Advertisement

Electroencephalography, Evoked Potentials, and Event-Related Potentials

  • Xuejing Lu
  • Li HuEmail author
Chapter

Abstract

This chapter aims to provide background knowledge necessary to understand electroencephalography (EEG) technique and its applications. First, the information about how EEG, evoked potentials (EPs), and event-related potentials (ERPs) are generated and obtained are summarized. Next, a brief overview of EPs and ERPs is provided, and classical EP and ERP components that are applied in clinical and neuroscience studies are also described, with an emphasis on different sensory modalities through which the stimuli are presented. Finally, the pitfalls and promise in EP and ERP studies are discussed.

Keywords

Electroencephalography (EEG) Evoked potentials (EPs) Event-related potentials (ERPs) 

References

  1. Agostino R, Cruccu G, Romaniello A, Innocenti P, Inghilleri M, Manfredi M. Dysfunction of small myelinated afferents in diabetic polyneuropathy, as assessed by laser evoked potentials. Clin Neurophysiol. 2000;111:270–6.PubMedCrossRefGoogle Scholar
  2. Aminoff MJ, Olney RK, Parry GJ, Raskin NH. Relative utility of different electrophysiologic techniques in the evaluation of brachial plexopathies. Neurology. 1988;38:546–50.PubMedCrossRefGoogle Scholar
  3. Anderson NE, Frith RW, Synek VM. Somatosensory evoked potentials in syringomyelia. J Neurol Neurosurg Psychiatry. 1986;49:1407–10.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Begleiter H, Porjesz B, Gross MM. Cortical evoked potentials and psychopathology. A critical review. Arch Gen Psychiatry. 1967;17:755–8.PubMedCrossRefGoogle Scholar
  5. Blum AS, Rutkove SB. The clinical neurophysiology primer. Totowa: Humana Press; 2007.CrossRefGoogle Scholar
  6. Bohorquez J, Ozdamar O. Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution. Clin Neurophysiol. 2008;119:2598–607.PubMedCrossRefGoogle Scholar
  7. Boutros NN, Trautner P, Korzyukov O, Grunwald T, Burroughs S, Elger CE, Kurthen M, Rosburg T. Mid-latency auditory-evoked responses and sensory gating in focal epilepsy: a preliminary exploration. J Neuropsychiatry Clin Neurosci. 2006;18:409–16.PubMedCrossRefGoogle Scholar
  8. Bromm B, Treede RD. Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol. 1984;3:33–40.PubMedGoogle Scholar
  9. Bromm B, Treede RD. Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev Neurol (Paris). 1991;147:625–43.Google Scholar
  10. Bromm B, Frieling A, Lankers J. Laser-evoked brain potentials in patients with dissociated loss of pain and temperature sensibility. Electroencephalogr Clin Neurophysiol. 1991;80:284–91.PubMedCrossRefGoogle Scholar
  11. Callaway E, Tueting P, Koslow SH, National Institute of Mental Health (U.S.). Clinical Research Branch. Event-related brain potentials in man. Academic: New York; 1978.Google Scholar
  12. Carmon A, Mor J, Goldberg J. Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res. 1976;25:103–7.PubMedCrossRefGoogle Scholar
  13. Carmon A, Friedman Y, Coger R, Kenton B. Single trial analysis of evoked potentials to noxious thermal stimulation in man. Pain. 1980;8:21–32.PubMedCrossRefGoogle Scholar
  14. Colon E, Legrain V, Mouraux A. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Neurophysiol Clin. 2012;42:315–23.PubMedCrossRefGoogle Scholar
  15. Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RD, Garcia-Larrea L. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19.PubMedCrossRefGoogle Scholar
  16. Davis SL, Aminoff MJ, Panitch HS. Clinical correlations of serial somatosensory evoked potentials in multiple sclerosis. Neurology. 1985;35:359–65.PubMedCrossRefGoogle Scholar
  17. Dawson GD. A summation technique for detecting small signals in a large irregular background. J Physiol. 1951;115:2p–3p.PubMedGoogle Scholar
  18. Dawson GD. A summation technique for the detection of small evoked potentials. Electroencephalogr Clin Neurophysiol. 1954;6:65–84.PubMedCrossRefGoogle Scholar
  19. de Pablos C, Agirre Z. Trigeminal somatosensory evoked potentials in multiple sclerosis: a case report. Clin EEG Neurosci. 2006;37:243–6.PubMedCrossRefGoogle Scholar
  20. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119:248–64.PubMedCrossRefGoogle Scholar
  21. Deletis V, Shils JL. Neurophysiology in neurosurgery: a modern intraoperative approach. San Diego: Academic; 2002.Google Scholar
  22. Depresseux JC. The positron emission tomography and its applications. J Belg Radiol. 1977;60:483–500.PubMedGoogle Scholar
  23. Devlin VJ, Anderson PA, Schwartz DM, Vaughan R. Intraoperative neurophysiologic monitoring: focus on cervical myelopathy and related issues. Spine J. 2006;6:212S–24S.PubMedCrossRefGoogle Scholar
  24. DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P. Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods. 1994;54:171–87.PubMedCrossRefGoogle Scholar
  25. Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA. Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp. 2002;15:95–111.PubMedCrossRefGoogle Scholar
  26. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Naatanen R, Polich J, Reinvang I, Van Petten C. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:1883–908.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ellrich J, Jung K, Ristic D, Yekta SS. Laser-evoked cortical potentials in cluster headache. Cephalalgia. 2007;27:510–8.PubMedCrossRefGoogle Scholar
  28. Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin. 2003;33:279–92.PubMedCrossRefGoogle Scholar
  29. Garnsey SM. Event-related brain potentials in the study of language. Hove: L. Erlbaum; 1993.CrossRefGoogle Scholar
  30. Goldie WD, Chiappa KH, Young RR, Brooks EB. Brainstem auditory and short-latency somatosensory evoked responses in brain death. Neurology. 1981;31:248–8.PubMedCrossRefGoogle Scholar
  31. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27:E6.PubMedCrossRefGoogle Scholar
  32. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil. 2008;5:25.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Greenspan JD, Lee RR, Lenz FA. Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain. 1999;81:273–82.PubMedCrossRefGoogle Scholar
  34. Guerreiro CA, Ehrenberg BL. Brainstem auditory evoked response: application in neurology. Arq Neuropsiquiatr. 1982;40:21–8.PubMedCrossRefGoogle Scholar
  35. Herrmann CS. Human EEG responses to 1-100Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res. 2001;137:346–53.PubMedCrossRefGoogle Scholar
  36. Hillyard SA, Vogel EK, Luck SJ. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Biol Sci. 1998;353:1257–70.CrossRefGoogle Scholar
  37. Hu Y, Luk KD, Lu WW, Leong JC. Application of time-frequency analysis to somatosensory evoked potential for intraoperative spinal cord monitoring. J Neurol Neurosurg Psychiatry. 2003;74:82–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hu L, Mouraux A, Hu Y, Iannetti GD. A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage. 2010;50:99–111.PubMedCrossRefGoogle Scholar
  39. Hu L, Valentini E, Zhang ZG, Liang M, Iannetti GD. The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. NeuroImage. 2014;84:383–93.PubMedCrossRefGoogle Scholar
  40. Hua SE, Garonzik IM, Lee JI, Lenz FA. Microelectrode studies of normal organization and plasticity of human somatosensory thalamus. J Clin Neurophysiol. 2000;17:559–74.PubMedCrossRefGoogle Scholar
  41. Hughes JR. EEG in clinical practice. Boston: Butterworth-Heinemann; 1994.Google Scholar
  42. Iannetti GD, Truini A, Galeotti F, Romaniello A, Manfredi M, Cruccu G. Usefulness of dorsal laser evoked potentials in patients with spinal cord damage: report of two cases. J Neurol Neurosurg Psychiatry. 2001;71:792–4.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Iannetti GD, Truini A, Romaniello A, Galeotti F, Rizzo C, Manfredi M, Cruccu G. Evidence of a specific spinal pathway for the sense of warmth in humans. J Neurophysiol. 2003;89:562–70.PubMedCrossRefGoogle Scholar
  44. Iannetti GD, Zambreanu L, Cruccu G, Tracey I. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience. 2005;131:199–208.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Iannetti GD, Hughes NP, Lee MC, Mouraux A. Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol. 2008;100:815–28.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Inoue K, Hashimoto I, Nakamura S. High-frequency oscillations in human posterior tibial somatosensory evoked potentials are enhanced in patients with Parkinson’s disease and multiple system atrophy. Neurosci Lett. 2001;297:89–92.PubMedCrossRefGoogle Scholar
  47. Jeffreys DA, Axford JG. Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res. 1972;16:1–21.PubMedGoogle Scholar
  48. Jervis BW, Nichols MJ, Johnson TE, Allen E, Hudson NR. A fundamental investigation of the composition of auditory evoked potentials. IEEE Trans Biomed Eng. 1983;30:43–50.PubMedCrossRefGoogle Scholar
  49. Kakigi R, Shibasaki H, Kuroda Y, Neshige R, Endo C, Tabuchi K, Kishikawa T. Pain-related somatosensory evoked potentials in syringomyelia. Brain. 1991a;114(Pt 4):1871–89.PubMedCrossRefGoogle Scholar
  50. Kakigi R, Shibasaki H, Tanaka K, Ikeda T, Oda K, Endo C, Ikeda A, Neshige R, Kuroda Y, Miyata K, et al. CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between electrophysiological and histopathological findings. Muscle Nerve. 1991b;14:441–50.PubMedCrossRefGoogle Scholar
  51. Kakigi R, Shibasaki H, Ikeda T, Neshige R, Endo C, Kuroda Y. Pain-related somatosensory evoked potentials following CO2 laser stimulation in peripheral neuropathies. Acta Neurol Scand. 1992;85:347–52.PubMedCrossRefGoogle Scholar
  52. Kanda M, Mima T, Xu X, Fujiwara N, Shindo K, Nagamine T, Ikeda A, Shibasaki H. Pain-related somatosensory evoked potentials can quantitatively evaluate hypalgesia in Wallenberg’s syndrome. Acta Neurol Scand. 1996;94:131–6.PubMedCrossRefGoogle Scholar
  53. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York: McGraw-Hill Health Professions Division; 2000.Google Scholar
  54. Kraft GH, Aminoff MJ, Baran EM, Litchy WJ, Stolov WC. Somatosensory evoked potentials: clinical uses. AAEM somatosensory evoked potentials subcommittee. American Association of Electrodiagnostic Medicine. Muscle Nerve. 1998;21:252–8.PubMedCrossRefGoogle Scholar
  55. Krarup-Hansen A, Fugleholm K, Helweg-Larsen S, Hauge EN, Schmalbruch H, Trojaborg W, Krarup C. Examination of distal involvement in cisplatin-induced neuropathy in man. An electrophysiological and histological study with particular reference to touch receptor function. Brain. 1993;116(Pt 5):1017–41.PubMedCrossRefGoogle Scholar
  56. Kunde V, Treede RD. Topography of middle-latency somatosensory evoked potentials following painful laser stimuli and non-painful electrical stimuli. Electroencephalogr Clin Neurophysiol. 1993;88:280–9.PubMedCrossRefGoogle Scholar
  57. Kuruvilla A, Flink R. Intraoperative electrocorticography in epilepsy surgery: useful or not? Seizure. 2003;12:577–84.PubMedCrossRefGoogle Scholar
  58. Lange K. The ups and downs of temporal orienting: a review of auditory temporal orienting studies and a model associating the heterogeneous findings on the auditory N1 with opposite effects of attention and prediction. Front Hum Neurosci. 2013;7:263.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lee MC, Mouraux A, Iannetti GD. Characterizing the cortical activity through which pain emerges from nociception. J Neurosci. 2009;29:7909–16.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Leenders KL, Gibbs JM, Frackowiak RS, Lammertsma AA, Jones T. Positron emission tomography of the brain: new possibilities for the investigation of human cerebral pathophysiology. Prog Neurobiol. 1984;23:1–38.PubMedCrossRefGoogle Scholar
  61. Legrain V, Guérit JM, Bruyer R, Plaghki L. Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain. 2002;99:21–39.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Liang M, Mouraux A, Chan V, Blakemore C, Iannetti GD. Functional characterisation of sensory ERPs using probabilistic ICA: effect of stimulus modality and stimulus location. Clin Neurophysiol. 2010;121:577–87.PubMedCrossRefGoogle Scholar
  63. Livshits AV, Sokolova AA, Margishvili MG. The dynamics of somatosensory evoked potentials in patients with a spinal cord tumor. Zh Vopr Neirokhir Im N N Burdenko. 1992:19–21.Google Scholar
  64. Loncarevic N, Tiric-Campara M, Mulabegovic N. Somatosensory evoked cerebral potentials (SSEP) in multiple sclerosis. Med Arh. 2008;62:80–1.PubMedGoogle Scholar
  65. Luck S. An introduction to the event-related potential technique. Cambridge: MIT Press; 2005.Google Scholar
  66. Luk KD, Hu Y, Lu WW, Wong YW. Effect of stimulus pulse duration on intraoperative somatosensory evoked potential (SEP) monitoring. J Spinal Disord. 2001;14:247–51.PubMedCrossRefGoogle Scholar
  67. Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ. Dynamic brain sources of visual evoked responses. Science. 2002;295:690–4.PubMedCrossRefGoogle Scholar
  68. Mauguiere F, Allison T, Babiloni C, Buchner H, Eisen AA, Goodin DS, Jones SJ, Kakigi R, Matsuoka S, Nuwer M, Rossini PM, Shibasaki H. Somatosensory evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:79–90.PubMedGoogle Scholar
  69. Michel CM, Thut G, Morand S, Khateb A, Pegna AJ, Grave de Peralta R, Gonzalez S, Seeck M, Landis T. Electric source imaging of human brain functions. Brain Res Brain Res Rev. 2001;36:108–18.PubMedCrossRefGoogle Scholar
  70. Min BK, Busch NA, Debener S, Kranczioch C, Hanslmayr S, Engel AK, Herrmann CS. The best of both worlds: phase-reset of human EEG alpha activity and additive power contribute to ERP generation. Int J Psychophysiol. 2007;65:58–68.PubMedCrossRefGoogle Scholar
  71. Minahan RE. Intraoperative neuromonitoring. Neurologist. 2002;8:209–26.PubMedCrossRefGoogle Scholar
  72. Moglia A, Zandrini C, Alfonsi E, Rondanelli EG, Bono G, Nappi G. Neurophysiological markers of central and peripheral involvement of the nervous system in HIV-infection. Clin Electroencephalogr. 1991;22:193–8.PubMedCrossRefGoogle Scholar
  73. Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging. 2008;26:1041–54.PubMedCrossRefGoogle Scholar
  74. Mouraux A, Iannetti GD. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol. 2009;101:3258–69.PubMedCrossRefGoogle Scholar
  75. Mouraux A, Iannetti GD, Colon E, Nozaradan S, Legrain V, Plaghki L. Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci. 2011;31:6079–87.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology. 1987;24:375–425.PubMedCrossRefGoogle Scholar
  77. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118:2544–90.PubMedCrossRefGoogle Scholar
  78. Niedermeyer E, Lopes da Silva FH. Electroencephalography : basic principles, clinical applications, and related fields. Philadelphia: Lippincott Williams & Wilkins; 2005.Google Scholar
  79. Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B. The steady-state visual evoked potential in vision research: a review. J Vis. 2015;15:4.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nozaradan S, Peretz I, Mouraux A. Steady-state evoked potentials as an index of multisensory temporal binding. NeuroImage. 2012;60:21–8.PubMedCrossRefGoogle Scholar
  81. Nunez PL, Srinivasan R. Electric fields of the brain : the neurophysics of EEG. Oxford: Oxford University Press; 2006.CrossRefGoogle Scholar
  82. Nuwer MR. Spinal cord monitoring with somatosensory techniques. J Clin Neurophysiol. 1998;15:183–93.PubMedCrossRefGoogle Scholar
  83. O’Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Clin Neurophysiol. 2013;62:101–12.Google Scholar
  84. Ozaki I, Suzuki C, Yaegashi Y, Baba M, Matsunaga M, Hashimoto I. High frequency oscillations in early cortical somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol. 1998;108:536–42.PubMedCrossRefGoogle Scholar
  85. Parry GJ, Aminoff MJ. Somatosensory evoked potentials in chronic acquired demyelinating peripheral neuropathy. Neurology. 1987;37:313–6.PubMedCrossRefGoogle Scholar
  86. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57.PubMedCrossRefGoogle Scholar
  87. Regan D. Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol. 1966;20:238–48.PubMedCrossRefGoogle Scholar
  88. Rossi L, Bianchi AM, Merzagora A, Gaggiani A, Cerutti S, Bracchi F. Single trial somatosensory evoked potential extraction with ARX filtering for a combined spinal cord intraoperative neuromonitoring technique. Biomed Eng Online. 2007;6:2.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Roth WT, Horvath TB, Pfefferbaum A, Kopell BS. Event-related potentials in schizophrenics. Electroencephalogr Clin Neurophysiol. 1980;48:127–39.PubMedCrossRefGoogle Scholar
  90. Rugg MD, Coles MGH. Electrophysiology of mind : event-related brain potentials and cognition. Oxford: Oxford University Press; 1995.Google Scholar
  91. Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R, Doppelmayr M. Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience. 2007;146:1435–44.PubMedCrossRefGoogle Scholar
  92. Schmahl C, Greffrath W, Baumgartner U, Schlereth T, Magerl W, Philipsen A, Lieb K, Bohus M, Treede RD. Differential nociceptive deficits in patients with borderline personality disorder and self-injurious behavior: laser-evoked potentials, spatial discrimination of noxious stimuli, and pain ratings. Pain. 2004;110:470–9.PubMedCrossRefGoogle Scholar
  93. Schroeder CE, Steinschneider M, Javitt DC, Tenke CE, Givre SJ, Mehta AD, Simpson GV, Arezzo JC, Vaughan HG Jr. Localization of ERP generators and identification of underlying neural processes. Electroencephalogr Clin Neurophysiol Suppl. 1995;44:55–75.PubMedGoogle Scholar
  94. Sussman ES. A new view on the MMN and attention debate. J Psychophysiol. 2007;21:164–75.CrossRefGoogle Scholar
  95. Treede RD. Das somatosensorische system. In: Robert F, Schmidt LF, editors. Physiologie des menschen. Heidelberg: Springer; 2007.Google Scholar
  96. Treede RD, Lankers J, Frieling A, Zangemeister WH, Kunze K, Bromm B. Cerebral potentials evoked by painful, laser stimuli in patients with syringomyelia. Brain. 1991;114(Pt 4):1595–607.PubMedCrossRefGoogle Scholar
  97. Treede RD, Meyer RA, Campbell JN. Myelinated mechanically insensitive afferents from monkey hairy skin: heat-response properties. J Neurophysiol. 1998;80:1082–93.PubMedCrossRefGoogle Scholar
  98. Treede RD, Lorenz J, Baumgartner U. Clinical usefulness of laser-evoked potentials. Neurophysiol Clin. 2003;33:303–14.PubMedCrossRefGoogle Scholar
  99. Valentini E, Li H, Bhisma Chakrabarti YH, Aglioti SM, Iannetti GD. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. NeuroImage. 2012;59:1571–81.PubMedCrossRefGoogle Scholar
  100. Valeriani M, Le Pera D, Tonali P. Characterizing somatosensory evoked potential sources with dipole models: advantages and limitations. Muscle Nerve. 2001;24:325–39.PubMedCrossRefGoogle Scholar
  101. Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol. 2010;90:418–38.PubMedCrossRefGoogle Scholar
  102. Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995;7:240–76.PubMedGoogle Scholar
  103. Vogel EK, Luck SJ. The visual N1 component as an index of a discrimination process. Psychophysiology. 2000;37:190–203.PubMedCrossRefGoogle Scholar
  104. Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96:255–62.PubMedCrossRefGoogle Scholar
  105. Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci. 1993;90:8722–6.PubMedCrossRefGoogle Scholar
  106. Yabe H, Tervaniemi M, Reinikainen K. Temporal window of integration revealed by MMN to sound omission. Neuroreport. 1997;8:1971–4.PubMedCrossRefGoogle Scholar
  107. Yiannikas C, Vucic S. Utility of somatosensory evoked potentials in chronic acquired demyelinating neuropathy. Muscle Nerve. 2008;38:1447–54.PubMedCrossRefGoogle Scholar
  108. Zeman BD, Yiannikas C. Functional prognosis in stroke: use of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 1989;52:242–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhang L, Peng W, Zhang Z, Hu L. Distinct features of auditory steady-state responses as compared to transient event-related potentials. PLoS One. 2013;8:e69164.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
  2. 2.Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations