Advertisement

Nonlinear Neural Dynamics

  • Yang BaiEmail author
  • Xiaoli Li
  • Zhenhu Liang
Chapter

Abstract

Brain activities measured by EEG exhibit complex behavior with nonlinear dynamic properties. Therefore, methods derived from nonlinear theory could contribute to the understanding of the EEG dynamics and the underlying brain processes. Until now, a number of nonlinear dynamic methods have been proposed. These methods reveal various nonlinear properties of the EEG signals. Among them, “complexity” and “entropy” are the widely used concept in the EEG analysis. Moreover, entropy-based measures have been applied into clinical practice of monitoring depth of anesthesia. This study selects three classical types of nonlinear dynamic measures (total 12), introducing their basic theory and giving examples of applying them in real EEG analysis. All the MATLAB codes can be downloaded from https://pan.baidu.com/s/1ro2VEJWdsb5X6dCtueGUOA with password: hf4x. Although previous studies compared the performance of various nonlinear dynamic measures at different situations, it is still improper to determine which measure is the best one. The measure selection in your study should take a number of factors into account, such as the parameter selection, robust to artifacts, compute consumption, the correlation of the nonlinear characteristics with the underlying neural process, and so on.

Keywords

EEG Complexity Entropy Nonlinear dynamics 

Supplementary material

462234_1_En_11_MOESM1_ESM.zip (71 kb)
Code (ZIP 71 kb)

References

  1. Abasolo D, Hornero R, Gomez C, Garcia M, Lopez M. Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure. Med Eng Phys. 2006;28(4):315–22.  https://doi.org/10.1016/j.medengphy.2005.07.004.PubMedCrossRefGoogle Scholar
  2. Aboy M, Hornero R, Abasolo D, Alvarez D. Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng. 2006;53(11):2282–8.  https://doi.org/10.1109/TBME.2006.883696.PubMedCrossRefGoogle Scholar
  3. Anier A, Lipping T, Jantti V, Puumala P, Huotari A Entropy of the EEG in transition to burst suppression in deep anesthesia: surrogate analysis. In: Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE, 2010. IEEE, pp. 2790–3.Google Scholar
  4. Bai Y, Liang Z, Li X. A permutation Lempel-Ziv complexity measure for EEG analysis. Biomed Signal Process Control. 2015;19:102–14.CrossRefGoogle Scholar
  5. Bandt C. Ordinal time series analysis. Ecol Model. 2005;182(3):229–38.CrossRefGoogle Scholar
  6. Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002a;88(17):174102.PubMedCrossRefGoogle Scholar
  7. Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002b;88(17):174102.PubMedCrossRefGoogle Scholar
  8. Bein B. Entropy. Best Pract Res Clin Anaesthesiol. 2006;20(1):101–9.PubMedCrossRefGoogle Scholar
  9. Bruhn J, Lehmann LE, Röpcke H, Bouillon TW, Hoeft A. Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology. 2001;95(1):30–5.PubMedCrossRefGoogle Scholar
  10. Bruhn J, Röpcke H, Hoeft A. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology. 2000;92(3):715–26.PubMedCrossRefGoogle Scholar
  11. Bruzzo AA, Gesierich B, Santi M, Tassinari CA, Birbaumer N, Rubboli G. Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study. Neurol Sci. 2008;29(1):3–9.  https://doi.org/10.1007/s10072-008-0851-3.PubMedCrossRefGoogle Scholar
  12. Cao Y, Tung W, Gao J, Protopopescu V, Hively L. Detecting dynamical changes in time series using the permutation entropy. Phys Rev E. 2004a;70(4; Part 2):46217.CrossRefGoogle Scholar
  13. Cao Y, Tung WW, Gao JB, Protopopescu VA, Hively LM. Detecting dynamical changes in time series using the permutation entropy. Phys Rev E Stat Nonlinear Soft Matter Phys. 2004b;70(4. Pt 2):046217.CrossRefGoogle Scholar
  14. Chen CC, Hsu YT, Chan HL, Chiou SM, Tu PH, Lee ST, Tsai CH, Lu CS, Brown P. Complexity of subthalamic 13-35 Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson’s disease. Exp Neurol. 2010;224(1):234–40.  https://doi.org/10.1016/j.expneurol.2010.03.015.PubMedCrossRefGoogle Scholar
  15. Chen W, Zhuang J, Yu W, Wang Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys. 2009;31(1):61–8.PubMedCrossRefGoogle Scholar
  16. Dauwels J, Srinivasan K, Ramasubba Reddy M, Musha T, Vialatte FB, Latchoumane C, Jeong J, Cichocki A. Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int J Alzheimers Dis. 2011;2011:539621.  https://doi.org/10.4061/2011/539621.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Eckmann JP, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. EPL (Europhys Lett). 1987;4:973.CrossRefGoogle Scholar
  18. Facchini A, Mocenni C, Marwan N, Vicino A, Tiezzi E. Nonlinear time series analysis of dissolved oxygen in the Orbetello lagoon (Italy). Ecol Model. 2007;203(3–4):339–48.CrossRefGoogle Scholar
  19. Hu J, Gao J, Príncipe JC. Analysis of biomedical signals by the Lempel-Ziv complexity: the effect of finite data size. IEEE Trans Biomed Eng. 2006;53(12):2606–9.PubMedCrossRefGoogle Scholar
  20. Huang L, Yu P, Ju F, Cheng J. Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia. Med Eng Phys. 2003;25(4):321–7.PubMedCrossRefGoogle Scholar
  21. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond A. 1998;454(1971):903–95.CrossRefGoogle Scholar
  22. Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol. 1991;79(3):204–10.PubMedCrossRefGoogle Scholar
  23. Jouny CC, Bergey GK. Characterization of early partial seizure onset: frequency, complexity and entropy. Clin Neurophysiol. 2012;123(4):658–69.  https://doi.org/10.1016/j.clinph.2011.08.003.PubMedCrossRefGoogle Scholar
  24. Klaus B, Gerhard S, Matthias E, Andreas R, Kochs EF, Walter Z, Hans-Ulrich D. Anaesthesia monitoring by recurrence quantification analysis of EEG data. PLoS One. 2010;5(1):e8876.CrossRefGoogle Scholar
  25. Klockars JG, Hiller A, Munte S, van Gils MJ, Taivainen T. Spectral entropy as a measure of hypnosis and hypnotic drug effect of total intravenous anesthesia in children during slow induction and maintenance. Anesthesiology. 2012;116(2):340–51.  https://doi.org/10.1097/ALN.0b013e3182410b5e.PubMedCrossRefGoogle Scholar
  26. Lempel A, Ziv J. On the complexity of finite sequences. IEEE Trans Inf Theory. 1976;22(1):75–81.CrossRefGoogle Scholar
  27. Li D, Li X, Liang Z, Voss LJ, Sleigh JW. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng. 2010;7(4):046010.PubMedCrossRefGoogle Scholar
  28. Li X. Temporal structure of neuronal population oscillations with empirical model decomposition. Phys Lett A. 2006;356(3):237–41.CrossRefGoogle Scholar
  29. Li X, Cui S, Voss LJ. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology. 2008a;109(3):448.PubMedCrossRefGoogle Scholar
  30. Li X, Li D, Liang Z, Voss LJ, Sleigh JW. Analysis of depth of anesthesia with Hilbert–Huang spectral entropy. Clin Neurophysiol. 2008b;119(11):2465–75.  https://doi.org/10.1016/j.clinph.2008.08.006.PubMedCrossRefGoogle Scholar
  31. Li X, Ouyang G, Richards DA. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 2007;77(1):70.PubMedCrossRefGoogle Scholar
  32. Li X, Ouyang G, Yao X, Guan X. Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis. Phys Lett A. 2004;333(1–2):164–71.CrossRefGoogle Scholar
  33. Li XL, Cui SY, Voss LJ. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology. 2008c;109(3):448–56.  https://doi.org/10.1097/Aln.0b013e318182a91b.PubMedCrossRefGoogle Scholar
  34. Li XL, Ouyang GX. Estimating coupling direction between neuronal populations with permutation conditional mutual information. NeuroImage. 2010;52(2):497–507.  https://doi.org/10.1016/j.neuroimage.2010.05.003.PubMedCrossRefGoogle Scholar
  35. Li Y, Tong S, Liu D, Gai Y, Wang X, Wang J, Qiu Y, Zhu Y. Abnormal EEG complexity in patients with schizophrenia and depression. Clin Neurophysiol. 2008d;119(6):1232–41.  https://doi.org/10.1016/j.clinph.2008.01.104.PubMedCrossRefGoogle Scholar
  36. Li Z, Li X. Estimating temporal causal interaction between spike trains with permutation and transfer entropy. PLoS One. 2013;8(8):e70894.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Liang H, Lin Z, McCallum R. Artifact reduction in electrogastrogram based on empirical mode decomposition method. Med Biol Eng Comput. 2000;38(1):35–41.PubMedCrossRefGoogle Scholar
  38. Liang Z, Li D, Ouyang G, Wang Y, Voss LJ, Sleigh JW, Li X. Multiscale rescaled range analysis of EEG recordings in sevoflurane anesthesia. Clin Neurophysiol. 2012;123(4):681–8.PubMedCrossRefGoogle Scholar
  39. Liang Z, Wang Y, Sun X, Li D, Voss LJ, Sleigh JW, Hagihira S, Li X. EEG entropy measures in anesthesia. Front Comput Neurosci. 2015;9:16.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Linde Y, Buzo A, Gray RM. Algorithm for vector Quantizer design. Ieee T Commun. 1980;28(1):84–95.  https://doi.org/10.1109/Tcom.1980.1094577.CrossRefGoogle Scholar
  41. Marwan N. Encounters with neighbours: current developments of concepts based on recurrence plots and their applications. Norbert Marwan; 2003.Google Scholar
  42. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys Rep. 2007;438(5):237–329.CrossRefGoogle Scholar
  43. Matic V, Cherian PJ, Koolen N, Ansari AH, Naulaers G, Govaert P, Huffel SV, Vos MD, Vanhatalo S (2015) Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis. Front Hum Neurosci 9:189.Google Scholar
  44. Mocenni C, Stanley HE. Identifying the dynamics of complex spatio-temporal systems by spatial recurrence properties. Proc Natl Acad Sci U S A. 2010;107(18):8097–102.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Olofsen E, Sleigh JW, Dahan A. Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth. 2008;101(6):810–21.  https://doi.org/10.1093/bja/aen290.PubMedCrossRefGoogle Scholar
  46. Ouyang G, Li X, Dang C, Richards DA. Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats. Clin Neurophysiol. 2008;119(8):1747–55.PubMedCrossRefGoogle Scholar
  47. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci. 1991;88(6):2297–301.PubMedCrossRefGoogle Scholar
  48. Röschke J, Fell J, Beckmann P. Nonlinear analysis of sleep eeg in depression: calculation of the largest lyapunov exponent. Eur Arch Psychiatry Clin Neurosci. 1995;245(1):27–35.PubMedCrossRefGoogle Scholar
  49. Rajendra AU, Faust O, Kannathal N, Chua TL, Laxminarayan S. Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed. 2005;80(1):37–45.CrossRefGoogle Scholar
  50. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys. 2000;278(6):H2039–49.Google Scholar
  51. Rilling G, Flandrin P, Gonçalvés P. On empirical mode decomposition and its algorithms. In: IEEE-EURASIP workshop on nonlinear signal and image processing, NSIP-03, Grado (I), 2003.Google Scholar
  52. Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schurmann M, Basar E. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods. 2001;105(1):65–76.PubMedCrossRefGoogle Scholar
  53. Särkelä MOK, Ermes MJ, van Gils MJ, Yli-Hankala AM, Jäntti VH, Vakkuri AP. Quantification of epileptiform electroencephalographic activity during sevoflurane mask induction. Anesthesiology. 2007;107(6):928–38.PubMedCrossRefGoogle Scholar
  54. Sabeti M, Katebi S, Boostani R. Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med. 2009;47(3):263–74.PubMedCrossRefGoogle Scholar
  55. Schinkel S, Marwan N, Kurths J. Brain signal analysis based on recurrences. J Physiol Paris. 2009;103(6):315–23.PubMedCrossRefGoogle Scholar
  56. Schultz A, Siedenberg M, Grouven U, Kneif T, Schultz B. Comparison of Narcotrend index, Bispectral index, spectral and entropy parameters during induction of propofol-remifentanil anaesthesia. J Clin Monit Comput. 2008;22(2):103–11.  https://doi.org/10.1007/s10877-008-9111-6.PubMedCrossRefGoogle Scholar
  57. Shalbaf R, Behnam H, Sleigh JW, Voss LJ. Using the Hilbert–Huang transform to measure the electroencephalographic effect of propofol. Physiol Meas. 2012;33(2):271–85.  https://doi.org/10.1088/0967-3334/33/2/271.PubMedCrossRefGoogle Scholar
  58. Shannon CE. A mathematical theory of communication, Bell System. New York: American Telephone and Telegraph Co.; 1922.Google Scholar
  59. Shannon CE, Weaver W. The mathematical theory of communication. Urbana: University of Illinois Press; 1949.Google Scholar
  60. Shayegh F, Sadri S, Amirfattahi R, Ansari-Asl K. A model-based method for computation of correlation dimension, Lyapunov exponents and synchronization from depth-EEG signals. Comput Methods Programs Biomed. 2014;113(1):323–37.PubMedCrossRefGoogle Scholar
  61. Sleigh J, Voss L, Barnard J. What are electroencephalogram entropies really measuring? Int Congr Ser. 2005;1283:231–4.  https://doi.org/10.1016/j.ics.2005.06.048.CrossRefGoogle Scholar
  62. Sleigh JW, Olofsen E, Dahan A, De Goede J, Steyn-Ross DA (2001) Entropies of the EEG: the effects of general anaesthesia.Google Scholar
  63. Song IH, Lee DS, Kim SI. Recurrence quantification analysis of sleep electoencephalogram in sleep apnea syndrome in humans. Neurosci Lett. 2004;366(2):148–53.PubMedCrossRefGoogle Scholar
  64. Takens F. Dynamical systems and turbulence. Lecture Notes in Mathematics. 1981;898(9):366.CrossRefGoogle Scholar
  65. Viertiö-Oja H, Maja V, Särkelä M, Talja P, Tenkanen N, Tolvanen-Laakso H, Paloheimo M, Vakkuri A, Yli-Hankala A, Meriläinen P. Description of the Entropy™ algorithm as applied in the Datex-Ohmeda S/5™ Entropy Module. Acta Anaesthesiol Scand. 2004;48(2):154–61.PubMedCrossRefGoogle Scholar
  66. Webber JC, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol. 1994;76(2):965.PubMedCrossRefGoogle Scholar
  67. Worrell GA, Cranstoun SD, Echauz J, Litt B. Evidence for self-organized criticality in human epileptic hippocampus. Neuroreport. 2002;13(16):2017.PubMedCrossRefGoogle Scholar
  68. Yan J, Wang Y, Ouyang G, Yu T, Li Y, Sik A, Li X. Analysis of electrocorticogram in epilepsy patients in terms of criticality. Nonlinear Dyn. 2016;83(4):1909–17.CrossRefGoogle Scholar
  69. Yoon YG, Kim TH, Jeong DW, Park SH. Monitoring the depth of anesthesia from rat EEG using modified Shannon entropy analysis. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4386–9.  https://doi.org/10.1109/IEMBS.2011.6091088.PubMedCrossRefGoogle Scholar
  70. Zhang HX, Zhu YS, Wang ZM. Complexity measure and complexity rate information based detection of ventricular tachycardia and fibrillation. Med Biol Eng Comput. 2000;38(5):553–7.PubMedCrossRefGoogle Scholar
  71. Zhang X-S, Roy RJ, Jensen EW. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng. 2001;48(12):1424–33.PubMedCrossRefGoogle Scholar
  72. Zhang XS, Roy RJ. Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans Biomed Eng. 2001;48(3):312–23.  https://doi.org/10.1109/10.914794.PubMedCrossRefGoogle Scholar
  73. Zhou S, Zhang Z, Gu J Interpretation of coarse-graining of Lempel-Ziv complexity measure in ECG signal analysis. Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society conference 2011: pp. 2716–2719; 2011.  https://doi.org/10.1109/IEMBS.2011.6090745.
  74. Zoughi T, Boostani R, Deypir M. A wavelet-based estimating depth of anesthesia. Eng Appl Artif Intell. 2012;25(8):1710–22.  https://doi.org/10.1016/j.engappai.2011.10.006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Basic Medical Science, School of MedicineHangzhou Normal UniversityZhejiangChina
  2. 2.State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
  3. 3.Institute of Electric EngineeringYanshan UniversityQinhuangdaoChina

Personalised recommendations