Advertisement

EEG/ERP Data Analysis Toolboxes

  • Gan Huang
Chapter

Abstract

The development and application of new methods allow us to perform more advanced analyses on EEG signals. However, the understanding of the mathematical and methodological details about these new methods would be no easy for the researchers without engineering and mathematics background. As a collection of tools for EEG signal processing and data visualization, EEG/ERP analysis toolboxes make the researchers be able to perform the complex analysis by simply clicking buttons or running some lines of MATLAB script. In this chapter, we firstly make a brief overview about the currently popular toolboxes in EEG/ERP analysis, such as EEGLab, FieldTrip, BrainVision Analyzer, etc., and then focus on the introduction of Letswave, which is an intuitive and streamlined tool to process and visualize EEG data, with a shallow learning curve. Examples are provided for a better understanding of Letswave7 in EEG/ERP data analysis.

Keywords

Toolbox Letswave Signal processing Data visualization 

References

  1. Barnett L, Seth AK. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods. 2014;223:50–68.CrossRefGoogle Scholar
  2. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: a platform for analyzing neural signals. J Neurosci Methods. 2010;192(1):146–51.CrossRefGoogle Scholar
  3. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.CrossRefGoogle Scholar
  4. Delorme A, Mullen T, Kothe C, Acar ZA, Bigdely-Shamlo N, Vankov A, Makeig S. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comp Intell Neurosci. 2011;2011:10.Google Scholar
  5. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2013;7:267.CrossRefGoogle Scholar
  6. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. Eegnet: a compact convolutional network for eeg-based brain-computer interfaces. arXiv preprint arXiv. 2016:1611.08024.Google Scholar
  7. Lindner M, Vicente R, Priesemann V, Wibral M. TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci. 2011;12(1):119.CrossRefGoogle Scholar
  8. Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W. EEG and MEG data analysis in SPM8. Comp Intell Neurosci. 2011;2011Google Scholar
  9. Niso G, Bruña R, Pereda E, Gutiérrez R, Bajo R, Maestú F, del-Pozo F. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics. 2013;11(4):405–34.CrossRefGoogle Scholar
  10. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:1.CrossRefGoogle Scholar
  11. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gan Huang
    • 1
  1. 1.School of Biomedical Engineering, Health Science CenterShenzhen UniversityShenzhenChina

Personalised recommendations