Advertisement

Urine pp 167-188 | Cite as

The Application of Urinary Proteomics in Early Detection of Digestive Diseases

  • Linpei Zhang
  • Fanshuang Zhang
  • Weiwei Qin
Chapter

Abstract

Digestive diseases are disorders of the digestive organs, which may range from benign to serious. There is an inherent difficulty in diagnosis and treatment of various chronic digestive diseases; thus noninvasive early biomarkers are desperately needed. Without homeostasis mechanisms, urine is an ideal biomarker source that can reflect the early changes of disease theoretically. In this section, we will introduce the new studies of the urine proteome in rat models of three digestive diseases including liver fibrosis, chronic pancreatitis and inflammatory bowel disease. Many potential biomarkers were found earlier than clinical symptom and significant pathological changes that may provide important clues for the early detection of these diseases. We think urine proteome has a broad application prospect in the early diagnosis, treatment, monitoring, and prognosis of digestive diseases.

Keywords

Urinary proteomics Liver fibrosis Chronic pancreatitis Inflammatory bowel disease Animal models 

Notes

Acknowledgments

This chapter is based on published articles:

  1. 1.

    Zhang F, Ni Y, Yuan Y, Yin W, Gao Y. Early urinary candidate biomarker discovery in a rat thioacetamide-induced liver fibrosis model. Science China Life Sciences. 2018; 61(11):1369–1381.

     
  2. 2.

    Zhang L, Li Y, Gao Y. Early changes in the urine proteome in a diethyldithiocarbamate-induced chronic pancreatitis rat model. J Proteomics. 2018;186:8–14.

     
  3. 3.

    Qin W, Li L, Wang T, Huang H, Gao Y. Urine proteome changes in a TNBS-induced colitis rat model. Proteomics Clin Appl. 2019; e1800100.  https://doi.org/10.1002/prca.201800100.

     

References

  1. Abraham BP, Mehta S, El-Serag HB. Natural history of pediatric-onset inflammatory bowel disease: a systematic review. J Clin Gastroenterol. 2012;46(7):581–9.  https://doi.org/10.1097/MCG.0b013e318247c32f.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ariza X, Sola E, Elia C, Barreto R, Moreira R, Morales-Ruiz M, Graupera I, Rodriguez E, Huelin P, Sole C, Fernandez J, Jimenez W, Arroyo V, Gines P. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLoS One. 2015;10(6):e0128145.  https://doi.org/10.1371/journal.pone.0128145.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ariza X, Graupera I, Coll M, Sola E, Barreto R, Garcia E, Moreira R, Elia C, Morales-Ruiz M, Llopis M, Huelin P, Sole C, Fabrellas N, Weiss E, Nevens F, Gerbes A, Trebicka J, Saliba F, Fondevila C, Hernandez-Gea V, Fernandez J, Bernardi M, Arroyo V, Jimenez W, Deulofeu C, Pavesi M, Angeli P, Jalan R, Moreau R, Sancho-Bru P, Gines P. Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J Hepatol. 2016;65(1):57–65.  https://doi.org/10.1016/j.jhep.2016.03.002.CrossRefPubMedGoogle Scholar
  4. Aydin AF, Kusku-Kiraz Z, Dogru-Abbasoglu S, Gulluoglu M, Uysal M, Kocak-Toker N. Effect of carnosine against thioacetamide-induced liver cirrhosis in rat. Peptides. 2010;31(1):67–71.  https://doi.org/10.1016/j.peptides.2009.11.028.CrossRefPubMedGoogle Scholar
  5. Bhardwaj P, Yadav RK. Chronic pancreatitis: role of oxidative stress and antioxidants. Free Radic Res. 2013;47(11):941–9.  https://doi.org/10.3109/10715762.2013.804624.CrossRefPubMedGoogle Scholar
  6. Bolignano D, Della Torre A, Lacquaniti A, Costantino G, Fries W, Buemi M. Neutrophil gelatinase-associated lipocalin levels in patients with crohn disease undergoing treatment with infliximab. J Investig Med. 2010;58(3):569–71.  https://doi.org/10.2310/JIM.0b013e3181ccc20c.CrossRefGoogle Scholar
  7. Bracht T, Schweinsberg V, Trippler M, Kohl M, Ahrens M, Padden J, Naboulsi W, Barkovits K, Megger DA, Eisenacher M, Borchers CH, Schlaak JF, Hoffmann AC, Weber F, Baba HA, Meyer HE, Sitek B. Analysis of disease-associated protein expression using quantitative proteomics-fibulin-5 is expressed in association with hepatic fibrosis. J Proteome Res. 2015;14(5):2278–86.  https://doi.org/10.1021/acs.jproteome.5b00053.CrossRefPubMedGoogle Scholar
  8. Carter WG, Vigneswara V, Newlaczyl A, Wayne D, Ahmed B, Saddington S, Brewer C, Raut N, Gerdes HK, Erdozain AM, Tooth D, Bolt EL, Osna NA, Tuma DJ, Kharbanda KK. Isoaspartate, carbamoyl phosphate synthase-1, and carbonic anhydrase-III as biomarkers of liver injury. Biochem Biophys Res Commun. 2015;458(3):626–31.  https://doi.org/10.1016/j.bbrc.2015.01.158.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chai YC, Jung CH, Lii CK, Ashraf SS, Hendrich S, Wolf B, Sies H, Thomas JA. Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III; characterization of S-thiolation and dethiolation reactions. Arch Biochem Biophys. 1991;284(2):270–8.CrossRefGoogle Scholar
  10. Cheng ZX, Huang XH, Wang Q, Chen JS, Zhang LJ, Chen XL. Clinical significance of decreased nidogen-2 expression in the tumor tissue and serum of patients with hepatocellular carcinoma. J Surg Oncol. 2012;105(1):71–80.  https://doi.org/10.1002/jso.22047.CrossRefPubMedGoogle Scholar
  11. Cho HJ, Kim SS, Ahn SJ, Park JH, Kim DJ, Kim YB, Cho SW, Cheong JY. Serum transferrin as a liver fibrosis biomarker in patients with chronic hepatitis B. Clin Mol Hepatol. 2014;20(4):347–54.  https://doi.org/10.3350/cmh.2014.20.4.347.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chu SC, Wang CP, Chang YH, Hsieh YS, Yang SF, Su JM, Yang CC, Chiou HL. Increased cystatin C serum concentrations in patients with hepatic diseases of various severities. Clin Chim Acta. 2004;341(1–2):133–8.  https://doi.org/10.1016/j.cccn.2003.11.011.CrossRefPubMedGoogle Scholar
  13. Dai HY, Hong CC, Liang SC, Yan MD, Lai GM, Cheng AL, Chuang SE. Carbonic anhydrase III promotes transformation and invasion capability in hepatoma cells through FAK signaling pathway. Mol Carcinog. 2008;47(12):956–63.  https://doi.org/10.1002/mc.20448.CrossRefPubMedGoogle Scholar
  14. Danilova OV, Tai AK, Mele DA, Beinborn M, Leiter AB, Greenberg AS, Perfield JW 2nd, Defuria J, Singru PS, Lechan RM, Huber BT. Neurogenin 3-specific dipeptidyl peptidase-2 deficiency causes impaired glucose tolerance, insulin resistance, and visceral obesity. Endocrinology. 2009;150(12):5240–8.  https://doi.org/10.1210/en.2009-0386.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dariusz Szajda S, Waszkiewicz N, Stypulkowska A, Dadan J, Zwierz K. Lysosomal exoglycosidases in serum and urine of patients with pancreatic adenocarcinoma. Folia Histochem Cytobiol. 2010;48(3):351–7.  https://doi.org/10.2478/v10042-010-0060-9.CrossRefPubMedGoogle Scholar
  16. Dignass A, Eliakim R, Magro F, Maaser C, Chowers Y, Geboes K, Mantzaris G, Reinisch W, Colombel JF, Vermeire S, Travis S, Lindsay JO, Van Assche G. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis. J Crohns Colitis. 2012;6(10):965–90.  https://doi.org/10.1016/j.crohns.2012.09.003.CrossRefPubMedGoogle Scholar
  17. Duggan SN, Ni Chonchubhair HM, Lawal O, O’Connor DB, Conlon KC. Chronic pancreatitis: a diagnostic dilemma. World J Gastroenterol. 2016;22(7):2304–13.  https://doi.org/10.3748/wjg.v22.i7.2304.CrossRefPubMedPubMedCentralGoogle Scholar
  18. El Saadany SA, Ziada DH, Farrag W, Hazaa S. Fibrosis severity and mannan-binding lectin (MBL)/MBL-associated serine protease 1 (MASP-1) complex in HCV-infected patients. Arab J Gastroenterol. 2011;12(2):68–73.  https://doi.org/10.1016/j.ajg.2011.04.005.CrossRefPubMedGoogle Scholar
  19. Elson CO, Beagley KW, Sharmanov AT, Fujihashi K, Kiyono H, Tennyson GS, Cong Y, Black CA, Ridwan BW, McGhee JR. Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. J Immunol. 1996;157(5):2174–85.PubMedGoogle Scholar
  20. Friedman SL. Hepatic fibrosis – overview. Toxicology. 2008;254(3):120–9.  https://doi.org/10.1016/j.tox.2008.06.013.CrossRefPubMedGoogle Scholar
  21. Gao Y. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci. 2013;56(12):1145–6.  https://doi.org/10.1007/s11427-013-4574-1.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gluckmann M, Fella K, Waidelich D, Merkel D, Kruft V, Kramer PJ, Walter Y, Hellmann J, Karas M, Kroger M. Prevalidation of potential protein biomarkers in toxicology using iTRAQ reagent technology. Proteomics. 2007;7(10):1564–74.  https://doi.org/10.1002/pmic.200600836.CrossRefPubMedGoogle Scholar
  23. Gomollon F, Dignass A, Annese V, Tilg H, Van Assche G, Lindsay JO, Peyrin-Biroulet L, Cullen GJ, Daperno M, Kucharzik T, Rieder F, Almer S, Armuzzi A, Harbord M, Langhorst J, Sans M, Chowers Y, Fiorino G, Juillerat P, Mantzaris GJ, Rizzello F, Vavricka S, Gionchetti P. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J Crohns Colitis. 2017;11(1):3–25.  https://doi.org/10.1093/ecco-jcc/jjw168.CrossRefPubMedGoogle Scholar
  24. Guo J, Friedman SL. Hepatic fibrogenesis. Semin Liver Dis. 2007;27(4):413–26.  https://doi.org/10.1055/s-2007-991517.CrossRefPubMedGoogle Scholar
  25. Han NY, Choi W, Park JM, Kim EH, Lee H, Hahm KB. Label-free quantification for discovering novel biomarkers in the diagnosis and assessment of disease activity in inflammatory bowel disease. J Dig Dis. 2013;14(4):166–74.  https://doi.org/10.1111/1751-2980.12035.CrossRefPubMedGoogle Scholar
  26. Henkel C, Schwamborn K, Zimmermann HW, Tacke F, Kuhnen E, Odenthal M, Groseclose MR, Caprioli RM, Weiskirchen R. From proteomic multimarker profiling to interesting proteins: thymosin-beta(4) and kininogen-1 as new potential biomarkers for inflammatory hepatic lesions. J Cell Mol Med. 2011;15(10):2176–88.  https://doi.org/10.1111/j.1582-4934.2010.01204.x.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Henriksen M, Jahnsen J, Lygren I, Sauar J, Schulz T, Stray N, Vatn MH, Moum B. Change of diagnosis during the first five years after onset of inflammatory bowel disease: results of a prospective follow-up study (the IBSEN Study). Scand J Gastroenterol. 2006;41(9):1037–43.  https://doi.org/10.1080/00365520600554527.CrossRefPubMedGoogle Scholar
  28. Ito T, Ishiguro H, Ohara H, Kamisawa T, Sakagami J, Sata N, Takeyama Y, Hirota M, Miyakawa H, Igarashi H, Lee L, Fujiyama T, Hijioka M, Ueda K, Tachibana Y, Sogame Y, Yasuda H, Kato R, Kataoka K, Shiratori K, Sugiyama M, Okazaki K, Kawa S, Tando Y, Kinoshita Y, Watanabe M, Shimosegawa T. Evidence-based clinical practice guidelines for chronic pancreatitis 2015. J Gastroenterol. 2016;51(2):85–92.  https://doi.org/10.1007/s00535-015-1149-x.CrossRefPubMedGoogle Scholar
  29. Jing J, Gao Y. Urine biomarkers in the early stages of diseases: current status and perspective. Discov Med. 2018;25(136):57–65.PubMedGoogle Scholar
  30. Kacso IM, Potra AR, Rusu A, Moldovan D, Rusu CC, Kacso G, Hancu ND, Muresan A, Bondor CI. Relationship of endothelial cell selective adhesion molecule to markers of oxidative stress in type 2 diabetes. Scand J Clin Lab Invest. 2014;74(2):170–6.  https://doi.org/10.3109/00365513.2013.869700.CrossRefPubMedGoogle Scholar
  31. Kaplan GG, Ng SC. Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol Hepatol. 2016;1(4):307–16.  https://doi.org/10.1016/s2468-1253(16)30077-2.CrossRefPubMedGoogle Scholar
  32. Keleg S, Titov A, Heller A, Giese T, Tjaden C, Ahmad SS, Gaida MM, Bauer AS, Werner J, Giese NA. Chondroitin sulfate proteoglycan CSPG4 as a novel hypoxia-sensitive marker in pancreatic tumors. PLoS One. 2014;9(6):e100178.  https://doi.org/10.1371/journal.pone.0100178.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kiesler P, Fuss IJ, Strober W. Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 2015;1(2):154–70.  https://doi.org/10.1016/j.jcmgh.2015.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Krishnan A, Li X, Kao WY, Viker K, Butters K, Masuoka H, Knudsen B, Gores G, Charlton M. Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis. Lab Invest. 2012;92(12):1712–25.  https://doi.org/10.1038/labinvest.2012.121.CrossRefPubMedGoogle Scholar
  35. Ladero JM, Cardenas MC, Ortega L, Gonzalez-Pino A, Cuenca F, Morales C, Lee-Brunner A. Serum cystatin C: a non-invasive marker of liver fibrosis or of current liver fibrogenesis in chronic hepatitis C? Ann Hepatol. 2012;11(5):648–51.CrossRefGoogle Scholar
  36. Lee NP, Poon RT, Shek FH, Ng IO, Luk JM. Role of cadherin-17 in oncogenesis and potential therapeutic implications in hepatocellular carcinoma. Biochim Biophys Acta. 2010;1806(2):138–45.  https://doi.org/10.1016/j.bbcan.2010.05.002.CrossRefPubMedGoogle Scholar
  37. Li X, Benjamin IS, Alexander B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J Hepatol. 2002;36(4):488–93.CrossRefGoogle Scholar
  38. Li CS, Tian H, Zou M, Zhao KW, Li Y, Lao L, Brochmann EJ, Duarte ME, Daubs MD, Zhou YH, Murray SS, Wang JC. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2. Biochem Biophys Res Commun. 2015;466(2):167–72.  https://doi.org/10.1016/j.bbrc.2015.08.124.CrossRefPubMedGoogle Scholar
  39. Liao Q, Kleeff J, Xiao Y, Di Cesare PE, Korc M, Zimmermann A, Buchler MW, Friess H. COMP is selectively up-regulated in degenerating acinar cells in chronic pancreatitis and in chronic-pancreatitis-like lesions in pancreatic cancer. Scand J Gastroenterol. 2003;38(2):207–15.CrossRefGoogle Scholar
  40. Liu S, Yang Z, Wei H, Shen W, Liu J, Yin Q, Li X, Yi J. Increased DJ-1 and its prognostic significance in hepatocellular carcinoma. Hepato-Gastroenterology. 2010;57(102–103):1247–56.PubMedGoogle Scholar
  41. Ma L, Lin J, Qiao Y, Weng W, Liu W, Wang J, Sun F. Serum CD166: a novel hepatocellular carcinoma tumor marker. Clin Chim Acta. 2015;441:156–62.  https://doi.org/10.1016/j.cca.2014.12.034.CrossRefPubMedGoogle Scholar
  42. Majumder S, Chari ST. Chronic pancreatitis. Lancet. 2016;387(10031):1957–66.  https://doi.org/10.1016/s0140-6736(16)00097-0.CrossRefPubMedGoogle Scholar
  43. Makitalo L, Rintamaki H, Tervahartiala T, Sorsa T, Kolho KL. Serum MMPs 7-9 and their inhibitors during glucocorticoid and anti-TNF-alpha therapy in pediatric inflammatory bowel disease. Scand J Gastroenterol. 2012;47(7):785–94.  https://doi.org/10.3109/00365521.2012.677954.CrossRefPubMedGoogle Scholar
  44. Mani S, Cao W, Wu L, Wang R. Hydrogen sulfide and the liver. Nitric Oxide Biol Chem. 2014;41:62–71.  https://doi.org/10.1016/j.niox.2014.02.006.CrossRefGoogle Scholar
  45. Matsumura N, Ochi K, Ichimura M, Mizushima T, Harada H, Harada M. Study on free radicals and pancreatic fibrosis–pancreatic fibrosis induced by repeated injections of superoxide dismutase inhibitor. Pancreas. 2001;22(1):53–7.CrossRefGoogle Scholar
  46. Melmed GY, Elashoff R, Chen GC, Nastaskin I, Papadakis KA, Vasiliauskas EA, Liu W, Landers C, Ippoliti AF, Targan SR. Predicting a change in diagnosis from ulcerative colitis to Crohn’s disease: a nested, case-control study. Clin Gastroenterol Hepatol. 2007;5(5):602–8;. quiz 525.  https://doi.org/10.1016/j.cgh.2007.02.015.CrossRefPubMedGoogle Scholar
  47. Meng FS, Zhang ZH, Ji F. New endoscopic ultrasound techniques for digestive tract diseases: a comprehensive review. World J Gastroenterol. 2015;21(16):4809–16.  https://doi.org/10.3748/wjg.v21.i16.4809.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mondal G, Saroha A, Bose PP, Chatterjee BP. Altered glycosylation, expression of serum haptoglobin and alpha-1-antitrypsin in chronic hepatitis C, hepatitis C induced liver cirrhosis and hepatocellular carcinoma patients. Glycoconj J. 2016;33(2):209–18.  https://doi.org/10.1007/s10719-016-9658-2.CrossRefPubMedGoogle Scholar
  49. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96(3):795–803.CrossRefGoogle Scholar
  50. Naito Y, Kinoshita H, Okabe Y, Kawahara R, Sakai T, Suga H, Arikawa S, Oshima K, Kojiro M. CD56 (NCAM) expression in pancreatic carcinoma and the surrounding pancreatic tissue. Kurume Med J. 2006;53(3–4):59–62.CrossRefGoogle Scholar
  51. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, Sung JJY, Kaplan GG. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390(10114):2769–78.  https://doi.org/10.1016/s0140-6736(17)32448-0.CrossRefPubMedGoogle Scholar
  52. Nielsen OH, Gionchetti P, Ainsworth M, Vainer B, Campieri M, Borregaard N, Kjeldsen L. Rectal dialysate and fecal concentrations of neutrophil gelatinase-associated lipocalin, interleukin-8, and tumor necrosis factor-alpha in ulcerative colitis. Am J Gastroenterol. 1999;94(10):2923–8.  https://doi.org/10.1111/j.1572-0241.1999.01439.x.CrossRefPubMedGoogle Scholar
  53. Noda S, Masumi S, Moriyama M, Kannan Y, Ohta M, Sugano T, Yamate J. Population of hepatic macrophages and response of perfused liver to platelet-activating factor during production of thioacetamide-induced cirrhosis in rats. Hepatology. 1996;24(2):412–8.  https://doi.org/10.1053/jhep.1996.v24.pm0008690413.CrossRefPubMedGoogle Scholar
  54. Oikonomou KA, Kapsoritakis AN, Theodoridou C, Karangelis D, Germenis A, Stefanidis I, Potamianos SP. Neutrophil gelatinase-associated lipocalin (NGAL) in inflammatory bowel disease: association with pathophysiology of inflammation, established markers, and disease activity. J Gastroenterol. 2011;47(5):519–30.  https://doi.org/10.1007/s00535-011-0516-5.CrossRefPubMedGoogle Scholar
  55. Okuyama H, Nakamura H, Shimahara Y, Uyama N, Kwon YW, Kawada N, Yamaoka Y, Yodoi J. Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol. 2005;42(1):117–23.  https://doi.org/10.1016/j.jhep.2004.09.020.CrossRefPubMedGoogle Scholar
  56. Okuyama H, Son A, Ahsan MK, Masutani H, Nakamura H, Yodoi J. Thioredoxin and thioredoxin binding protein 2 in the liver. IUBMB Life. 2008;60(10):656–60.  https://doi.org/10.1002/iub.102.CrossRefPubMedGoogle Scholar
  57. Pezzilli R, Billi P, Fiocchi M, Beltrandi E, Cappelletti O, Sprovieri G, Miglioli M. Serum beta 2-microglobulin in chronic diseases of the pancreas. Int J Pancreatol. 1995;17(2):161–6.PubMedGoogle Scholar
  58. Popper H, Kent G. Fibrosis in chronic liver disease. Clin Gastroenterol. 1975;4(2):315–32.PubMedGoogle Scholar
  59. Qin W, Li L, Wang T, Huang H, Gao Y. Urine proteome changes in a TNBS-induced colitis rat model. Proteomics Clin Appl. 2019; e1800100.  https://doi.org/10.1002/prca.201800100.
  60. Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol. 2010;24(3):349–58.  https://doi.org/10.1016/j.bpg.2010.02.007.CrossRefPubMedGoogle Scholar
  61. Russ KB, Stevens TM, Singal AK. Acute kidney injury in patients with cirrhosis. J Clin Transl Hepatol. 2015;3(3):195–204.  https://doi.org/10.14218/jcth.2015.00015.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Saraswat M, Joenvaara S, Seppanen H, Mustonen H, Haglund C, Renkonen R. Comparative proteomic profiling of the serum differentiates pancreatic cancer from chronic pancreatitis. Cancer Med. 2017;6(7):1738–51.  https://doi.org/10.1002/cam4.1107.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sawai Y, Tamura S, Fukui K, Ito N, Imanaka K, Saeki A, Sakuda S, Kiso S, Matsuzawa Y. Expression of ephrin-B1 in hepatocellular carcinoma: possible involvement in neovascularization. J Hepatol. 2003;39(6):991–6.CrossRefGoogle Scholar
  64. Schonemeier B, Metzger J, Klein J, Husi H, Bremer B, Armbrecht N, Dakna M, Schanstra JP, Rosendahl J, Wiegand J, Jager M, Mullen W, Breuil B, Plentz RR, Lichtinghagen R, Brand K, Kuhnel F, Mischak H, Manns MP, Lankisch TO. Urinary peptide analysis differentiates pancreatic Cancer from chronic pancreatitis. Pancreas. 2016;45(7):1018–26.  https://doi.org/10.1097/mpa.0000000000000573.CrossRefPubMedGoogle Scholar
  65. Seow TK, Liang RC, Leow CK, Chung MC. Hepatocellular carcinoma: from bedside to proteomics. Proteomics. 2001;1(10):1249–63.  https://doi.org/10.1002/1615-9861(200110)1:10<1249::Aid-prot1249>3.0.Co;2-1.CrossRefPubMedGoogle Scholar
  66. Sheng WW, Dong M, Zhou JP, Kong FM, Li YJ. Clinicopathological significance of the expression of carbonic anhydrase I and II in human pancreatic cancer. Zhonghua Yi Xue Za Zhi. 2012;92(48):3407–11.PubMedGoogle Scholar
  67. Su MC, Yuan RH, Lin CY, Jeng YM. Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system. Mod Pathol. 2008;21(11):1379–86.  https://doi.org/10.1038/modpathol.2008.107.CrossRefPubMedGoogle Scholar
  68. Tan XF, Chen F, Wu SS, Shi Y, Liu DC, Chen Z. Science letters: proteomic analysis of differentially expressed proteins in mice with concanavalin A-induced hepatitis. J Zhejiang Univ Sci B. 2010;11(3):221–6.  https://doi.org/10.1631/jzus.B0900351.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tangkijvanich P, Yee HF Jr. Cirrhosis–can we reverse hepatic fibrosis? Eur J Surg Suppl. 2002;587:100–12.Google Scholar
  70. Tennakoon AH, Izawa T, Wijesundera KK, Murakami H, Katou-Ichikawa C, Tanaka M, Golbar HM, Kuwamura M, Yamate J. Immunohistochemical characterization of glial fibrillary acidic protein (GFAP)-expressing cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Toxicol Pathol. 2015;67(1):53–63.  https://doi.org/10.1016/j.etp.2014.09.008.CrossRefPubMedGoogle Scholar
  71. Tonack S, Jenkinson C, Cox T, Elliott V, Jenkins RE, Kitteringham NR, Greenhalf W, Shaw V, Michalski CW, Friess H, Neoptolemos JP, Costello E. iTRAQ reveals candidate pancreatic cancer serum biomarkers: influence of obstructive jaundice on their performance. Br J Cancer. 2013;108(9):1846–53.  https://doi.org/10.1038/bjc.2013.150.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tontini GE, Vecchi M, Pastorelli L, Neurath MF, Neumann H. Differential diagnosis in inflammatory bowel disease colitis: state of the art and future perspectives. World J Gastroenterol. 2015;21(1):21–46.  https://doi.org/10.3748/wjg.v21.i1.21.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Topic A, Ljujic M, Radojkovic D. Alpha-1-antitrypsin in pathogenesis of hepatocellular carcinoma. Hepat Mon. 2012;12(10 hcc):e7042.  https://doi.org/10.5812/hepatmon.7042.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Uehara S, Handa H, Gotoh K, Tomita H, Sennshuu M. Plasma concentrations of growth arrest-specific protein 6 and protein S in patients with acute pancreatitis. J Gastroenterol Hepatol. 2009;24(9):1567–73.  https://doi.org/10.1111/j.1440-1746.2009.05875.x.CrossRefPubMedGoogle Scholar
  75. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.  https://doi.org/10.1126/science.1260419.CrossRefPubMedGoogle Scholar
  76. Wang J, Chen L, Li Y, Guan XY. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. PLoS One. 2011;6(9):e24967.  https://doi.org/10.1371/journal.pone.0024967.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang X, Gong G, Yang W, Li Y, Jiang M, Li L. Antifibrotic activity of galangin, a novel function evaluated in animal liver fibrosis model. Environ Toxicol Pharmacol. 2013;36(2):288–95.  https://doi.org/10.1016/j.etap.2013.04.004.CrossRefPubMedGoogle Scholar
  78. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, Neurath MF. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12(7):1295–309.  https://doi.org/10.1038/nprot.2017.044.CrossRefPubMedGoogle Scholar
  79. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.  https://doi.org/10.1002/path.2277.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ, Habtezion A. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158.  https://doi.org/10.1038/ncomms8158.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yan Z, Gao J, Lv X, Yang W, Wen S, Tong H, Tang C. Quantitative evaluation and selection of reference genes for quantitative RT-PCR in mouse acute pancreatitis. Biomed Res Int. 2016;2016:8367063.  https://doi.org/10.1155/2016/8367063.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yin G, Du J, Cao H, Liu X, Xu Q, Xiang M. Reg3g promotes pancreatic carcinogenesis in a murine model of chronic pancreatitis. Dig Dis Sci. 2015;60(12):3656–68.  https://doi.org/10.1007/s10620-015-3787-5.CrossRefPubMedGoogle Scholar
  83. Zhang X, Xu L, Yin L, Qi Y, Xu Y, Han X, Peng J. Quantitative chemical proteomics for investigating the biomarkers of dioscin against liver fibrosis caused by CCl4 in rats. Chem Commun (Camb). 2015;51(55):11064–7.  https://doi.org/10.1039/c4cc09160d.CrossRefGoogle Scholar
  84. Zhang H, Liu B, Xu XF, Jiang TT, Zhang XQ, Shi YL, Chen Y, Liu F, Gu J, Zhu LJ, Wu N. Pathophysiology of chronic pancreatitis induced by dibutyltin dichloride joint ethanol in mice. World J Gastroenterol. 2016;22(10):2960–70.  https://doi.org/10.3748/wjg.v22.i10.2960.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhang F, Ni Y, Yuan Y, Yin W, Gao Y. Early urinary candidate biomarker discovery in a rat thioacetamide-induced liver fibrosis model. Sci China Life Sci. 2018a;61(11):1369–81.  https://doi.org/10.1007/s11427-017-9268-y.CrossRefPubMedGoogle Scholar
  86. Zhang L, Li Y, Gao Y. Early changes in the urine proteome in a diethyldithiocarbamate-induced chronic pancreatitis rat model. J Proteome. 2018b;186:8–14.  https://doi.org/10.1016/j.jprot.2018.07.015.CrossRefGoogle Scholar
  87. Zhu J, Thakolwiboon S, Liu X, Zhang M, Lubman DM. Overexpression of CD90 (Thy-1) in pancreatic adenocarcinoma present in the tumor microenvironment. PLoS One. 2014;9(12):e115507.  https://doi.org/10.1371/journal.pone.0115507.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Linpei Zhang
    • 1
  • Fanshuang Zhang
    • 2
  • Weiwei Qin
    • 3
  1. 1.School of Life SciencesBeijing Normal UniversityBeijingChina
  2. 2.Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  3. 3.Department of Anesthesiology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina

Personalised recommendations