Advertisement

Urine pp 49-63 | Cite as

Application of Peptide Level and Posttranslational Modifications to Integrative Analyses in Proteomics

  • Yongtao Liu
  • Jianrui Yin
Chapter

Abstract

In a bottom-up strategy, peptide sequences are first identified from MS/MS spectra, and the existence and abundance of the proteins are then inferred from the peptide information. At the same time, posttranslational modifications also play an important role in peptide matching. However, the protein inference step can produce errors and a loss of information. In addition, the genes and proteins are highly homologous in some species, such as human and mouse; if different species of proteins are mixed in one sample, it is difficult to find the difference from protein level alone. In this part, we try to demonstrate the importance of integrative analysis of peptide level and posttranslational modifications in proteomics by two examples.

Keywords

Peptide level Posttranslational modifications PDX model Unenriched sample Open Search 

Notes

Acknowledgments

Part of this chapter is based on published articles: [1] Yongtao Liu, Youzhu Wang, Zhixiang Cao, and Youhe Gao, Changes in the urinary proteome in a patient-derived xenograft (PDX) nude mouse model of colorectal tumor, Scientific report, 2019,9(1): 4975, and [2] Yin, Jianrui, Chen Shao, Lulu Jia, and Youhe Gao, Comparison at the peptide level with posttranslational modification consideration reveals more differences between two unenriched samples, Rapid Communications in Mass Spectrometry, 2014,28 (12):1364-70.

References

  1. Chi H, et al. Reprint of “pFind-Alioth: a novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data”. J Proteome. 2015a;129:33–41.  https://doi.org/10.1016/j.jprot.2015.07.019.CrossRefGoogle Scholar
  2. Chi H, et al. pFind-Alioth: a novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data. J Proteome. 2015b;125:89–97.  https://doi.org/10.1016/j.jprot.2015.05.009.CrossRefGoogle Scholar
  3. Chi H, et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol. 2018;  https://doi.org/10.1038/nbt.4236.CrossRefGoogle Scholar
  4. Dephoure N, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105:10762–7.  https://doi.org/10.1073/pnas.0805139105.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Emmink BL, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteome. 2013;91:84–96.  https://doi.org/10.1016/j.jprot.2013.06.027.CrossRefGoogle Scholar
  6. Fernandez-Olavarria A, et al. The role of serum biomarkers in the diagnosis and prognosis of oral cancer: a systematic review. J Clin Exp Dent. 2016;8:e184–93.  https://doi.org/10.4317/jced.52736.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Geiger T, Wehner A, Schaab C, Cox J, Mann M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics. 2012;11:M111014050.  https://doi.org/10.1074/mcp.M111.014050.CrossRefGoogle Scholar
  8. Hidalgo M, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013.  https://doi.org/10.1158/2159-8290.CD-14-0001.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Luber CA, et al. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity. 2010;32:279–89.  https://doi.org/10.1016/j.immuni.2010.01.013.CrossRefPubMedGoogle Scholar
  10. Matzke MM, et al. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments. Proteomics. 2013;13:493–503.  https://doi.org/10.1002/pmic.201200269.CrossRefPubMedGoogle Scholar
  11. Nandy SK, Seal A. Structural dynamics investigation of human family 1 & 2 Cystatin-Cathepsin L1 interaction: a comparison of binding modes. PLoS One. 2016;11:e0164970.  https://doi.org/10.1371/journal.pone.0164970.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteome. 2010;73:2092–123.  https://doi.org/10.1016/j.jprot.2010.08.009.CrossRefGoogle Scholar
  13. Ni Y, Zhang F, An M, Yin W, Gao Y. Early candidate biomarkers found from urine of glioblastoma multiforme rat before changes in MRI. Sci China Life Sci. 2018;61:982–7.  https://doi.org/10.1007/s11427-017-9201-0.CrossRefPubMedGoogle Scholar
  14. Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R. Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A. 2006;103:5391–6.  https://doi.org/10.1073/pnas.0507066103.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Rotilio D, et al. Proteomics: bases for protein complexity understanding. Thromb Res. 2012;129:257–62.  https://doi.org/10.1016/j.thromres.2011.12.035.CrossRefPubMedGoogle Scholar
  16. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73:5315–9.  https://doi.org/10.1158/0008-5472.CAN-13-1069.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Tentler JJ, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50.  https://doi.org/10.1038/nrclinonc.2012.61.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Vizcaino JA, et al. The proteomics identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41:D1063–9.  https://doi.org/10.1093/nar/gks1262.CrossRefPubMedGoogle Scholar
  19. Wu J, Guo Z, Gao Y. Dynamic changes of urine proteome in a Walker 256 tumor-bearing rat model. Cancer Med. 2017;6:2713–22.  https://doi.org/10.1002/cam4.1225.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Zhao M, et al. A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep. 2017;7:3024.  https://doi.org/10.1038/s41598-017-03226-6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yongtao Liu
    • 1
  • Jianrui Yin
    • 2
  1. 1.Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, Department of Biochemistry and Molecular BiologyBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Tsinghua Changgung HospitalBeijingPeople’s Republic of China

Personalised recommendations