Advertisement

Bioremediation of Soil Contaminated with Arsenic

  • María del Carmen MolinaEmail author
  • Luis Fernando Bautista
  • Ignacio Belda
  • Manuel Carmona
  • Eduardo Díaz
  • Gonzalo Durante-Rodríguez
  • Sara García-Salgado
  • Jaime López-Asensio
  • Pilar Martínez-Hidalgo
  • María Ángeles Quijano
  • James F. White
  • Natalia González-Benítez
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 16)

Abstract

Human-industrial activity causes a remarkable increase in the arsenic (As) environmental concentrations, with a potential impact in plant and animal health, and may cause severe losses in biodiversity. This metalloid is bioaccumulative through the food chain and highly associated with different types of cancers. To overcome the inherent drawbacks of physicochemical removal techniques, biological treatments arose as adequate and cost-effective remediation alternatives for As pollution. An interest arises from the endophytes, which live inside the host plant and have been studied for their plant growth-promoting properties, production of bioactive molecules, biocontrol processes, and As detoxification. The integration of bioremediation with multiple omic technologies provides, moreover, innovative approaches to handle As remediation. The aim of this review is to show the latest knowledge, advances, and applications in arsenic bioremoval. We will focus on the following items: (1) human and environmental health, (2) biological tools for remediation with an emphasis in plants-microbiome interactions and omic technologies, (3) advances in As speciation analysis, and (4) As biosensors.

Keywords

Arsenic Bioremediation. Bioreactors Analytical methods Omics Biosensor. 

Notes

Acknowledgments

The authors thank Kathryn L. Kingsley and Dr. I. Irizarry (Rutgers University), Dr. S.K. Verma (Banaras Hindu University), and Dr. R. Simarro (Rey Juan Carlos University) for their invaluable help and collaboration. Molina M.C. greatly thanks Rutgers University for her time there as a Visiting Scientist.

References

  1. Abdul KSM, Jayasinghe SS, Chandana EPS et al (2015) Arsenic and human health effects: a review. Environ Toxicol Phar 40:828–846CrossRefGoogle Scholar
  2. Adams AS, Currie CR, Cardoza Y et al (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147.  https://doi.org/10.1139/X09-034 CrossRefGoogle Scholar
  3. Ahmed M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOAB J 3:39–46Google Scholar
  4. Alvarenga P, Laneiro C, Palma P et al C (2013) A study on As, Cu, Pb and Zn (bio)availability in an abandoned mine area (São Domingos, Portugal) using chemical and ecotoxicological tools. Environ Sci Pollut Res 20:6539–6550. doi: https://doi.org/10.1007/s11356-013-1649-2 CrossRefGoogle Scholar
  5. Amini M, Abbaspour KC, Berg M et al (2008) Statistical modeling of global geogenic arsenic contamination in groundwater. Environ Sci Technol 42:3669–3675.  https://doi.org/10.1021/es702859e CrossRefPubMedGoogle Scholar
  6. An JH, Jang J (2017) A highly sensitive FET-type aptasensor using flower-like MoS2 nanospheres for real-time detection of arsenic(III). Nanoscale 9:7483–7492.  https://doi.org/10.1039/c7nr01661a CrossRefPubMedGoogle Scholar
  7. Anawar HM, Rengel Z, Damon P et al (2018) Arsenic-phosphorus interactions in the soil-plant-microbe system: dynamics of uptake, suppression and toxicity to plants. Environ Pollut 233:1003–1012.  https://doi.org/10.1016/j.envpol.2017.09.098 CrossRefPubMedGoogle Scholar
  8. Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322.  https://doi.org/10.1093/femsre/fuv050 CrossRefPubMedGoogle Scholar
  9. Antoniadis V, Shaheen SM, Boersch J et al (2017) Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J Environ Manag 186:192–200.  https://doi.org/10.1016/j.jenvman.2016.04.036 CrossRefGoogle Scholar
  10. Arain MB, Kazi TG, Jamali MK et al (2008) Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: a comparison with modified sequential extraction procedure. J Hazard Mater 154:998–1006.  https://doi.org/10.1016/j.jhazmat.2007.11.004 CrossRefPubMedGoogle Scholar
  11. Arora K, Prabhakar N, Chand S et al (2007) Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. Sensors Actuators B Chem 126:655–663.  https://doi.org/10.1016/J.SNB.2007.04.029 CrossRefGoogle Scholar
  12. AsadiHaris S, Altowayti WAH, Ibrahim Z et al (2018) Arsenic biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain SOM-12D3 isolated from Svalbard, Arctic. Environ Sci Pollut Res 25(28):27959–27970.  https://doi.org/10.1007/s11356-018-2799-z CrossRefGoogle Scholar
  13. Aye SL, Fujiwara K, Doi N (2018) A dual system using compartmentalized partnered replication for selection of arsenic-responsive transcriptional regulator. J Biochem 164:341–348.  https://doi.org/10.1093/jb/mvy055 CrossRefPubMedGoogle Scholar
  14. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483.  https://doi.org/10.1016/j.jhazmat.2013.02.014 CrossRefPubMedGoogle Scholar
  15. Bai ZG, Dent DL, Olsson L et al (2008) Global assessment of land degradation and improvement. 1. Identification by remote sensing. Report 2008/01, ISRIC – World Soil Information, WageningenGoogle Scholar
  16. Bakhrat A, Eltzov E, Finkelstein Y et al (2011) UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay. Cell Biol Toxicol 27:227–236.  https://doi.org/10.1007/s10565-011-9184-8 CrossRefPubMedGoogle Scholar
  17. Banerjee S, Banerjee A, Sarkar P (2017) Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads. J Environ Sci Health 53(5):436–442.  https://doi.org/10.1080/10934529.2017.1409009 CrossRefGoogle Scholar
  18. Barrech D, Ali I, Tareen M (2018) 1. A review on Mycoremediation—the fungal bioremediation. Pure Appl Biol (PAB) 7(1):343–348.  https://doi.org/10.19045/bspab.2018.70042 CrossRefGoogle Scholar
  19. Basu S, Rabara RC et al (2018) Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation? Trends Biotechnol 36(5):499–510.  https://doi.org/10.1016/j.tibtech.2018.01.011 CrossRefPubMedGoogle Scholar
  20. Beesley L, Inneh OS, Norton GJ et al (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202.  https://doi.org/10.1016/j.envpol.2013.11.026 CrossRefPubMedGoogle Scholar
  21. Belfiore C, OF O, Farías ME (2013) Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 17:421–431.  https://doi.org/10.1007/s00792-013-0523-y CrossRefPubMedGoogle Scholar
  22. Ben Fekih I, Zhang C, Li YP et al (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473.  https://doi.org/10.3389/fmicb.2018.02473 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271.  https://doi.org/10.1128/MMBR.66.2.250-271.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Berg G, Krechel A, Ditz M et al (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229.  https://doi.org/10.1016/j.femsec.2004.08.006 CrossRefPubMedGoogle Scholar
  25. Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Leeuwenhoek 81:365–371CrossRefGoogle Scholar
  26. Bibi S, Kamran MA, Sultana J et al (2017) Occurrence and methods to remove arsenic and fluoride contamination in water. Environ Chem Lett 15:125–149CrossRefGoogle Scholar
  27. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383.  https://doi.org/10.1146/annurev.micro.091208.073504 CrossRefPubMedGoogle Scholar
  28. Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143.  https://doi.org/10.1016/S0168-6445(03)00054-8 CrossRefPubMedGoogle Scholar
  29. Chakraborti D, Mukherjee SC, Pati S et al (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Persp 111:1194–1201.  https://doi.org/10.1289/ehp.5966 CrossRefGoogle Scholar
  30. Chen C, Chen X, Xie T et al (2016) Diverse bacterial symbionts of insect-pathogentic fungi and possible impact on the maintenance of virulence during infection. Symbiosis 69:47–58.  https://doi.org/10.1007/s13199-015-0371-x CrossRefGoogle Scholar
  31. Chen J, Rosen B (2016) Organoarsenicalbiotransformations by Shewanella putrefaciens. Environ Sci Technol 50:7956–7963.  https://doi.org/10.1021/acs.est.6b00235 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chen J, Zhu YG, Rosen BP (2012) A novel biosensor selective for organoarsenicals. Appl Environ Microbiol 78:7145–7147.  https://doi.org/10.1128/AEM.01721-12 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chen P, Li J, Wang H et al (2017a) Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization. Environ Sci Pollut Res Int 24:21739–21749.  https://doi.org/10.1007/s11356-017-9816-5 CrossRefPubMedGoogle Scholar
  34. Chen XW, Wu FY, Li H et al (2017b) Mycorrhizal colonization status of lowland rice (Oryza sativa L.) in the southeastern region of China. Environ Sci Pollut Res 24:5268–5276.  https://doi.org/10.1007/s11356-016-8287-4 CrossRefGoogle Scholar
  35. Chen Y, Parvez F, Gamble M et al (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharm 239:184–192.  https://doi.org/10.1016/j.taap.2009.01.010 CrossRefGoogle Scholar
  36. Cubadda F, Jackson B, Kuzurius-Spencer M et al (2017) Human exposure to dietary inorganic arsenic and other arsenic species: state of knowledge, gaps and uncertainties. Sci Total Environ 579:1228–1239.  https://doi.org/10.1016/j.scitotenv.2016.11.108 CrossRefGoogle Scholar
  37. Date A, Pasini P, Daunert S (2010) Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal Bioanal Chem 398:349–356.  https://doi.org/10.1007/s00216-010-3930-2 CrossRefPubMedGoogle Scholar
  38. Davila-Esqueda ME, Jimenez-Capdeville ME, Delgado JM et al (2012) Effects of arsenic exposure during the pre- and postnatal development on the puberty of female offspring. Exp Toxicol Pathol 64:25–30.  https://doi.org/10.1016/j.etp.2010.06.001 CrossRefPubMedGoogle Scholar
  39. De la Calle I, Cabaleiro N, Lavilla I et al (2013) Ultrasound-assisted single extraction tests for rapid assessment of metal extractability from soils by total reflection X-ray fluorescence. J Hazard Mater 260:202–209.  https://doi.org/10.1016/j.jhazmat.2013.05.021 CrossRefGoogle Scholar
  40. de Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Biores Technol 101:1611–1627.  https://doi.org/10.1016/j.biortech.2009.09.043 CrossRefGoogle Scholar
  41. Dowdle PR, Laverman AM, Oremland RS (1996) Bacterial dissimilatory reduction of arsenic (V) to arsenic (III) in anoxic sediments. Appl Environ Microbiol 62:1664–1669PubMedPubMedCentralGoogle Scholar
  42. Du Toit A (2015) Bacterial genetics: Metalloregulatory riboswitches. Nat Rev Microbiol 13:249CrossRefGoogle Scholar
  43. Dunivin TK, Yeh, SY Shade A (2018) Targeting microbial arsenic resistance genes: a new bioinformatic toolkit informs arsenic ecology and evolution in soil genome and metagenomes bioRxiv 445502Google Scholar
  44. Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant Soil 138:169–176.  https://doi.org/10.1007/BF00012243 CrossRefGoogle Scholar
  45. ESFA (European Food Safety Authority) (2014) Dietary exposure to inorganic arsenic in the European population. EFSA J 12:3597Google Scholar
  46. Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191.  https://doi.org/10.1016/j.ecoenv.2017.08.032 CrossRefPubMedGoogle Scholar
  47. Evans (2015) Considerations for the use of transcriptomics in identifying the “genes that matter” for environmental adaptation. J Exp Biol 218:1925–1935CrossRefGoogle Scholar
  48. Fikri ASI, Rahman IA, Nor NSM et al (2018) Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi. AIP Conf Proc 1:020072.  https://doi.org/10.1063/1.5027987 CrossRefGoogle Scholar
  49. Fleming M, Tai Y, Zhuang P et al (2013) Extractability and bioavailability of Pb and As in historically contaminated orchard soil: effects of compost amendments. Environ Pollut 177:90–97.  https://doi.org/10.1016/j.envpol.2013.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fujimoto H, Wakabayashi M, Yamashiro H (2006) Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Appl Microbiol Biotechnol 73:332–338.  https://doi.org/10.1007/s00253-006-0483-6 CrossRefPubMedGoogle Scholar
  51. Furukawa K, Ramesh A, Zhou Z et al (2015) Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters. Mol Cell 57(6):1088–1098CrossRefGoogle Scholar
  52. Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187:201.  https://doi.org/10.1007/s10661-015-44363 CrossRefPubMedGoogle Scholar
  53. García-Casillas D, García-Salgado S, Quijano MA (2014) Accuracy evaluation of ultrasound probe sonication and microwave-assisted extraction systems for rapid single extraction of metals in soils. Anal Methods 6:8403–8412.  https://doi.org/10.1039/c4ay01788a CrossRefGoogle Scholar
  54. García-Salgado S, García-Casillas D, Quijano-Nieto MA et al (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223:559–572.  https://doi.org/10.1007/s11270-011-0882-x CrossRefGoogle Scholar
  55. García-Salgado S, Quijano MA (2016) Rapid metal extractability test from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems. Environ Sci Pollut Res 23:24567–24577.  https://doi.org/10.1007/s11356-016-7999-9 CrossRefGoogle Scholar
  56. Gil-Díaz M, Alonso J, Rodríguez-Valdés E et al (2014) Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. J Environ Sci Health A 49:1361–1369.  https://doi.org/10.1080/10934529.2014.928248 CrossRefGoogle Scholar
  57. Government of New South Wales-NSW (2017) Arsenic and DDT residues at cattle dip yards. Available via NSW Webpage https://wwwdpinswgovau/__data/assets/pdf_file/0009/532458/Arsenic-and-ddt-residues-at-cattle-dip-yardspdf Accessed 5 Jan 2019
  58. Green HH, Kestell NH (1920) Behaviour of bacteria towards arsenic. In: Union of South Africa, of Agriculture, 5th and 6th Reports of the Director of Veterinary Research, pp 701–706Google Scholar
  59. Green, HH (1918) Description of a bacterium isolated from a cattle dipping tank, which reduces arsenate to arsenite. In: Union of South Africa, of Agriculture, 5th and 6th Reports of the Director of Veterinary Research, pp 613–624Google Scholar
  60. Gronow M (1984) Biosensors. Trends Biochem Sci 9:336–340.  https://doi.org/10.1016/0968-0004(84)90055-0 CrossRefGoogle Scholar
  61. Gupta R, Sati B, Gupta A (2019) Treatment and recycling of wastewater from pharmaceutical industry. In: Singh RL, Singh RP (eds) Advances in biological treatment of industrial waste water and their recycling for a sustainable future. Springer, Singapore, pp 267–302CrossRefGoogle Scholar
  62. Gutiérrez-Ginés MJ, Pastor J, Hernández AJ (2015) Heavy metals in native mediterranean grassland species growing at abandoned mine sites: Ecotoxicological assessment and phytoremediation of polluted soils. In: Sherameti I, Varma A (eds) Heavy metal contamination of soils, Soil Biology, vol 44. Springer, Cham, pp 159–178CrossRefGoogle Scholar
  63. Heltai G, Fekete I, Halasz G et al (2015) Multi-elemental inductively coupled plasma-optical emission spectroscopic calibration problems for sequential extraction procedure of fractionation of heavy metal content from aquatic sediments. Hung J Ind Chem 43:7–12.  https://doi.org/10.1515/hjic-2015-0002 CrossRefGoogle Scholar
  64. Hengl F, Reckendorfee P, Beran F (1930) The arsenic and Lead on grapes, in grape must and wine as a result of control measures. Gartenbauwissenschaft 4:1Google Scholar
  65. Hlihor RM, Figueiredo H, Tavares T et al (2017) Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): batch and column studies, proc. Saf Environ Protect 108:44–56.  https://doi.org/10.1016/j.psep.2016.06.016 CrossRefGoogle Scholar
  66. Hobman JL, Crossman LC (2014) Bacterial antimicrobial metal ion resistance. J Medical Microbiol 64:471–497.  https://doi.org/10.1099/jmm.0.023036-0 CrossRefGoogle Scholar
  67. Hoffmann T, Warmbold B, Smits SHJ et al (2018) Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperatures extremes. Environ Microbiol 20:305–323.  https://doi.org/10.1111/1462-2920.13999 CrossRefPubMedGoogle Scholar
  68. Horta A, Malone B, Stockmann U et al (2015) Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma 241:180–209.  https://doi.org/10.1016/j.geoderma.2014.11.024 CrossRefGoogle Scholar
  69. Hou QH, Ma AZ, Lv D et al (2014) The impacts of different long-term fertilization regimes on the bioavailability of arsenic in soil: integrating chemical approach with Escherichia coli arsRp::luc-based biosensor. Appl Microbiol Biotechnol 98:6137–6146.  https://doi.org/10.1007/s00253-014-5656-0 CrossRefPubMedGoogle Scholar
  70. Huang CW, Wei CC, Liao VHC (2015) A low cost color-based bacterial biosensor for measuring arsenic in groundwater. Chemosphere 141:44–49.  https://doi.org/10.1016/j.chemosphere.2015.06.011 CrossRefPubMedGoogle Scholar
  71. Huang JH, Hu KN, Decker B (2011) Organic arsenic in the soil environment: speciation, occurrence, transformation, and adsorption behavior. Water Air Soil Pollut 219:401–415.  https://doi.org/10.1007/s11270-010-0716-2 CrossRefGoogle Scholar
  72. Huang Q, Zhou S, Lin L et al (2018) Effect of nanomaterials on arsenic volatilization and extraction from flooded soils. Environ Pollut 239:118–128.  https://doi.org/10.1016/j.envpol.2018.03.091 CrossRefPubMedGoogle Scholar
  73. Irvine G, Tan S, Stillman M (2017) A simple metallothionein-based biosensor for enhanced detection of arsenic and mercury. Biosensors 7:14.  https://doi.org/10.3390/bios7010014 CrossRefPubMedCentralGoogle Scholar
  74. Javed MB, Kachanoski G, Siddique T (2013) A modified sequential extraction method for arsenic fractionation in sediments. Anal Chim Acta 787:102–110.  https://doi.org/10.1016/j.aca.2013.05.050 CrossRefPubMedGoogle Scholar
  75. Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44:6320–6329.  https://doi.org/10.1039/C4DT03559C CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kalyvas G, Gasparatos D, Massas I (2018) A critical assessment on arsenic partitioning in mine-affected soils by using two sequential extraction protocols. Arch Agron Soil Sci 64:1549–1563.  https://doi.org/10.1080/03650340.2018.1443443 CrossRefGoogle Scholar
  77. Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 4:22–26.  https://doi.org/10.4236/ns.2012.41004 CrossRefGoogle Scholar
  78. Kapaj S, Peterson H, Liber K et al (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Heal A 41:2399–2428.  https://doi.org/10.1080/10934520600873571 CrossRefGoogle Scholar
  79. Kaur H, Kumar R, Babu JN et al (2015) Advances in arsenic biosensor development – a comprehensive review. Biosens Bioelectron 63:533–545.  https://doi.org/10.1016/j.bios.2014.08.003 CrossRefPubMedGoogle Scholar
  80. Kempahanumakkagari S, Deep A, Kim KH et al (2017) Nanomaterial-based electrochemical sensors for arsenic – a review. Biosens Bioelectron 95:106–116.  https://doi.org/10.1016/j.bios.2017.04.013 CrossRefPubMedGoogle Scholar
  81. Kim EJ, Yoo J-C, Baek K (2014) Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. EnviromPollut 186:29–35.  https://doi.org/10.1016/j.envpol.2013.11.032 CrossRefGoogle Scholar
  82. Kostal J, Yang R, Wu CH et al (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587.  https://doi.org/10.1128/AEM.70.8.4582-4587.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kreidie N, Armiento G, Cibin G et al (2011) An integrated geochemical and mineralogical approach for the evaluation of arsenic mobility in mining soils. J Soils Sediments 11:37–52.  https://doi.org/10.1007/s11368-010-0274-7 CrossRefGoogle Scholar
  84. Kumar A, Bisht BS, Joshi VD et al (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci Technol 1:1079Google Scholar
  85. Kumarathilaka P, Seneweera S, Meharg A et al (2018) Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors – a review. Water Res 140:403–414.  https://doi.org/10.1016/j.watres.2018.04.034 CrossRefPubMedGoogle Scholar
  86. Larios R, Fernández-Martínez R, Álvarez R et al (2012) Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments. Anal Bioanal Chem 402:2909–2921.  https://doi.org/10.1007/s00216-012-5730-3 CrossRefPubMedGoogle Scholar
  87. Larios R, Fernández-Martínez R, Rucandio I (2013) Assessment of a sequential extraction procedure for arsenic partitioning and application to samples from different pollution sources. Anal Methods 5:4096–4104.  https://doi.org/10.1039/c3ay40102b CrossRefGoogle Scholar
  88. Lewtas J (2007) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133.  https://doi.org/10.1016/j.mrrev.2007.08.003 CrossRefPubMedGoogle Scholar
  89. Li L, Liang J, Hong W et al (2015) Evolved bacterial biosensor for arsenite detection in environmental water. Environ Sci Technol 49:6149–6155.  https://doi.org/10.1021/acs.est.5b00832 CrossRefPubMedGoogle Scholar
  90. Li L, Ma M, Huang R et al (2012) Induction of chlamydospore formation in Fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2. J Chem Ecol 38:966–974.  https://doi.org/10.1007/s10886-012-0171-110.1007/s10886-012-0171-1 CrossRefPubMedGoogle Scholar
  91. Li Q, Zhou JL, Chen B et al (2014) Toxic metal contamination and distribution in soils and plants of a typical metallurgical industrial area in southwest of China. Environ Earth Sci 72:2101–2109.  https://doi.org/10.1007/s12665-014-3118-8 CrossRefGoogle Scholar
  92. Liancourt P, Le Bagousse-Pinguet Y, Rixen C et al (2017) SGH: stress or strain gradient hypothesis? Insights from an elevation gradient on the roof of the world. Ann Bot 120:29–38.  https://doi.org/10.1093/aob/mcx037 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lin Y-F, Yang J, Rosen BP (2007) ArsD: an As(III) metallochaperone for the ArsB As(III)-translocating ATPase. J Bionerg Biomembr 39:453–458.  https://doi.org/10.1007/s10863-007-9113-y CrossRefGoogle Scholar
  94. Lindberg AL, Rahman M, Persson LÅ et al (2008) The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol Appl Pharm 230:9–16.  https://doi.org/10.1016/j.taap.2008.02.001 CrossRefGoogle Scholar
  95. Liu C, Balsamo V, Sun D et al (2012) A 3D localized surface plasmon resonance biosensor for the study of trivalent arsenic binding to the ArsA ATPase. Biosens Bioelectron 38:19–26.  https://doi.org/10.1016/J.BIOS.2012.04.026 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Liu F, Zhang G, Liu S, Fu Z et al (2018) Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources. Int Biodet Biodegr 126:152–159.  https://doi.org/10.1016/j.ibiod.2017.10.011 CrossRefGoogle Scholar
  97. Liu J, Zheng BS, Aposhian HV et al (2002) Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ Health Persp 110:119–122.  https://doi.org/10.1289/ehp.02110119 CrossRefGoogle Scholar
  98. Liu Y, Wei W (2008) Layer-by-layer assembled DNA functionalized single-walled carbon nanotube hybrids for arsenic(III) detection. Electrochemcommun 10:872–875.  https://doi.org/10.1016/J.ELECOM.2008.03.013 CrossRefGoogle Scholar
  99. Luo J, Bai Y, Liang J et al (2014) Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil. PLoS One 9:e108185.  https://doi.org/10.1371/journal.pone.0108185 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lynch HN, Greenberg GI, Pollock MC et al (2014) A comprehensive evaluation of inorganic arsenic in food and considerations for dietary intake analyses. Sci Total Environ 496:299–313.  https://doi.org/10.1016/j.scitotenv.2014.07.032 CrossRefPubMedGoogle Scholar
  101. Ma Y, Oliveira RS, Freitas H et al (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918.  https://doi.org/10.3389/fpls.2016.00918 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Maizel D, Utturkar SM, Brown SD et al (2015) Draft genome sequence of Brevibacterium linens AE038-8, an extremely arsenic-resistant bacterium. Genome Announc 3:e00316–e00315.  https://doi.org/10.1128/genomeA.00316-15 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Mallick I, Bhattacharyya C, Mukherji S et al (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250.  https://doi.org/10.1016/j.scitotenv.2017.07.234 CrossRefPubMedGoogle Scholar
  104. Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J 1:70–82.  https://doi.org/10.1094/PBIOMES-12-16-0019-RVW CrossRefGoogle Scholar
  105. Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME et al (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). a new promising plant probiotic Bacteria. Sci Rep 4:6389.  https://doi.org/10.1038/srep06389 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:922.  https://doi.org/10.3389/fmicb.2015.00922 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Martínez-Sánchez MJ, Martínez-López S, García-Lorenzo ML et al (2011) Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma 160:535–541.  https://doi.org/10.1016/j.geoderma.2010.11.001 CrossRefGoogle Scholar
  108. Mathew L, Vale A, Adcock JE (2010) Arsenical peripheral neuropathy. Pract Neurol 10:34–38.  https://doi.org/10.1136/jnnp.2009.201830 CrossRefPubMedGoogle Scholar
  109. Mesa V, Navazas A, González-Gil R et al (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of As-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:03411–03416.  https://doi.org/10.1128/AEM.03411-16 CrossRefGoogle Scholar
  110. Minerdi D, Moretti M, Gilardi G et al (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10:1725–1741.  https://doi.org/10.1111/j.1462-2920.2008.01594.x CrossRefPubMedGoogle Scholar
  111. Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706.  https://doi.org/10.3389/fmicb.2017.01706 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Moebius N, Üzüm Z, Dijksterhuis J et al (2014) Active invasion of bacteria into living fungal cells. Elife 3:e03007.  https://doi.org/10.7554/eLife.03007.001 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Mohd S, Shukla J, Kushwaha AS et al (2017) Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Front Microbiol 8:754.  https://doi.org/10.3389/fmicb.2017.00754 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Molina MC, White JF, Kingsley KL et al (in press) Seed endophytes of Jasionemontana: arsenic detoxification workers in an eco-friendly factory. In: Verma SK, White JF (eds) Seed endophytes. Biology and biotechnology. Springer, Switzerland.  https://doi.org/10.1007/978-3-030-10504-4
  115. Moreno-Jiménez E, Manzano R, Esteban E et al (2010) The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): mobility and transfer to native flora. J Soils Sediments 10:301–312.  https://doi.org/10.1007/s11368-009-0099-4 CrossRefGoogle Scholar
  116. Mueller UG, Sachs J (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617CrossRefGoogle Scholar
  117. Mukhopadhyay R, Rosen BP, Phung LT et al (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325.  https://doi.org/10.1111/j.1574-6976.2002.tb00617.x CrossRefPubMedGoogle Scholar
  118. Mundey MK, Roy M, Roy S et al (2013) Antioxidant potential of Ocimum sanctum in arsenic induced nervous tissue damage. BJVP 6:95–101Google Scholar
  119. Murcott S (ed) (2012) Arsenic contamination in the world: an international source- book. IWA Publishing, LondonGoogle Scholar
  120. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharm 174:130–138.  https://doi.org/10.1006/taap.2001.9200 CrossRefGoogle Scholar
  121. Naumann M, Schüßler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862.  https://doi.org/10.1038/ismej.2010.21 CrossRefPubMedGoogle Scholar
  122. Newton AC, Fitt BD, Atkins SD et al (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373.  https://doi.org/10.1016/j.tim.2010.06.002 CrossRefGoogle Scholar
  123. Nguyen Van T, Osanai Y, Do Nguyen H et al (2017) Arsenic speciation and extraction and the significance of biodegradable acid on arsenic removal—An approach for remediation of arsenic-contaminated soil. Int J Environ Res Public Health 14:990–1006.  https://doi.org/10.3390/ijerph14090990 CrossRefPubMedCentralGoogle Scholar
  124. Nidheesh PV, Singh TA (2017) Arsenic removal by electrocoagulation process: recent trends and removal mechanism. Chemosphere 181:418–432CrossRefGoogle Scholar
  125. Nie L, Shah S, Rashid A et al (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361.  https://doi.org/10.1016/S0981-9428(02)01375-X CrossRefGoogle Scholar
  126. Novotna A, Suárez JP (2018) Molecular detection of bacteria associated with Serendipita sp., a mycorrhizal fungus from the orchid Stanhopea connata Klotzsch in southern Ecuador. Botany Letters 165(2):307–313.  https://doi.org/10.1016/j.myc.2017.07.007 CrossRefGoogle Scholar
  127. O'Donovan WJ (1924) Arsenic cancer of occupational origin. Br J Dermatol 36:477CrossRefGoogle Scholar
  128. Palumbo-Roe B, Wragg J, Cave M (2015) Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil. Environ Pollut 207:256–265.  https://doi.org/10.1016/j.envpol.2015.09.026 CrossRefPubMedGoogle Scholar
  129. Pan J, Li Q, Zhou D, Chen J (2018) Ultrasensitive aptamer biosensor for arsenic (III) detection based on label-free triple-helix molecular switch and fluorescence sensing platform. Talanta 189:370–376.  https://doi.org/10.1016/j.talanta.2018.07.024 CrossRefPubMedGoogle Scholar
  130. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888.  https://doi.org/10.1038/nature03997 CrossRefPubMedGoogle Scholar
  131. Parvez F, Chen Y, Brandt-Rauf PW (2010) A prospective study of respiratory symptoms associated with chronic arsenic exposure in Bangladesh: findings from the health effects of arsenic longitudinal study (HEALS). Thorax 65:528–533.  https://doi.org/10.1136/thx.2009.119347 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Plewniak F, Crognale S, Rossetti S et al (2018) A genomic outlook on bioremediation: the case of arsenic removal. Front Microbiol 9:820.  https://doi.org/10.3389/fmicb.2018.00820 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pothier MP, Hinz AJ, Poulain AJ (2018) Insights into arsenite and arsenate uptake pathways using a whole cell biosensor. Front Microbiol 9:2310.  https://doi.org/10.3389/fmicb.2018.02310 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Powers M, Yracheta J, Harvey D et al (2019) Arsenic in groundwater in private wells in rural North Dakota and South Dakota: water quality assessment for an intervention trial. Environ Res 168:41–47.  https://doi.org/10.1016/j.envres.2018.09.016 CrossRefPubMedGoogle Scholar
  135. Qin J, Rosen BP, Zhang Y et al (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 1037:2075–2080.  https://doi.org/10.1073/pnas.0506836103 CrossRefGoogle Scholar
  136. Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Hlth 31:189–200.  https://doi.org/10.1007/s10653-008-9235-0 CrossRefGoogle Scholar
  137. Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944PubMedGoogle Scholar
  138. Rauret G, Lopez-Sanchez JF, Sahuquillo A et al (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61.  https://doi.org/10.1039/A807854H CrossRefPubMedGoogle Scholar
  139. Ravikumar Y, Nadarajan SP, Lee CS et al (2017) Engineering an FMN-based iLOV protein for the detection of arsenic ions. Anal Biochem 525:38–43.  https://doi.org/10.1016/j.ab.2017.02.012 CrossRefPubMedGoogle Scholar
  140. Relić D, Đorđević D, Sakan S et al (2013) Conventional, microwave, and ultrasound sequential extractions for the fractionation of metals in sediments within the Petrochemical Industry, Serbia. Environ Monit Assess 185:7627–7645.  https://doi.org/10.1007/s10661-013-3124-4 CrossRefPubMedGoogle Scholar
  141. Rinklebe J, Shaheen SM, Schröter F et al (2016) Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Chemosphere 150:390–397.  https://doi.org/10.1016/j.chemosphere.2016.02.021 CrossRefPubMedGoogle Scholar
  142. Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212CrossRefGoogle Scholar
  143. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92CrossRefGoogle Scholar
  144. Rusnák R, Halasz G, Horvath M et al (2010) Preliminary results on the intensification of the BCR sequential extraction with sonication for sediments, soils, and gravitation dust sediment samples. Toxicol Environ Chem 92:443–452.  https://doi.org/10.1080/02772240903300139 CrossRefGoogle Scholar
  145. Sadee BA, Foulkes ME, Hill SJ (2016) A study of arsenic speciation in soil, irrigation water and plant tissue: a case study of the broad bean plant, Vicia faba. Food Chem 210:362–370.  https://doi.org/10.1016/j.foodchem.2016.04.066 CrossRefPubMedGoogle Scholar
  146. Saleem M (2013) IOP Conference series: material science and engineering 51. Bristol, UK, p 012012Google Scholar
  147. Salvioli A, Chiapello M, Fontaine et al (2010) Endobacteria affect the metabolic profile of their host Gigasporamargasrita, an arbuscular mycorrhizal fungus. Environ Microbiol Rep 12:2083–2095.  https://doi.org/10.1111/j.1462-2920.2010.02246.x
  148. Salvioli A, Ghignone S, Novero et al (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10:130.  https://doi.org/10.1038/ismej.2015.91 CrossRefGoogle Scholar
  149. Sanllorente-Méndez S, Domínguez-Renedo O, Arcos-Martínez MJ (2012) Development of acid phosphatase based amperometric biosensors for the inhibitive determination of As(V). Talanta 93:301–306.  https://doi.org/10.1016/J.talanta.2012.02.037 CrossRefPubMedGoogle Scholar
  150. Santra SC, Samal AC, Bhattacharya P (2013) Arsenic in food chain and community health risk: a study in gangetic West Bengal. Procedia Environ Sci 18:2–13CrossRefGoogle Scholar
  151. Sarkar P, Banerjee S, Bhattacharyay D et al (2010) Electrochemical sensing systems for arsenate estimation by oxidation of L-cysteine. Ecotoxicol Environ Saf 73:1495–1501.  https://doi.org/10.1016/J.ECOENV.2010.07.004 CrossRefGoogle Scholar
  152. Savonina EZ, Fedotov PS, Wennrich R (2012) Fractionation of Sb and As in soil and sludge samples using different continuous-flow extraction techniques. Anal Bioanal Chem 403:1441–1449.  https://doi.org/10.1007/s00216-012-5927-5 CrossRefPubMedGoogle Scholar
  153. Schmidt CW (2014) Low-dose arsenic: in search of a risk threshold. Environ Health Perspect 122:A130–A134.  https://doi.org/10.1289/ehp.122-A130 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Sevcenco AM, Paravidino M, Vrouwenvelder JS (2015) Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes. Water Res 76:181–186.  https://doi.org/10.1016/j.watres.2015.02.054 CrossRefPubMedGoogle Scholar
  155. Shakya AK, Ghosh PK (2018) Simultaneous removal of arsenic and nitrate in absence of iron in an attached growth bioreactor to meet drinking water standards: importance of sulphate and empty bed contact time. J Clean Prod 186:304–312.  https://doi.org/10.1016/j.jclepro.2018.03.139 CrossRefGoogle Scholar
  156. Shankar S, Shanker U, Shikha (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 304524.  https://doi.org/10.1155/2014/304524 CrossRefGoogle Scholar
  157. Sharma M, Schmid M, Rothballer M et al (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Immunol 10:2235–2246.  https://doi.org/10.1111/j.1462-5822.2008.01202.x CrossRefGoogle Scholar
  158. Sharma P, Asad S, Ali A (2013) Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. J Biosci 38:251–258.  https://doi.org/10.1007/s12038-013-9305-z CrossRefPubMedGoogle Scholar
  159. Shen H, Xu W, Zhang J (2013) Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a han chinese population. Envir Sci Tech 47:8843–8851.  https://doi.org/10.1021/es402025n CrossRefGoogle Scholar
  160. Shiowatana J, McLaren RF, Chanmekha N et al (2001) Fractionation of arsenic in soil by a continuous-flow sequential extraction method. J Environ Qual 30:1940–1949.  https://doi.org/10.2134/jeq2001.1940 CrossRefPubMedGoogle Scholar
  161. Silver S, Hobman JL (2007) Mercury microbiology: resistance systems, environmental aspects, methylation and human health. In: Nies DH, Silver S (eds) Molecular microbiology heavy metals. Springer, Berlin, pp 357–370CrossRefGoogle Scholar
  162. Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microb 71:599–608.  https://doi.org/10.1128/AEM.71.2.599-608.2005 CrossRefGoogle Scholar
  163. Sim CSF, Chen SH, Ting ASY (2019) Endophytes: emerging tools for the bioremediation of pollutants. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 189–217.  https://doi.org/10.1007/978-981-10-8669-4_10 CrossRefGoogle Scholar
  164. Simeonova PP, Luster MI (2004) Arsenic and atherosclerosis. Toxicol Appl Pharm 198:444–449.  https://doi.org/10.1016/j.taap.2003.10.018 CrossRefGoogle Scholar
  165. Singh R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4:1Google Scholar
  166. Smith P, House JI, Bustamante M et al (2016) Global change pressures on soils from land use and management. Glob Chang Biol 22:1008–1028CrossRefGoogle Scholar
  167. Solanki PR, Prabhakar N, Pandey MK et al (2009) Surface plasmon resonance-based DNA biosensor for arsenic trioxide detection. Int J Environ Anal Chem 89:49–57.  https://doi.org/10.1080/03067310802398872 CrossRefGoogle Scholar
  168. Song L, Mao K, Zhou X et al (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic(III). Talanta 146:285–290.  https://doi.org/10.1016/j.talanta.2015.08.052 CrossRefPubMedGoogle Scholar
  169. Spagnoletti FN, Lavado RS (2015) The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plant. J Agron 5:188–199.  https://doi.org/10.3390/agronomy5020188 CrossRefGoogle Scholar
  170. Stolz JF, Basu P, Santini JM et al (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130.  https://doi.org/10.1146/annurev.micro.60.080805.142053 CrossRefPubMedGoogle Scholar
  171. Sun Y, Polishchuk EA, Radoja U et al (2004) Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Meth 58:335–349.  https://doi.org/10.1016/j.mimet.2004.04.015 CrossRefGoogle Scholar
  172. Tan D, Long JM, Li BY et al (2018) Fraction and mobility of antimony and arsenic in three polluted soils: a comparison of single extraction and sequential extraction. Chemosphere 213:533–540.  https://doi.org/10.1016/j.chemosphere.2018.09.089 CrossRefPubMedGoogle Scholar
  173. Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–32CrossRefGoogle Scholar
  174. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851.  https://doi.org/10.1021/ac50043a017 CrossRefGoogle Scholar
  175. Thijs S, Sillen W, Rineau F et al (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 107:1–15.  https://doi.org/10.3389/fmicb.2016.00341 Google Scholar
  176. Thom C, Raper KB (1932) The arsenic fungi of Gosio. Science 76:548–550CrossRefGoogle Scholar
  177. Topp S, Gallivan JP (2010) Emerging applications of riboswitches in chemical biology. ACS Chem Biol 5:139–148CrossRefGoogle Scholar
  178. Tripathi P, Singh PC, Mishra A et al (2017) Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut 223:137–145.  https://doi.org/10.1016/j.envpol.2016.12.073 CrossRefPubMedGoogle Scholar
  179. Truffer F, Buffi N, Merulla D et al (2014) Compact portable biosensor for arsenic detection in aqueous samples with Escherichia coli bioreporter cells. Rev Sci Instrum 85:015120.  https://doi.org/10.1063/1.4863333 CrossRefPubMedGoogle Scholar
  180. Vacheron J, Desbrosses G, Bouffaud ML et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356.  https://doi.org/10.3389/fpls.2013.00356 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Vahidnia A, Van der Voet G, De Wolff F (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832CrossRefGoogle Scholar
  182. Vaishanav SK, Korram J, Pradhan P et al (2017) Green luminescent CdTe quantum dot based fluorescence nano-sensor for sensitive detection of arsenic (III). J Fluoresc 27:781–789.  https://doi.org/10.1007/s10895-016-2011-0 CrossRefPubMedGoogle Scholar
  183. van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. J Appl Environ Microbiol 66:5340–5347.  https://doi.org/10.1128/AEM.66.12.5340-5347.2000 CrossRefGoogle Scholar
  184. Van Lis R, Nitschke W, Duval S et al (2013) Arsenic as bioenergetic substrates. BiochBiophysic Acta 1827:176–188.  https://doi.org/10.1016/j.bbabio.2012.08.007 CrossRefGoogle Scholar
  185. VerBerkmoes NC, Denef VJ, Hettich RL et al (2009) Functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 7:196–205.  https://doi.org/10.1038/nrmicro2080 CrossRefPubMedGoogle Scholar
  186. Vivas A, Marulanda A, Ruiz-Lozano JM et al (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256.  https://doi.org/10.1007/s00572-003-0223-z CrossRefPubMedGoogle Scholar
  187. Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69.  https://doi.org/10.1038/nature15744 CrossRefPubMedGoogle Scholar
  188. Wallis I, Prommer H, Simmons CT et al (2010) Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge. Environ Sci Technol 44:5035–5041.  https://doi.org/10.1021/es100463q CrossRefPubMedGoogle Scholar
  189. Wang C, Liu H, Zhang Y et al (2018) Review of arsenic behavior during coal combustion: volatilization, transformation, emission and removal technologies. Prog Energy Combust Sci 68:1–28.  https://doi.org/10.1016/j.pecs.2018.04.001 CrossRefGoogle Scholar
  190. Wang JM, Jiang JG, Li D et al (2015) Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound. Environ Sci Pollut R 22:20084–20091.  https://doi.org/10.1007/s11356-015-5219-7 CrossRefGoogle Scholar
  191. Wang Q, Xiong D, Zhao P et al (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074.  https://doi.org/10.1111/j.1365-2672.2011.05142.x CrossRefPubMedGoogle Scholar
  192. Wang QM, Guo XY, Tian QH (2017a) Reaction mechanism and distribution behavior of arsenic in the bottom blown copper smelting process. Metals 7:302.  https://doi.org/10.3390/met7080302 CrossRefGoogle Scholar
  193. Wang X, Dong HC, Feng L et al (2017c) Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites. Chemosphere 178:402–410.  https://doi.org/10.1016/j.chemosphere.2017.03.078 CrossRefGoogle Scholar
  194. Wang X, Ma FJ, Zhang Q et al (2017b) An evaluation of different soil washing solutions for remediating arsenic-contaminated soils. Chemosphere 173:368–372.  https://doi.org/10.1016/j.chemosphere.2017.01.068 CrossRefPubMedGoogle Scholar
  195. Wang S, Wang W, Jin Z, Du B, Ding Y, Ni T, Jiao F (2013) Screening and diversity of plant growth promoting endophytic bacteria from peanut. Afr J Microbiol Res 7:875–884.  https://doi.org/10.5897/AJMR12.1500
  196. Wei M, Chen J, Wang Q (2018) Remediation of sandy soil contaminated by heavy metals with Na(2)EDTA washing enhanced with organic reducing agents: element distribution and spectroscopic analysis. Eur J Soil Sci 69:719–731.  https://doi.org/10.1111/ejss.12560 CrossRefGoogle Scholar
  197. Wenzel W, Kirchbaumer N, Prohaska T et al (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323.  https://doi.org/10.1016/S0003-2670(01)00924-2 CrossRefGoogle Scholar
  198. White JF Jr, Torres MS, Somu MP et al (2014) Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech 77:566–573.  https://doi.org/10.1002/jemt.22375 CrossRefPubMedGoogle Scholar
  199. WHO (World Health Organization) (2016) The public health impact of chemicals: knowns and unknowns. GenevaGoogle Scholar
  200. WHO (World Health Organization) (2018) Arsenic. Available via WHO Webpage. https://www.who.int/news-room/fact-sheets/detail/arsenic. Accessed 5 Jan 2019
  201. Wu F, Hu J, Wu S et al (2015) Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As- spiked soils. Environ Sci Pollut Res 22:8919–8926.  https://doi.org/10.1007/s11356-012-1440-9 CrossRefGoogle Scholar
  202. Wu J, Chen G, Liao Y (2011) Arsenic levels in the soil and risk of birth defects: a population-based case-control study using GIS technology. J Environ Health 74:20–25PubMedGoogle Scholar
  203. Wu J, Rosen B (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58PubMedGoogle Scholar
  204. Wu Y, Wang F, Zhan S et al (2013) Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(III). RSC Adv 3:25614.  https://doi.org/10.1039/c3ra44346a CrossRefGoogle Scholar
  205. Wu Y, Zhan S, Xing H et al (2012) Nanoparticles assembled by aptamers and crystal violet for arsenic(III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nanoscale 4:6841.  https://doi.org/10.1039/c2nr31418e CrossRefPubMedGoogle Scholar
  206. Xue XM, Ye J, Raber G et al (2018) Identification of steps in the pathway of arsenosugars biosynthesis. Environ Sci Technol.  https://doi.org/10.1021/acs.est.8b04389 CrossRefGoogle Scholar
  207. Yang Q, Li Z, Lu X (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700.  https://doi.org/10.1016/j.scitotenv.2018.06.068 CrossRefPubMedGoogle Scholar
  208. Ye J, Yang HC, Rosen B et al (2007) Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett 581:3996–4000.  https://doi.org/10.1016/j.febslet.2007.07.039 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Yoon Y, Kim S, Chae Y et al (2016) Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters. Appl Microbiol Biotechnol 100:3713–3722.  https://doi.org/10.1007/s00253-016-7338-6 CrossRefPubMedGoogle Scholar
  210. Yoshida K, Inoue K, Takahashi Y et al (2008) Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl Environ Microbiol 74:6730–6738.  https://doi.org/10.1128/AEM.00498-08 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Yuan C, Lu X, Quin J et al (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Technol 42:3201–3206CrossRefGoogle Scholar
  212. Zargar K, Hoeft S, Oremlanl et al (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidating bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192:3755–3762.  https://doi.org/10.1016/j.febslet.2007.07.039 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Zhang SH, Wang Y, Pervaiz A et al (2018) Comparison of diffusive gradients in thin-films (DGT) and chemical extraction methods for predicting bioavailability of antimony and arsenic to maize. Geoderma 332:1–9.  https://doi.org/10.1016/j.geoderma.2018.06.023 CrossRefGoogle Scholar
  214. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559.  https://doi.org/10.1146/annurev-arplant-042809-112152 CrossRefPubMedGoogle Scholar
  215. Zhu YG, Xue XM, Kappler A et al (2017) Linking genes to microbial biogeochemical cyclic: lesson from arsenic. Environ Sci Technol 51:7326–7339.  https://doi.org/10.1021/acs.est.7b00689 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Zhu YG, Yoshinaga M, Zhao FJ et al (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467.  https://doi.org/10.1146/annurev-earth-060313-054942 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • María del Carmen Molina
    • 1
    • 2
    Email author
  • Luis Fernando Bautista
    • 3
  • Ignacio Belda
    • 1
  • Manuel Carmona
    • 4
  • Eduardo Díaz
    • 4
  • Gonzalo Durante-Rodríguez
    • 4
  • Sara García-Salgado
    • 5
  • Jaime López-Asensio
    • 1
  • Pilar Martínez-Hidalgo
    • 1
  • María Ángeles Quijano
    • 5
  • James F. White
    • 2
  • Natalia González-Benítez
    • 1
  1. 1.Department of Biology and GeologyPhysic and Inorganic Chemistry. ESCETMadridSpain
  2. 2.Department of Plant Biology and Plant PathologyRutgers University, School of Environmental and Biological Sciences (SEBS)New BrunswickUSA
  3. 3.Department of Chemical and Environmental Technology, ESCETUniversidad Rey Juan CarlosMadridSpain
  4. 4.Department of Microbial and Plant BiotechnologyCentro de Investigaciones BiológicasMadridSpain
  5. 5.Department of Civil Engineering: Hydraulic and Land Planning, ETSICUniversidad Politécnica de MadridMadridSpain

Personalised recommendations