647.  https://doi.org/10.1016/j.biotechadv.2015.04.007 CrossRefPubMedGoogle Scholar
  181. Urich T, Lanzén A, Stokke R, Pedersen RB, Bayer C, Thorseth IH, Schleper C, Steen IH, Ovreas L (2014) Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ Microbiol 16:2699–2710.  https://doi.org/10.1111/1462-2920.12283 CrossRefPubMedGoogle Scholar
  182. Uttatree S, Winayanuwattikun P, Charoenpanich J (2010) Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. Appl Biochem Biotechnol 162:1362–1376.  https://doi.org/10.1007/s12010-010-8928-x CrossRefPubMedGoogle Scholar
  183. Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218PubMedCrossRefGoogle Scholar
  184. Vázquez SC, Ruberto L, Mac Cormack WP (2005) Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. Polar Biol 28:319–325.  https://doi.org/10.1007/s00300-004-0673-6 CrossRefGoogle Scholar
  185. Ventosa A, Mellado E, Sanchez-Porro C, Carmen-Marquez M (2008) Halophilic and Halotolerant micro-organisms from soil. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology, Springer, Berlin, pp 87–115Google Scholar
  186. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173PubMedCrossRefGoogle Scholar
  187. Wang SL, Lin YT, Liang TW, Chio SH, Ming LJ, Wu PC (2009) Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate. J Ind Microbiol Biot 36:65–73.  https://doi.org/10.1007/s10295-008-0473-z CrossRefGoogle Scholar
  188. Wang X, Huang N, Shao J, Hu M, Zhao Y, Huo M (2018) Coupling heavy metal resistance and oxygen flexibility for bioremoval of copper ions by newly isolated Citrobacter freundii JPG1. J Environ Manag 226:194–200.  https://doi.org/10.1016/j.jenvman.2018.08.042 CrossRefGoogle Scholar
  189. Wang J, Zhang T, Li Y, Li L, Wang Y, Yang B, Wang Y (2019) High-level expression of Thermomyces dupontii thermo-alkaline lipase in Pichia pastoris under the control of different promoters. 3. Biotech 9:1–8.  https://doi.org/10.1007/s13205-018-1531-5 CrossRefGoogle Scholar
  190. Wiegel J, Kevbrin VV (2004) Alkalithermophiles. Biochem Soc Trans 32:193–198.  https://doi.org/10.1042/bst0320193 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139:800–810PubMedPubMedCentralGoogle Scholar
  192. Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466.  https://doi.org/10.1111/j.1462-2920.2012.02799.x CrossRefPubMedPubMedCentralGoogle Scholar
  193. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017) Extreme cold environments: a suitable niche for selection of novel Psychrotrophic microbes for biotechnological applications. Adv Biotech Micro 2:1–4.  https://doi.org/10.19080/AIBM.2017.02.555584 CrossRefGoogle Scholar
  194. Yáñez J, Riffo P, Santander P, Mansilla HD, Mondaca MA, Campos V, Amarasiriwardena D (2015) Biodegradation of tributyltin (TBT) by extremophile bacteria from Atacama Desert and speciation of tin by-products. Bull Environ Contam Toxicol 95:126–130.  https://doi.org/10.1007/s00128-015-1561-1 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Yang C, Wang F, Hao J, Zhang K, Yuan N, Sun M (2010) Identification of a proteolytic bacterium, HW08, and characterization of its extracellular cold-active alkaline metallopro- tease Ps5. Biosci Biotechnol Biochem 74(6):1220–1225.  https://doi.org/10.1271/bbb.100011 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Zhang W, Zhang G, Liu G, Dong Z, Chen T, Zhang M, Dyson PJ, An L (2012) Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities. J Environ Sci 24:2004–2011CrossRefGoogle Scholar
  197. Zhang DC, Brouchkov A, Griva G, Schinner F, Margesin R (2013) Isolation and characterization of Bacteria from Ancient Siberian permafrost sediment. Biology 2:85–106.  https://doi.org/10.3390/biology2010085 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Zhao D, Yang H, Chen J, Cheng F, Kumar S, Han J, Li M, Zhou J, Xiang H (2017) Development of the first gene expression system for Salinicoccus strains with potential application in bioremediation of hypersaline wastewaters. Appl Microbiol Biotechnol 101:7249–7258.  https://doi.org/10.1007/s00253-017-8428-9 CrossRefPubMedGoogle Scholar
  199. Zhao J, Guo C, Zhang L, Tian C (2018) Biochemical and functional characterization of a novel thermoacidophilic, heat and halo-ionic liquids tolerant endo-β-1,4-glucanase from saline-alkaline lake soil microbial metagenomic DNA. Int J Biol Macromol 15:1035–1044.  https://doi.org/10.1016/j.ijbiomac.2018.06.141 CrossRefGoogle Scholar
  200. Zhou Z, Jiang F, Wang S, Peng F, Dai J, Li W, Fang C (2012) Pedobacter arcticussp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 62:1963–1969.  https://doi.org/10.1099/ijs.0.031104-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Maria-Guadalupe Sánchez-Otero
    • 1
  • Rodolfo Quintana-Castro
    • 1
  • Jorge Guillermo Domínguez-Chávez
    • 1
  • Carolina Peña-Montes
    • 2
  • Rosa María Oliart-Ros
    • 2
    Email author
  1. 1.Facultad de BioanálisisUniversidad VeracruzanaVeracruzMéxico
  2. 2.Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de VeracruzVeracruzMéxico

Personalised recommendations